文档库 最新最全的文档下载
当前位置:文档库 › 振动理论课件第二章单自由度习题6.26

振动理论课件第二章单自由度习题6.26

振动理论课件第二章单自由度习题6.26
振动理论课件第二章单自由度习题6.26

习 题

2.1 求题图2.1所示系统的无阻尼、有阻尼固有频率及周期

题图:2.1

2.2图示为车辆在道路上行驶时振动分析的简化模型,质量块m 表示车辆车体。由于地面不平顺,车辆行驶时,引起车辆竖向振动。道路不平顺可用路程s 的函数()y s 描述,当车辆

以速度v 匀速运动时,有s vt =、道路不平顺可转化为时间的函数()y vt 。试用绝对或

相对坐标描述车体的位移,建立振动微分方程。

题图2.2

2.3已知:弹簧质量系统,质量块为m ,弹簧刚度为k ,已知,()00x x =,()00x x

=,不考虑弹簧的质量,试求三种表达式表达的响应。

2.4假设弹簧长度为l ,单位长度质量为ρ,建立考虑弹簧质量的振动微分方程,求出固有频率并与不考虑弹簧质量时比较。(提示:可假设弹簧纵向位移函数,函数左端为零、右端

与质量块同,用能量法建立方程)

)

s

i t e

ω

题图2.3

2.5 有阻尼的弹簧质量系统,已知m 196kg =,k=19600N/m ,m s N c /2940?=,作用在质量块上的激振力为P(t)=160sin(19t)N ,试求考虑阻尼和忽略阻尼的两种情况中,系统的振幅放大因子及位移。

2.6 有实验测得一个系统有阻尼时固有频率为d ω,在简谐激振力作用下出现最大位移值的激励频率为m ω,求系统的无阻尼固有频率n ω,相对阻尼系数ξ及对数衰减率δ。 2.7 已知系统的弹簧刚度为k=800N/m ,作自由振动时的阻尼振动周期为

1.8s ,相邻两振幅的比值为

i i 1 4.2

1

A A +=

,若质量块受激振力P(t)=360cos(3t)的作用,求系统的稳态响应。 2.8 一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率为16rad /s ω=时,系统发生共振,给质量块增加1kg 的质量后重新试验,测得共振频率为2 5.86rad /s ω=,试求系统原来的质量及弹簧刚度。

2.9 如题图 2.4所示,作用在质量块上的激振力为0P(t)=P sin t ω,弹簧支承端有运动

t a x s ωcos =,写出系统的运动微分方程,并求稳态振动。

题图2.4

题图2.5

k

m

x

0sin t

ω)

2.10 如题图2.5的弹簧质量系统中,两个弹簧的连接处有一激振力0P=P sin t ω,求质量块的稳态响应和位移传递函数。

2. 11求题图2.1系统质量块的位移、速度和加速度传递函数及振动过程中基础的力传递函数。 2. 12有一阻尼单自由度系统,测得质量m=5kg ,刚度系数k=500N/m 。试验测得在6个阻尼自然周期内振幅由0.02m 衰减到0.012m ,试求系统的阻尼比和阻尼器的阻尼系数。 2.13求题图2.6所示三角形波的频谱。

题图2.6

2.14求题图2.7所示矩形波的频谱。

题图 2.7

2.15题图2.8所示系统位移激励为()x t ,()y t 是质量块的位移。求传递函数

()y x H ω←。

题图2.8

2.16 题图2.2所示可看作汽车在在波形道路上行驶时于垂直方向上的振动的力学模型。

已知汽车的质量满载时kg m 1000

1=,空载时为2250m kg =,悬挂弹簧的刚度是k=350kN/m ,阻尼比在满载时为0.5ξ=,车速为v=100km/h ,路面呈正弦波形,可表

t

示为2()sin

s

y s a l

π=,其中5l m =,求拖车在满载和空载时的振比。

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即:

得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:实部:cos(5t+ arctan) 虚部:sin(5t+ arctan) 1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x (t)可表示为 , 由式得

高等教育出版社_金尚年_马永利编著的理论力学课后习题答案

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案 第一章 1.2 afG — sin0) ;殳上运动的质点的微 afl - COS0) 分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关. 解: 设s为质点沿摆线运动时的路程,取0=0时,s=0 H ( x = a(0-sine) * ly = —a(l — COS0) ds - J (dx)2 + (dy)2 二 J((i9 — COS0 亠de)2+(sirL9 de)2 = 2asin| 2a sin舟dO = 4 a (L co马 写出约束在铅直平面内的光滑摆线

ee A s=2acos^59 + 2asin?9 = acos| 9^ + 2a sin? 9 x轴的夹角,取逆时针为正,tan (p即切线斜率设(P为质点所在摆线位置处切线方向 与 dy cos 0 -1 tan

振动理论-考题

《振动力学》——习题 单自由度系统的自由振动 2-1 如图2-1 所示,重物 W悬挂在刚度为k的弹簧上并处于静止平衡位置,另一重物2W 1 从高度为h处自由下落到 W上且无弹跳。试求2W下降的最大距离和两物体碰撞后 1 的运动规律。 图2-1 图2-2 2-2 一均质等直杆,长为l,重量为w,用两根长h的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 2-3 一半圆薄壁筒,平均半径为R, 置于粗糙平面上做微幅摆动,如图2-3所示。试求其摆动的固有频率。 图2-3 图2-4 2-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。 2-5 试求图2-5所示系统中均质刚性杆AB在A点的等效质量。已知杆的质量为m,A 端弹簧的刚度为k。并问铰链支座C放在何处时使系统的固有频率最高?

图2-5 图2-6 2-6 在图2-6所示的系统中,四个弹簧均未受力。已知m =50kg ,19800N m k =, 234900N m k k ==,419600N m k =。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离? 2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的 转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统的固有频 率。 图2-7 2-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼 系数及阻尼固有频率。 图2-8 图2-9 2-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。试求系统的无阻尼固有频率n ω及阻尼ζ。 单自由度系统的强迫振动 3-1 如图3-1所示弹簧质量系统中,两个弹簧的连接处有一激振力0()sin P t P t ω=。试

振动理论课后答案

精心整理 1-1???一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt????; ???????? 既有 , ,得到,mm 有一作简谐振动的物体,它通过距离平衡位置为cm 解: 设该简谐振动的方程为; ; A=10.69cm;1/s;T=s 当时,取最大,即: 得: 答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3?一个机器内某零件的振动规律为,x的单位是cm,1/s?。 这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: ????????振幅A=0.583 ??????最大速度??? 已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式, 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5) 或; 其合成振幅为:= 其合成振动频率为5t,初相位为:=arctan 则他们的合成振动为:?实部:cos(5t+?arctan) ????????????????????????????????????虚部:sin(5t+?arctan)

1-6将题1-6图的三角波展为傅里叶级数。 解∶三角波一个周期内函数x?(t)可表示为 ?, 由式得??????????????????????????????????????????????????????????n=1,2,3…… 1-7 , ,???? ?????; ?????P(t)平均值为0

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2 a θ=h α 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 θ F sin α 2 θα h mg θ

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2=== 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

振动理论及应用期末复习题题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2112 1 y m T = m 2动能:2222222 22222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 32333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212321)2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T =

振动理论习题答案汇总

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

振动理论练习题

振动理论练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第1章练习题 题已知一弹簧质量系统的振动规律为x(t)=?t+?t (cm), 式中,?=10? (1/s)。 (1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题如题图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题图题图 题一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题如题图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题图题图 题如题图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角?,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题利用等效质量与刚度的概念求解题图示系统的固有频率。AB杆为刚性,本身质量不计。 题图题图 题两缸发动机的曲轴臂及飞轮如题图所示,曲轴相当于在半径r处有偏心质量m e,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r,求平衡配重所需质量。

题 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由减少到。求此系统的相对阻尼系数?。 题 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%(3)衰减振动的周期是多少与不安装缓冲器时的振动周期作比较。 题 如题图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题图 题图 题 求题图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题 弹簧质量系统30o 光滑斜面降落,如题图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少 题图 题图 题 无阻尼单自由度质量弹簧m-k 系统,受题图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1)(000 t t t t t t x t x n n n n s -+--=ωωωω。 题 如题图,为车辆行驶通过曲线路面模型,设道路曲面方程为:)2cos 1(x l a y s π -=,求: 1)车辆通过曲线路面时的振动;2)车辆通过曲线路面后的振动。 题图 题图

振动理论练习题.doc

第1章练习题 题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。 题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。 题1.2图题1.3图 题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。 题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。 题1.4图题1.5图 题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。 题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。AB杆为刚性,本身质量不计。 题1.6图题1.7图

题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。 题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。求此系统的相对阻尼系数ζ。 题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。 (1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。 题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。 题1.10图 题1.11图 题1.11 求题1.11图所示初始时静止的弹簧质量系统在力F (t )=F o e -bt 作用下的瞬态响应。 题1.12 试求在t =0时,有冲量F 作用下,有阻尼弹簧质量系统的瞬态响应峰值x m 及其出现时间t m 。 题1.13 弹簧质量系统30o 光滑斜面降落,如题1.13图所示。自弹簧开始接触底面到离开为止,求所需的时间为多少? 题1.13图 题1.14图 题1.14 无阻尼单自由度质量弹簧m-k 系统,受题1.14图所示力的作用, 记x s =F 0/k ,m k n /2 =ω, 求证,在t < t 0 内,有 )sin (1 )(0 t t t x t x n n n s ωωω-= 在t > t 0内, 有 )(cos ]sin )([sin 1 )(000 t t t t t t x t x n n n n s -+--=ωωωω。

汽车理论习题集(附答案)分解

汽车理论习题集 一、填空题 1. 汽车动力性评价指标是: 汽车的最高时速 ﹑ 汽车的加速时间 和 汽车的最大爬坡速度 。 2. 传动系功率损失可分为 机械损失 和 液力损失 两大类。 3. 汽车的行驶阻力主要有 滚动阻力 、 空气阻力 、 坡度阻力 和 加速阻力 _。 4. 汽车的空气阻力分为 压力阻力 和 摩擦阻力 两种。 5. 汽车所受的压力阻力分为 形状阻力 ﹑ 干扰阻力 ﹑ 内循环阻力 和 诱导阻力 。 6. 轿车以较高速度匀速行驶时,其行驶阻力主要是由_ 空气阻力 _引起,而_ 滚动阻力 相对来说较小。 7. 常用 原地起步加速时间 加速时间和 超车加速时间 加速时间来表明汽车的加速能力。 8. 车轮半径可分为 自由半径 、 静力半径 和 滚动半径 。 9. 汽车的最大爬坡度是指 I 档的最大爬坡度。 10.汽车的行驶方程式是_ j i w f t F F F F F +++= 。 11.汽车旋转质量换算系数δ主要与 飞轮的转动惯量 、__ 车轮的转动惯量 以及传动系统的转动比有关。 12.汽车的质量分为平移质量和 旋转 质量两部分。 13.汽车重力沿坡道的分力成为 汽车坡度阻力 _。 14.汽车轮静止时,车轮中心至轮胎与道路接触面之间的距离称为 静力半径 。 15.车轮处于无载时的半径称为 自由半径 。 16.汽车加速行驶时,需要克服本身质量加速运动的惯性力,该力称为 加速阻力 。 17.坡度阻力与滚动阻力均与道路有关,故把两种阻力和在一起称为 道路阻力 。 18.地面对轮胎切向反作用力的极限值称为 附着力 。 19.发动机功率克服常见阻力功率后的剩余功率称为 汽车的后备功率 。 20.汽车后备功率越大,汽车的动力性越 好 。 21.汽车在水平道路上等速行驶时须克服来自地面的__ 滚动_阻力和来自空气的_ 空气 _阻力。

振动理论课后答案

1-1 一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz 的简谐振动 时,要使物体不跳离平台,对台面的振幅应有何限制 ? 解:物体与桌面保持相同的运动,知桌面的运动为 x = Asm OJ / 兄=一卫少'sin 宓 x =A sin10 n 「二 ⑴宀」■'; 由物体的受力分析,N = 0 (极限状态) 物体不跳离平台的条件为: 既有 r ? A<- g - = 9.93mm 5 由题意可知「 : Hz ,得到丁 -匚1匚,」」三].扛mm 。 1-2有一作简谐振动的物体,它通过距离平衡位置为5 cm 及- 'cm 时的速度分别为九二20 cm/s 及一 :cm/s ,求其振动周期、振幅和最大速度。 解: 设该简谐振动的方程为 1 ' - ; I ‘八…:?… \二式平方和为 将数据代入上式: ,存十芒『貝二決(与 】 ■- . 联立求解得 当兀二〕时,'■:取最大,即 : A =10.69cm

1-3 一个机器内某零件的振动规律为 「「二:f 一门仁,x 的单位是cm , i 一 1 :八1/s 。这个振动是否为简谐 振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的 关系。 解: x - 0.5 sin 迥亘 + 0.3cos =0 5B3[cas 30.95°Ein 砒+sin 3C? = 0.5B3sin(?x+30.95ft ) 振幅 A=0.583 = 0 583^ sin (^ + 120.95&) ^ = 0 583^ 血(血 +120 95°) 最大速度 」:--:-',L 最大加速度? : 1-4某仪器的振动规律为讥=—匚化-w 二以"。此振动是否为简谐振动? 试用x- t 坐标画出运动图。 解:因为3 1= 3 32=3 3,31工32.又因为 T 仁2 n / 3 丁2=2 n /3 3,所以,合成运动为 周期为T=2 n /3 3的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为 有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。 22.63m/s 。

推土机理论练习题(附答案)

推土机操作理论练习题(一) 一、判断题 1、推土机离合器摩擦片有油污打滑时要进行清洗,最好在工作后进行清洗。 (√) 2、推土机向深沟悬崖边缘推土时,推刀可以推出边缘。 (×) 3、推土机转向离合器操纵杆自由行程过小会使转向失灵。 (×) 4、自行式铲运机实习驾驶员如有违反交通规则或发生事故,监督员没有责任。(×) 5、铲运机转弯时,禁止把钢索收到底。 (√) 6、摩擦片翘曲会造成离合器有拖带现象。 (√) 7、推土机在陡坡上纵向行驶时可以拐死弯。 (×) 8、推土机、铲运机在深沟基坑作业时,其垂直边坡深度超过2m时要放出安全坡度。(√) 9、发动机进气行程在活塞到达上止点前一定角度,进气门提前开启。 (√) 10、发动机气缸盖衬垫损坏,使压缩比缩小。 (√) 11、发动机排气行程在活塞到达下止点前一定角度,排气门提前开启。 (√) 12、推土机在Ⅲ-Ⅳ级土壤地带作业时应进行爆破或用松土器疏松。 (×)

13、发动机水管中漏入空气会形成气塞,则发动机出水温度会过低。 (×) 14、发动机排气冒黑烟,表示发动机燃烧室内进入机油。 (×) 15、发动机排气冒蓝烟,表示发动机燃烧室内进入机油。 (√) 16、液压推土操纵杆的浮动位置,主要是为了便利操作。 (×) 17、发动机气缸垫具有一定的弹性,以补偿接合面的不平度,保证密封。 (√) 18、推土机推土刀架可调节成斜铲,主要用于将土壤推向一侧的工况。 (√) 19、推土机推土板操纵杆在浮动位置时,推土板按地面条件不能自由地上升或下降。(×) 20、胶带传动平稳性好,准确可靠,传动比固定不变。 (×) 21、在运距较近的半挖半填地区尽量采用下坡推土。 (√) 22、推土、铲运机不工作时发动机不能在较长时间内进行怠速运转。 (√) 23、推土机液压操纵系统推土板操纵杆有提升、下降、停止、浮动四个位置。(√) 24、推土机进行前后退换档时,应踏下减速踏板待减速后,再进行换档。 (√) 25、在安装带轮时,主、从动轮的轮槽可以不在同一平面内。 (×) 26、液压油的粘度随温度升高而提高。 (×) 27、推土、铲运机的制动器作用是使推土、铲运机停车。

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

振动理论-第二章-习题解答

第二章习题 2—1 一重块100W N =,支承在平台上,如题2-1图所示。重块下联结两个弹簧,其刚 度均为20/k N cm =。在图示位置时,每个弹簧已有初压力010F N =。设将平台突然撤去,则重块下落多少距离? k k 题2—1图 解答:由题可知:弹簧在初始时的形变0010 0.520 F L cm cm k = == 设重块将下落h m ,则: 22 12.[()]W h k h L L =+- 于是: 4h cm = 2-3.求题2-3图所示的轴系扭转振动的固有频率。轴的直径为d ,剪切弹性摸量为 G , 两端固定。圆盘的转动惯量为J,固定于轴上,至轴两端的距离分别为12l l 和。 解: 以圆轴的轴线为固定轴,建立系统的振动微分方程 惯性力矩: J θ&&

恢复力矩: 1 2 p p GI GI l l + 由动静法得 120p p GI GI J l l θθ??++= ??? && 因此 2-4 一均质等直杆AB ,重为W ,用两相 同尺寸的铅垂直线悬挂如题2-4图所示。 线长为l , 两线相距为2a 。试推导AB 杆绕通 过重心的铅垂轴作微摆动的振动微分方程,并求出 其固有频率。 A B ()12212 4 32 2p p GI l l Jl l d I f f ωπωπ += == = 且 由以上各式得

解:AB 杆绕重心摆动,则: ( )2 22 2 cos 20 : 2 12330 =: 2J a Wa F T T l l J Fa Wa J l m m J b b Wa mlb a b f θ θθ ?θθ θθθωωπ=== +=+===+=∴== g g g g g g g g g g 惯性力矩: 恢复力矩: 2Fa 其中 : 则 : 即 : 又有则 : 固有频率 2-5 有一简支梁,抗弯刚度EI=2E10 N ·c ㎡,跨度为L=4m ,用题图(a),(b)的两种方式在梁跨中连接一螺旋弹簧和重块。弹簧刚度K=5kN/cm ,重块质量W=4kN,求两种弹簧的固有频率。 (a) (b) 解:根据材料力学理论可知简支梁中点的刚度

燕山大学振动理论习题答案

第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后的运动规律。 解: 2 22221v g W h W = ,gh v 22= 动量守恒: 122 122v g W W v g W +=,gh W W W v 221212+= 平衡位置: 11kx W =,k W x 1 1= 1221kx W W =+,k W W x 2 112+= 故: k W x x x 2 1120= -= ()2 121W W kg g W W k n +=+= ω 故: t v t x t x t x x n n n n n n ωωωωωωsin cos sin cos 12 000+ -=+-= x x 0 x 1 x 12 平衡位置

2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角θ 2a θ=h α 2F =mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ 其中 1 2c o s s i n ≈≈θ αα h l ga p h a mg ml n 2 22 22304121==?+θθ g h a l ga h l p T n 3π23π2π22 2= == 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。

单自由度系统

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形:,同时也产生弹簧恢复力K ,当其等于重力W 时,则处于静平衡位置,即 W=K 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(+x),显然大于重力W ,由 于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m && (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x && (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x &&== (1-1-5) ()x m x k W F && =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x &x )

仪器分析习题(附答案)

1. 仪器分析法的主要特点是(D ) A. 分析速度快但重现性低,样品用量少但选择性不高 B. 灵敏度高但重现性低,选择性高但样品用量大 C. 分析速度快,灵敏度高,重现性好,样品用量少,准确度高 D. 分析速度快,灵敏度高,重现性好,样品用量少,选择性高 2. 仪器分析法的主要不足是(B ) A. 样品用量大 B. 相对误差大 C. 选择性差 D.重现性低 3. 下列方法不属于光分析法的是( D ) A. 原子吸收分析法 B. 原子发射分析法 C. 核磁共振分析法 D. 质谱分析法 4. 不属于电分析法的是( D ) A. 伏安分析法 B. 电位分析法 C. 永停滴定法 D. 毛细管电泳分析法 5. Ag-AgCl参比电极的电极电位取决于电极内部溶液中的( B )。 A. Ag+活度 B. C1-活度 C. AgCl活度 D.Ag+和C1-活度之和 6. 玻璃电极使用前,需要( C )。 A. 在酸性溶液中浸泡1 h B. 在碱性溶液中浸泡1 h C. 在水溶液中浸泡24 h D. 测量的pH不同,浸泡溶液不同 7. 根据氟离子选择电极的膜电位和内参比电极来分析,其电极的内充液中一定含有( A )。 A. 一定浓度的F-和Cl- B. 一定浓度的H+ C. 一定浓度的F-和H+ D. 一定浓度的Cl-和H+ 8. 测量pH时,需要用标准pH溶液定位,这是为了( D )。 A. 避免产生酸差 B. 避免产生碱差 C. 消除温度的影响 D. 消除不对称电位和液接电位的影响 9. 玻璃电极不包括( C )。 A. Ag-AgCl内参比电极 B. 一定浓度的HCl溶液 C. 饱和KCl溶液 D. 玻璃膜 10. 测量溶液pH通常所使用的两支电极为( A )。 A. 玻璃电极和饱和甘汞电极 B. 玻璃电极和Ag-AgCl电极 C. 玻璃电极和标准甘汞电极 D. 饱和甘汞电极和Ag-AgCl电极 11. 液接电位的产生是由于( B )。 A. 两种溶液接触前带有电荷 B. 两种溶液中离子扩散速度不同所产生的 C. 电极电位对溶液作用的结果 D. 溶液表面张力不同所致 12. 离子选择性电极多用于测定低价离子,这是由于( A )。 A. 高价离子测定带来的测定误差较大 B. 低价离子选择性电极容易制造 C. 目前不能生产高价离子选择性电极 D. 低价离子选择性电极的选择性好 13. 电位滴定中,通常采用( C )方法来确定滴定终点体积。 A. 标准曲线法 B. 指示剂法 C. 二阶微商法 D. 标准加入法 14. 离子选择电极的电极选择性系数可以用来估计( B )。 A. 电极的检测极限 B. 共存离子的干扰 C. 二者均有 D. 电极的响应时间 15. 用电位滴定法测定水样中的C1-浓度时,可以选用的指示电极为( C )。 A. Pt电极 B. Au电极 C. Ag电极 D. Zn电极 16. 用pH玻璃电极测定pH为13的试液,pH的测定值与实际值的关系为( B )。 A. 测定值大于实际值 B. 测定值小于实际值 C. 二者相等 D. 不确定 17. 用pH玻璃电极测定pH为0.5的试液,pH的测定值与实际值的关系为( A )。 A. 测定值大于实际值 B. 测定值小于实际值 C. 二者相等 D. 不确定 18. 用pH玻璃电极为指示电极,以0.2000 mol/L NaOH溶液滴定0.02000 m/learning/CourseImports/yycj/cr325/Data/FONT>苯甲酸溶液。从滴定曲线上求得终点时pH = 8.22,二分之一终点时溶液的pH = 4.18,则苯甲酸的Ka为( B )。 A. 6.0×10-9 B. 6.6××10-5 C. 6.6××10-9 D. 数据少无法确定 19. 当金属插人其金属盐溶液时,金属表面和溶液界面间会形成双电层,所以产生了电位差。此电位差为( B )。 A. 液接电位 B. 电极电位 C. 电动势 D. 膜电位 20. 测定溶液pH时,用标准缓冲溶液进行校正的主要目的是消除( C )。 A.不对称电位B.液接电位 C.不对称电位和液接电位D.温度 21. 用离子选择性电极标准加入法进行定量分析时,对加入标准溶液的要求为( A )。 A.浓度高,体积小B.浓度低,体积小

北科大振动理论及应用大作业孙健宁

振动理论及应用 大作业 题目:基于MATLAB的三自由度 弹簧质量系统的振动分析姓名: 专业:机械工程 学号:

一、题目: 已知图示的三自由度弹簧质量系统,试编写MATLAB 程序: (1)求固有频率、主振型及正则振型; (2)对初始条件的自由响应; (3)对外激励的稳态响应。 参数选取:(1)各个质量值(2)各段刚度值(3)初始条件(4)简谐激励。 二、求解过程和MATLAB 程序 取k1=k2=k3=k4=k ,m1 = m2=m ,m3=2m ;初始条件为x11,21x ? ==,简谐激励为1sin( ),22sin(2),33sin(3)F t F t F t ===。 1、求解固有频率、主振型及正则振型 建立名为work.m 的m 文件,并输入以下命令: %定义刚度矩阵和质量矩阵 k=1;m=1; k1=k;k2=k;k3=k;k4=k; m1=m;m2=m;m3=2*m; k11=k1+k2;k12=-k2;k13=0; k21=-k2;k22=k2+k3;k23=-k3; k31=0;k32=-k3;k33=k3; K=[k11,k12,k13;k21,k22,k23;k31,k32,k33];

M=[m1,0,0;0,m2,0;0,0,m3]; %求特征值和特征向量 R=inv(M)*K; D1=eig(R); [p2,d]=sort(D1); [V,Dm]=eig(R); %固有频率 for i=1:3 p(i,1)=sqrt(p2(i,1)); end %求主振型和正则振型 for i=1:3 for j=1:3 A1(i,j)=V(i,d(j))/V(1,d(j)); end end Ap=A1; Mp=Ap'*M*Ap; Kp=Ap'*K*Ap; for i=1:3 AN(:,i)=Ap(:,i)/sqrt(Mp(i,i)); end MN=AN'*M*AN; KN=AN'*K*AN; p Ap AN 运行得到固有频率p,主振型矩阵Ap,正则振型矩阵AN如下:p = 0.3560 1.1281 1.7609

相关文档