文档库 最新最全的文档下载
当前位置:文档库 › 〈利用函数性质判定方程解的存在〉公开课PPT课件

〈利用函数性质判定方程解的存在〉公开课PPT课件

多元凸函数的判定

多元凸函数的判定 1 引言 凸函数是一类基本函数,具有非常好的分析学性质,在极值研究、不等式证明、数学规划、逼近论、变分学、最优控制理论、对策论等领域有着广泛的应用. 人们对一元凸函数性质和判定方法已经有了丰富的研究,但随着凸函数应用范围的不断扩展,多元凸函数越来越多的被研究. 一元函数凸性的判定方法也被推广到多元函数,文献[4]将凸函数与导函数之间的关系推广,给出了用梯度判定多元函数凸性的方法,文献[5]将凸函数与二阶导数之间的关系推广,给出了用黑塞矩阵判定多元函数凸性的方法. 而多元函数的梯度与黑塞矩阵在计算中往往比较繁琐,本文将着力研究多元函数凸性判定方法的改进,使凸函数判定的计算更加简洁,应用更加方便. 2 定义及引理 本节主要介绍本文用到的定义及引理. 定义2.1[2] 设n R D ?,如果D 中的任意两点的连线也在D 内,则称D 为n R 中的凸集. 即对任意21,P P ,数)1,0(∈λ,总有 D P P ∈-+21)1(λλ. 定义 2.2[1] 设n R D ?为非空凸集,f 为定义在D 上的函数,若对任意 )1,0(,,21∈∈λD P P ,总有 )()1()())1((2121P f P f P P f λλλλ-+≤-+, (1) 则称f 为D 上的凸函数. 反之,如果总有 )()1()())1((2121P f P f P P f λλλλ-+≥-+, (2) 则f 为D 上的凹函数. 若上述(1)、(2)中的不等式改为严格不等式,则相应的函数称为严格凸函数和严格凹函数. 定义]2[3.2 )(P f 是定义在n R D ?上的多元函数,若在点),,,(210n x x x P ???存在对所有自变量的偏导数,则称向量))(,),(),((00021P f P f P f n x x x ???为函数)(P f 在点0P 的梯度,记作

凸函数的性质与应用

学院数学与信息科学学院 专业数学与应用数学 年级2009级 姓名zym 论文题目凸函数的性质与应用 指导教师555职称副教授成绩 2011 年06月10日

目录 摘要 (2) 关键词 (2) Abstract (2) Keywords (2) 前言 (2) 1 凸函数的定义 (2) 2 凸函数的性质 (4) 2.1f为I上凸函数的充要条件 (4) 2.2 f为区间I上的可导函数的相关等价论断 (4) 3凸函数的应用 (6) 参考文献 (7)

函数的性质与应用 学生姓名: *** 学号: 20095031390 数学与信息科学学院 数学与应用数学 指导教师: *** 职称: 副教授 摘 要:本文从凸函数的定义出发,总结了凸函数的性质与应用 关键词:凸函数;性质;应用 The properties and application of convex function Abstract: From the definition of convex function, summarizes the convex function of the properties and application. Key word: the definition of convex function; properties; application 前言 我们已经熟悉函数()2f x x =和()f x =的图象,它们不同的特点是:曲线 2y x =上任意两点间的弧段总在这两点连线的下方;而曲线y 则相反,任意两点间的弧段总在这两点连线的下方.我们把具有前一种特性的曲线称为凸的,相应的函数称为凸函数;后一种曲线称为凹的,相应的函数称为凹函数.下面通过一些例子来讨论凸函数的性质及应用,利用凸函数判断不等式的大小. 1 凸函数的定义 定义 1 设f 为定义在区间I 上的函数,若对I 上任意两点1x ,2x 和任意实数 ()0,1λ∈总有 ()()()()()121211f x x f x f x λλλλ+-≤+-, ()1 则称f 为I 上的凸函数.反之,如果总有 ()()()()()121211f x x f x f x λλλλ+-≥+-, ()2 则称f 为I 上的凹函数. 如果若()1、()2中不等式改为严格不等式,则相应的函数称为严格凸函数和严格

利用函数性质判定方程解的存在

利用函数性质判定方程解的存在 【学习目标】 1.正确认识方程0)(=x f 的实数解与函数)(x f 的零点的关系。 2.会结合函数图像性质判断方程解的个数。 3.会用多种方法求方程的解和函数的零点。 【学习重点】 方程的解与函数零点的关系、函数零点的应用。 【学习难点】 函数零点的应用 【课前预习案】 一、课本助读 阅读课本115—116页,然后完成。 (一)函数与方程的关系 1.求方程2230x x --=的根,画函数223y x x =--的图像。 2.观察函数的图像发现:方程的根与函数的图像和x 轴交点的横坐标有什么 关系? 3.归纳函数的零点的概念 我们把函数()y f x =的图像与 _______交点的_________ 称为这个函数的 ___________。 总结:方程()0f x =有实根?函数()y f x =的图像与______有交点?函数 ()y f x =有_______. (二)函数零点的判断 4.如何判断二次函数零点的个数,如何判断一元二次方程根的个数,它们之 间有什么关系? 分析:观察二次函数()26f x x x =--的图像,我们发现函数()26 f x x x =--在区间(4,0)-和()0,4有零点,计算)4(),0(-f f ,发现()()04f f -______0,函数

()26f x x x =--在(4,0)-内有零点__________,它就是方程()26f x x x =--的一 个根,同样地,()()04f f _____0,函数()26f x x x =--在()0,4内有零点________, 它就是方程()26f x x x =--的另一个根。我们可以用学过的解方程的方法来验证 这个结论。 5.判断函数有零点的方法.(函数零点的存在性定理) 若①函数()y f x =在闭区间[],a b 上的图像是______曲线,②并且在区间端 点的函数值符号_________,即____________,则在区间(),a b 内,函数_______ 有______零点,即相应的方程()0f x =在区间(),a b 内__________实数解. 二、预习自测 1.函数223y x x =--的零点有 。 2.判断下列函数在给定的区间上是否有零点: (1)()3x f x e x =--在区间[1,2]上; (2) 2()32f x x x =-+在区间[0,3]上 【课堂探究案】 一、 探究问题 1.在零点存在性定理中, ①为什么要是连续曲线?能举出反例吗? ②若0)()(>?b f a f 则函数)(x f y =在区间()b a ,内存在零点吗? 2. 为什么说函数)(x f y =“至少有一个”零点?函数零点的存在性定理能 否判断函数零点的个数?试举例说明. 3.单调函数满足函数零点的存在性定理的两个条件,能否判断函数零点的个 数?试举例说明. 4.)(x f y =在区间()b a ,内存在零点,则满足0)()(

对数性凸函数和几何凸函数的一些性质解读

对数性凸函数和几何凸函数的一些性质 张晶晶 (楚雄师范学院数学系2004级1班,) 指导老师郎开禄 摘要: 在本文中,获得了对数性凸函数的五个性质和几何凸函数的六个性质。 关键词: 凸函数; 对数性凸函数; 几何凸函数;基本性质 The research on some properties of logarithmatical convex function and geometric convex function Abstract: In this paper, the author gives five properties of logarithmatical convex function and six properties of geometric convex function by studying the fundamental properties. Key Words: Convex Function; Logarithmatical Convex Function; Geometric Covex Function;Fundamental Property 导师评语: 在文[1] ( [1]. 刘芳园,田宏根. 对数性凸函数的一些性质[J].《新疆师范大学学报》, 2006, 25(3): 22-25.)及文[2]( [2] .王传坚.对数性凸函数的性质及应用[D].楚雄师范学院03级优秀毕业 论文)等中,引入对数性凸函数的概念,获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数的 基本性质的一些应用.文[3]( [3] .吴善和.几何凸函数与琴生型不等式[J].《数学的实践与认识》,2004,34(2),155-163)讨论了几何凸函数与琴生型不等式的关系. 受文[1]- [3]的启发,在文[1]- [3]的的基础上, 张晶晶同学的毕业论文<<对数性凸函数和几何凸函数的一些性质>>进一步研究对数性凸函数和几何凸函数的性质,获得了对数性凸函数的五个性质 (论文中的定理7至定理11),获得了几何凸函数的六个性质 (论文中的定理13至定理17及推论). 张晶晶同学的毕业论文<<对数性凸函数和几何凸函数的一些性质>>选题具有理论与实际意义,通过深入研究, 在文[1]- [3]的基础上,该论文获得了对数性凸函数的五个性质,获得了几何凸函数的六个性质.该论文完成有相当的技巧性和难度,其结果在理论与实际上都有重要意义.论文语言流畅,打印行文规范,是一篇创新型的毕业论文.该同学在作论文过程中,悟性好,爱钻研,能吃苦,独立性强. 对数性凸函数和几何凸函数的一些性质 前言 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用,特别是在不等式的证明中发挥着无可代替的作用,受文[1]、[2]、[3]的影响,本文得到了对数性凸函数和几何凸函数的几个性质。 1.对数性凸函数的基本性质

凸函数的性质

凸函数的性质 【摘自[前苏]克拉斯诺西尔斯基等著《凸函数与奥尔里奇空间》(中译本)】 通常称函数)(x f 在区间),(b a 内是“下(上)凸函数”,若对于),(b a 内任意两点1x 和 2x )(21x x ≠与任意)1,0(∈t ,都满足“琴生(Jesen)不等式” 1212() [(1)]()(1)()f tx t x tf x t f x >+-<+- (※) 或 () 11221122()()()f t x t x t f x t f x >+<+ (※※) [其中1t 和2t 为正数且121=+t t ] 它的特别情形(取2 1 = t )是 ()()()121222f x f x x x f >++?? < ??? ()21x x ≠ (※※※) 在§2-7中曾把它作为下(上)凸函数的定义.。我们将证明,对于连续函数来说,不等式(※※※)与琴生不等式(※)是等价的。正因为这样,我们在教科书中就用简单的不等式(※※※)定义了下(上)凸函数(因为我们研究的函数都是连续函数)。下凸函数简称为凸函数,上凸函数简称为凹函数。请读者注意.....,这些称呼同国内某些教科书中的称呼是不一致的.....................。但是,我们的上述称呼与新近出版的许多教科书或发表的论文中的称呼是一致的。 因为函数的“上凸”与“下凸”是对偶的,所以,下面只讨论下凸函数的性质。相信读者一定能够把下面得出的结论,类比到上凸函数上。 (一)琴生不等式的几何意义 我们先解释一下琴生不等式的几何意义。如图一, 设231x x x <<,则21 21 3112323x x x x x x x x x x x --+--=(根据解析几何中的定比分点公式(*))。 根据琴生不等式(※※), )(3x f )()(2121311232x f x x x x x f x x x x --+--< [注意1 213212321,x x x x t x x x x t --=--=] 图一

利用函数性质判定方程解的存在教案

《利用函数性质判定方程解的存在》教案 教学目标 1.理解函数的零点,通过类比归纳,帮助学生提高数学抽象素养; 2.理解函数零点存在性定理,通过合作交流,体验由直观想象到数学抽象的核心素养; 3.会判断函数零点的个数和所在区间,帮助学生树立严谨的数学运算素养。 教学重难点 重点:理解函数零点的概念,掌握函数零点的判定方法。 难点:探究发现函数零点的存在性。 教学方法 启发式讲解,自主探究,合作探究等相结合 教学过程 一, 问题情境 1.从图片上你看到了什么,有何启示? 2.方程062ln =-+x x 有解吗?有几个呢? 二,新课探究 自主探究:从不同的角度看12-=x y 先让学生从形和数的角度看等式,接着当0=y 时,引导学生求出结果,再让学生从不同角度看0.5.

T :引导学生画图回答问题,师生共同总结,得出零点的概念 函数的零点:我们把函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点. 注意:函数的零点 ? 方程0=y 的根 ? 函数)(x f y =图像与x 轴交点的横坐标. (数的角度) (形的角度) 思考:零点是不是点?函数都有零点? 活动一:学以致用 快速抢答:函数)3)(2)(1()(-+-=x x x x f 零点个数为() A.1 B.-2 C.(1,0) ,(-2,0),(3,0) D.1,-2,3 小试牛刀:用图像法求方程3)2(2-=-x x 的根。 T :提示学生方程转化为函数角度。 合作探究:小马过河了吗? 观察下列两组画面,请你推断一下哪一组一定 说明小马已经成功过河? 问1:如果将河流抽象成x 轴,将小马前后的两个 位置抽象为A 、B 两点。请问当A 、B 与x 轴满足 怎样的位置关系时,AB 间的一段连续函数图象与x 轴一定有交点(即小马的运动轨迹一定经过小河)?并画出函数图像。 问2:结合所画图像,试用恰当的数学语言表述小马在什么情况下一定成功过河呢? 零点存在性定理:若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且f(a)·f(b)<0,则在区间(a,b )内,函数y=f(x)至少有一个零点,即相应的方程 f(x)=0 B

凸函数判定方法的研究

凸函数判定方法的研究 鸡冠山九年一贯制学校 张岩 2013年12月15日

目录 摘要 (ii) 关键词 (ii) Abstract (ii) Key words (ii) 前言 (iii) 一、凸函数的基本理论 (1) 1、预备知识 (1) 2、凸函数的概念及性质 (2) 二、凸函数的判定方法 (4) (一)一元函数凸性的判定方法 (4) 1、利用作图判断函数凸性 (4) 2、其它判定方法 (5) (二)多元函数凸性的判定方法 (8) 1、多元凸函数的有关概念 (8) 2、多元函数凸性的判定方法 (9) 三、凸函数几个其他判定方法 (12) 四、总结 (14) 参考文献 (14) 致谢 (15)

凸函数判定方法的研究 摘要:凸函数是一类非常重要的函数,借助它的凸性可以科学准确地描述函数图像,而且可以用于不等式的证明。同时,凸函数也是优化问题中重要的研究对象,研究的内容非常丰富,研究的结果已在许多领域得到广泛的应用,因此凸函数及其性质以及凸性判定的充要条件的研究就显得尤为重要。本文首先给出了凸函数的一些基本概念和结论,然后针对一元和多元函数,对凸函数的判定做了研究和讨论,本文最后也给出几种新的判定凸函数的方法。 关键词:凸函数;梯度;Hesse 矩阵;泰勒定理 Abstract: Convex function is a kind of very important functions, with the help of its convexity we can accurately describe the graph of functions and it can also be used to prove the inequalities. As the significant object in optimization problems, the contents about convex functions we study are very abundant, the results obtained so far has been applied to many fields. Therefore, the topic we concern about is deserved to be discussed. In this paper, we firstly present some basic definitions and properties of convex functions, then aiming at the univariate function and multi-variable functions we give several criterions for determining the convexity of functions. Finally, some new principles are also given. Key words:Convex function; Gradient; Hesse matrix; Taylor Theorem

凸函数的性质及其应用

摘要 高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。凸函数的许多良好性质在数学中都有着非常重要的作用。凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。 同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。 本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。 关键词:凸函数;不等式;经济学;最优化问题

Abstract Convex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines. Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's. The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply. Key words:Convex function;Inequality;Economics;Optimization problem

函数凹凸性的性质判定及应用

函数凹凸性的判定性质及应用 曹阳数学计算机科学学院 摘要:函数的凹凸性在数学研究中具有重要的意义。本文从凸函数的多种定义入手,引出凹凸函数的性质,介绍了凹凸函数的性质及 判定定理。在此基础上,将一元函数的凹凸性进行推广,推广到二 元函数上,讨论了二元函数凹凸性的性质,判定方法及其应用。一 元到二元,即增加了一个变量,那么对于n元的情况是否有相似的 函数存在呢?本文层层深入,将二元函数进行再次推广,至n元的 情形,给出n元凹凸函数的定义,判定方法及性质。本文主要讨论 了一元,二元,多元凹凸函数的定义,性质,及判定方法,并介绍 了它们应用。 关键词:凹凸性;一元函数;二元函数;多元函数;判别法;应用; Convex function of Judge Properties and Applications Abstract: The function of convexity in mathematical research is of great significance. In this paper, the definition of convex function of a variety of start, leads to uneven nature of the function, describes the properties of convex functions and decision theorem. On this basis, the concave and convex functions of one variable to promote, promote to the binary function, discusses the uneven nature of the nature of the binary function, determine the method and its application. One to a binary, an increase of a variable, then for n-whether it is a similar function exist? This layers of depth, the binary function to re-promote, to the case of n-given definition of n-convex function, determine the methods and properties. This article focuses on one element, binary, multiple convex function definition, nature, and judging methods, and describes their application. Keywords: Convexity; One Function; Binary function; Multiple functions; Criterion; Applications;

凸函数的性质及其在证明不等式中的应用

凸函数的性质及其在证明不等式中的应用 数学计算机科学学院 摘要:凸函数是一类重要的函数.凸函数在不等式的研究中尤为重要,而不等式最终归结为研究函数的特性,这就需要来研究凸函数了.本篇文章论述了凸函数、对数凸函数的定义、引理、定理和性质及其常用的一些判别方法(根据凸函数,对数凸函数的已知的定理、定义、性质,Jensen不等式等一些方法来判断函数是否是凸函数);本文还试就凸函数的等价定义、性质和在证明不等式中的应用等问题作一初步的探讨,以便进一步了解凸函数的性质及其在证明不等式时的作用;并浅谈了一下凸函数在不等式证明中的一些应用(如上述利用凸函数以及对数凸函数的定理,定义,性质,Jensen不等式来证明一些不等式),推广并证明了一些不等式(三角不等式,Jensen不等式等),得到了新的结果. 关键词:凸函数;对数凸函数;Jensen不等式;Hadamard不等式;应用 Nature of Convex Function and its Application in Proving Inequalities Chen Huifei, College of Mathematics and Computer Science Abstract : Convex function is a kind of important function. Convex function is particularly important in the study of the inequality, and the study of the inequality is reduced to study the characteristics of the convex function,which

凸函数几个等价定义

本科生毕业论文题目凸函数的几个等价定义 系别 班级 姓名 学号 答辩时间年月 学院

目录 摘要 (4) 1凸函数的定义 (6) 2凸函数的等价定义和性质 (6) 2.1凸函数的等价定义 (6) 2.2凸函数的性质 (7) 3凸函数等价定义和性质的应用举例 (10) 3.1一些集合上的凸函数举例 (10) 3.2运用凸函数等价定义证明不等式 (11) 总结 (16) 参考文献 (17) 谢辞 (18)

凸函数的几个等价定义 摘要 凸函数是一类重要的函数,它的概念最早见于Jensen在1905年的著述中。它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论基础和有力工具。为了理论上的突破,加强它们在实践中的应用,产生了广义凸函数。本文主要归纳了凸函数的几个常见定义和性质以及它们在不等式证明等几个方面的应用。 关键词:凸函数;等价性;不等式

Several equivalent of convex function defined Abstract Convex function is a kind of important function, it is the concept of the earliest Jensen in 1905 in the works. It in pure mathematics and applied mathematics of many fields has wide application, it has become the mathematical programming, the game theory and mathematical economics, variational learn and optimal control subjects such as theoretical basis and powerful tools. In order to theoretical breakthrough, strengthen them in practical application, produced the generalized convex function. This paper mainly summarizes the convex function of several common definition and characteristics and their inequation and so on several aspects in the application. [Key wards]Convex functions; Equivalence; Inequality.

凸函数的性质及其应用

中文题目:凸函数的性质及其应用 英文题目:The Property and Applications of Convex Functions 完成人: 指导教师: 系(院)别:数学与信息科技学院 专业、班级:数学与应用数学0602班 完成时间:二〇一〇年六月 河北科技师范学院数信学院制

目录 中文摘要 (1) 1 引言 (1) 2 预备知识 (1) 2.1 凸函数的定义 (2) 2.2凸函数的运算性质 (2) 2.3 Jesen不等式 (2) 3 本文的主要结果 (3) 3.1 凸函数的连续性 (3) 3.2 凸函数的微分性质 (3) 3.3 凸函数的积分性质 (6) 3.4 Jesen不等式及凸函数性质的应用 (7) 结束语 (12) 参考文献 (12) 英文摘要 (13) 致谢 (13)

凸函数的性质及其应用 (河北科技师范学院数学与信息科技学院 数学与应用数学专业0602班) 指导教师: 摘 要: 凸函数是一类重要的函数,它在数学理论研究中涉及了许多数学命题的讨论证明和应用。本文将散见于多种文献中的材料加以汇总并系统化,从凸函数的定义出发,讨论了定义在某区间上的凸函数经四则运算生成新的函数的凸性以及连续凸函数的一些性质,对凸函数的连续性、可微性、可积性等分析性质加以系统论述。并且讨论了凸函数Jesen 不等式和凸函数性质在不等式证明中的应用。 关键词: 凸函数;不等式;证明 1 引言 凸分析是近年来凹凸函数发展起来的一门应用十分广泛的数学分支, 它在数学规划、控制论、 多元统计等领域都有广泛的应用,尤其是在最优化理论方面的应用更为突出【3】 。对函数凹凸性的研究,在数学分析的多个分支都有用处,特别是在函数图形的描绘和不等式的推导方面,凸函数有 着十分重要的作用【4】 。人们对凸分析的自身理论发展也进行了广泛深入的研究,凸函数的性质也有所发展。函数的凸性是函数在区间上变化的整体性态,把握区间上的整体性态,不仅可以更加科学、准确的描绘函数的图象,而且有助于对函数的定性分析。对函数凹凸性的研究,在数学分析的多个分支都有用处。在凸规划理论、尤其是非线性最优化中,函数的凸性分析是最基本的,又是 最重要的【7】 。 凸函数的定义,最早是由Jenser 给出。本世纪初建立了凸函数理论以来, 凸函数这一重要概念 已在许多数学分支中得到了广泛应用【8】 。凸函数涉及了许多数学命题的讨论证明和应用,例如在数学分析、函数论、泛函分析、最优化理论等当中。应用研究方面,凸函数作为一类特殊函数在 现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用【10】 。由于凸函数具有较好的几何和代数性质, 在数学规划中有着广泛的应用背景, 一些常见的不等式都可以从函数的凸性中导出。数理经济学中, 对风险厌恶的度量, 也可以表现为对效用函数凸性的选 择,所以研究凸函数的性质就显得十分必要了【11】 。另外, 由于凸函数理论的广泛性, 因此对其理论的研究成果还有待进一步的深入和推广。 2 预备知识 2.1 凸函数的定义 定义1 【10】 设()f x 在区间I 内有定义,如果对任意的1x , 2x ∈I , (1x ≠2x ) ,总有 1212[(1)](1)()()f x x f x f x λλλλ-+<-+ , 则称函数()f x 是区间I 内的凸函数,并称()f x 在I 内的图形是向下凸的;如果对任意的1212,()x x I x x ∈≠,对(0,1)λ?∈,总有 12 12[(1)](1)()() f x x f x f x λλλλ-+>-+, 则称函数()f x 是区间I 内的凹函数,并称()f x 在I 内的图形是向上凸的。若式子中的不等式改为严格不等式, 则相应的函数称为严格凸(凹) 函数。 定义2 【 10】 设()f x 在区间I 上连续,如果对I 上任意两点1212,()x x x x ≠ ,恒有

三维空间上凸函数的判定

三维空间3R 上凸函数的判定 刘 风 (宿州学院 数学系, 2005级数学与应用数学,安徽 宿州 234000) 摘要:本文从凸集入手,着力讨论空间3R 上凸(凹)曲面的几何特征,并给出判定空间 3R 上凸函数的几个充要条件。 关键词:凸集;凸域; 凸函数;上图 1引 言 在数学分析里面,我们已经讨论了平面上凸函数的一些性质,但是对于多元函数却没有给出凸函数的定义及判定凸函数的充要条件。本文以空间3R 为代表,讨论3R 上凸(凹)曲面的几何特征,并给出判定其凸函数的几个充要条件。 2 凸 集 定义2.1 设X 是任意一实线形空间,M 是X 的一个集合,如果对任意的,x y M ∈以及[]0,1λ∈,都有 ()1x y M λλ+-∈, (1) 则称集合是凸集。 例2.1 设X 是任意一实线形空间,则对任意给定的非零向量z X ∈以及实数c ,集合{}|,H x x z c x X =?≥∈是X 上的一个凸集。 证明:12,x x H ?∈显然有12,x z c x z c ?≥?≥。令()[]121,0,1x tx t x t =+-?∈由于 []0,1t ∈,故有()()12,11tx z tc t x z t c ?≥-?≥-,从而有 ()()1211x z tx z t x z tc t c ?=?+-?≥+-。 即得x H ∈,由凸集的定义可知,H 是X 上的一个凸集。 定义2.2 若区域2 D R ?上任意两点的连线都含于D ,则称D 为凸域。即若D 是 2R 上的凸域,则对任意两点()()111222,,,P x y P x y D ∈以及对任意的实数[]0,1λ∈,都有 ()()()1 2 1 2 1,1P x x y y D λλλλ+-+-∈ 。 (2)

凸函数的性质和一些不等式的证明

高等教育自学考试 毕业论文 论文题目:凸函数的性质和一些不等式的证明 作者姓名:XXX 专业:数学教育 主考学校:兰州大学数学与统计学学院__ 准考证号: XXXXXXXXXXXX 指导教师姓名职称:XXX 甘肃省高等教育自学考试办公室印制 2013 年 3 月 4 日

XX 专业 论文标题:凸函数的性质和一些不等式的证明 论文标题(Properties of convex function and inequality ) 论文作者(XX ) 论文作者(XXXXXXXXX ) 数学专业 本科论文

目录 内容摘要: (4) 关键词: (4) 一、凸函数 (5) 1.凸函数的定义 (5) 2.常见的凸函数 (6) 4.凸函数的定理 (6) 二.凸函数在证明不等式中的简单应用 (7) 1.凸函数在几何平均值中的应用 (7) 2.凸函数在Young不等式中的应用 (9) 3.凸函数在Jensen不等式中的应用 (9) 4.凸函数在三角不等式中的应用 (10) 注释: (11) 参考文献: (11)

凸函数的性质和一些不等式的证明 ——凸函数的证明 XX 内容摘要: 我们通过学习通过我们熟知的一元二次函数:y=x2一些凸函数的定义、概念和它的性质,还有凸函数在Jensen不等式、三角不等式中的应用,让我们了解凸函数的用途。并且用它的一些特殊的性质来解决我们实际生活中的实际问题。 关键词: 凸函数、性质、Jensen不等式、三角不等式、

一、 凸函数 1.凸函数的定义 我们都学习了二元一次的函数2()f x x =的图像,它的特点是:曲线2y x =上任意两点间的弧线总在这两点连线的下方。我们把具有这一种特性的曲线称为凸的 由此,我们定义:设()f x 在[,]a b 上有定义,若曲线()y f x =上任意两点间的弧线总位于连接该两点的直线之下,则称函数()f x 是凸函数. 上面的定义只是简单的描述性定义,下面我们介绍关于凸函数的精确定义,以便于我们更好的利用它的性质。 在不等式的证明中经常会应用到凸函数的两个定义: 定义1 设()f x 在(,)a b 内连续,如果对(,)a b 内任意两点12,x x 恒有 12 12()() ( )2 2 x x f x f x f ++≤ 那么称()f x 在(,)a b 内是凸函数. 定义2 设()f x 在(,)a b 内连续,如果对(,)a b 内任意两点12,,(0,1)x x λ∈ ,有 )()1()())1((2121x f x f x x f λλλλ-+≤-+ 则称()f x 在(,)a b 内是凸函数.

【同步练习】《利用函数性质判定方程解的存在》(北师大)

《利用函数性质判定方程解的存在》 同步练习 ?填空题 1.若函数有两个零点,则实数的取值范围是。 2.函数零点的个数为。 3.已知函数,则方程在区间[—1, 0]内解的个数为 。 4.函数的零点为。 ?选择题 5.函数的零点所在的一个区间是()

A . ( —2, - 1) B. ( —1 , 0) C . (0, 1) D. (1 , 2) 6.函数的零点有()

7. 下列函数不存在零点的是 ( ) A. - B . C . D . 8.已知方程 ,则该方程的解会落在哪个区间内 ( ) A . (0 , 1) B . (1 , 2) C . (2 , 3) D . (3 , 4) ( 1)零点均大于1 ; ⑵一个零点大于1,一个零点小于1 ; ⑶一个零点在(0,1)内,另一个零点在(6,8)内。 答案与解析 1.【解析】函数 的零点的个数就是函数 与函数 交点的个数,由函 数的图像可知 时两函数图像有两个交点, 时两函数图像有一个交点, 故 9.设x o 是方程 的根,且 ,求正整数k 10.已知二次函数 ,在下列条件下,求实数 的取值范围。

【答案】(1 ,+8) 2.【解析】当时,令,解得;当时,在(0 , + 8)上递增,,故在(0,+^ )上有且只有一个零点。 【答案】2 3?【解析】因为- ,而函数 的图像是连续曲线,所以在区间[—1, 0]内有零点,即方程在区间[—1, 0]内有解.由函数图像可知有一个交点,即方程有一个解。 【答案】1 4?【解析】令,解得,, 【答案】 1 , -1,3 ?选择题

5.【解析】因为函数的图像是连续不断的一条曲线,又 ,所以,故函数零点所在的一个区间是(一1 , 0)。 【答案】 6?【解析】得: 只有一个零点。 【答案】 7.【解析】,得A中函数的零点为1,- 1 ; B中函数的零点为―,1; C中函 数的零点为1,- 1;只有D中函数无零点。 【答案】 8. 【解析】,则 ,由于,故函数在(2 , 3)上有零点,也即方程在(2 , 3)上有解。 【答案】C 9. 【解析】设,贝U是其零点, ,故,.?. k= 2 10.[解析】(1)因为方程的两根均大于1,结合二次函数的单调性与零点存在性定理得解得- 的一个根大于1, 一个根小于1,结合二次函数的单调性 (2)因为方程

凸函数的三种典型定义及其间的等价关系

V01.15No.3JoumalofH衄daJlV确ationalaIldTechnicalC01legeSept.2002 凸函数的三种典型定义及其问的等价关系 花树忠 (邯郸市职工大学基础教学部邯郸056001) 摘要:凸函数是一类常见的重要函数,有着十分广泛的应用。但是,不同数学教材中常常会给出不同的定义。本文给出三种比较多见的凸函数定义并就三者间的等价性进行证明。 关键词:凸函数;等价;定义 凸函数是一类重要的函数,笔者在多年的学习及教学过程中发现,不同数学教材中对凸函数的定义有多种形式,典型的有本文给出的三种,但教材中在理论上对它们间的等价关系的证明很少见到,下面笔者就常见的三种凸函数定义及其间的等价关系给予介绍和证明。 一、凸函数的三种典型定义及其几何意义 定义l若函数八茹)对于区间(口,6)内的任意zl,菇2以及A∈(o,1),恒有 ,[A算l+(1一A)菇2]≤V(石1)+(1一A)八髫2) 则称八茹)为区间(口,6)上的凸函数。 其几何意义为:凸函数曲线y=“菇)上任意两点(z。,厂(省1))、(菇2,,(菇2))问的割线总在曲线之上。定义2若函数,(菇)在区间(o,6)内连续,对于区间(a,6)内的任意菇l,并2,恒有,(半)≤如,(髫。)+以并2)] 则称厂(髫)为区间(口,6)上的凸函数。其几何意义为:凸函数曲线,,=“石)上任意两点(茗。,八菇。))、(戈:,“石2))问割线的中点总在曲线上相应点(具有相同横坐标)之上。定义3若函数.厂(菇)在区间(口,6)内可微,且对于区间(口,6)内的任意茹及粕,恒有 /.(戈)≥,(菇o)+厂(菇o)(菇一茗o)则称,(茗)为区间(口,6)上的凸函数。 其几何意义为:凸函数曲线,,=.厂(菇)上任一点处的切线,总在曲线之下。 二、凸函数的两个重要推论 推论1设八并)是定义l下的凸函数,则对于区间(口,6)内的任意三点髫l<戈2<z3,有 /.(菇2)一,(髫1)以菇3)一八茗。),(茹3)一,(髫2) —i=百一≤—i=百一≤一ii一证设A=(x3一髫2)/(茗3一聋1),贝0O<A<l,且l—A=(髫2一并1)/(戈3一髫1),菇2=.:【并l+(1一.;1)髫,,由定义l得/.(髫2)=/-[A菇l+(1一A)菇2]≤A厂(菇1)+(1一A)厂(戈3)从而八茄2)一厂(算1)≤(1一.;I)[厂(菇3)一八茹1)]及 /.(茗3)一/-(茹2)≥A[,(茗3)一/.(菇1)] 于是掣≤铧且掣≥掣髫2一茹l’髫3一髫l髫3一菇2’算3一茄1 日。,(髫2)一,(菇1)八并3)一八茗t),(菇3)一,(菇2) 刚—i=百一≤—i=i ≤一茹3一菇2推论2 设,(茹)是定义3下的凸函数,则厂(菇)在区间(口,6)内单调不减,即对(n,6)内任意的戈,?52?

相关文档
相关文档 最新文档