文档库 最新最全的文档下载
当前位置:文档库 › R-3-氨基哌啶双盐酸盐检测方法

R-3-氨基哌啶双盐酸盐检测方法

R-3-氨基哌啶双盐酸盐检测方法
R-3-氨基哌啶双盐酸盐检测方法

苯甲酸阿格列汀起始原料

——R-3-氨基哌啶双盐酸盐

[有关物质]

HPLC检测方法:

色谱柱:XBridge phenyl 150×4.6mm,3.5μm,或等同

柱温:25℃

检测波长:210nm

流速:1.0ml/min

进样量:5μl

运行时间:20min

稀释剂,空白,洗针剂:水:乙腈=50:50

流动相A:0.1%H3PO4,移取1LH2O至一合适的容器中,加入1mLH3PO4,混匀。流动相B:甲醇

[异构体]

HPLC检测方法:

色谱柱:Chiralpak IC 250×4.6mm, 5μm,或等同

柱温:25℃

模式:恒压

检测波长:210nm

流速:1.0ml/min

进样量:5μl

运行时间:30min

稀释剂,空白,洗针剂:流动相

流动相:正己烷/异丙醇/三氟乙酸=80/20/0.05

流动相的配制:移取800ml的正己烷和200ml的异丙醇至一合适的容器中,再向容器中加入0.5ml三氟乙酸,混匀。

D-氨基葡萄糖盐酸盐

D-氨基葡萄糖盐酸盐是甲壳素在盐酸中经充分降解得到的壳寡糖衍生物,是一种在人体内具有重要生理意义的海洋生物制剂。它具有重要的生理功能,能促进人体黏多糖合成,提高关节滑液黏性,有利于关节软骨的代谢和修复,并有明显的消炎镇痛作用。具有抗炎、抗肿瘤、免疫调节、增加骨密度、防腐抗菌等药理作用。 张伟斌等【4】通过实验,考察盐酸氨基葡萄糖胶囊治疗骨性关节炎的有效性和安全性。方法多中心、随机、阳性药物对照研究。143例膝和髋骨关节炎患者被随机分为两组,盐酸氨基葡萄糖研究组1 次,每日2次;硫酸氨基葡萄糖对照组2 次,每日3次,疗程均为6周。结果治疗6周后,盐酸氨基葡萄糖在改善行走疼痛、夜间静息痛、晨僵几方面优于硫酸氨基葡萄糖,差异有统计学意义(P<0.05)。总有效率评价显示盐酸氨基葡萄糖有效率为75.4%,硫酸氨基葡萄糖为60.6%,两组间差异无统计学意义,提示两种氨基葡萄糖治疗骨关节炎疗效相当。盐酸氨基葡萄糖组发生不良反应3例,硫酸氨基葡萄糖组2例,均较轻微,无严重不良事件发生。结论盐酸氨基葡萄糖胶囊治疗骨关节炎安全、有效,与硫酸氨基葡萄糖疗效相当。 卢锋等【5】等通过实验,探索盐酸氨基葡萄糖对骨关节炎的作用机制,通过建立棉球肉芽肿、白陶土诱导的骨关节炎和佐剂性骨关节炎实验动物模型研究方式进行研究。结果显示,盐酸氨基葡萄糖每日经口给入0.25~0.75g/ks BW 剂量可抑制肉芽组织增生、迟发性免疫反应和免疫性骨节炎;在0.5~1.5g/kg BW 剂量能抑制血管渗出,组织水肿和细胞游离。提示盐酸氨基葡萄糖对骨关节炎具有一定的保护和辅助治疗的作用。

邱贵兴等【6】等,通过实验考察盐酸/硫酸氨基葡萄糖治疗膝骨关节炎的疗效和安全性。方法采用多中心、随机、阳性药平行对照临床研究方法,将142 例膝骨关节炎患者随机分为2组,试验组和对照组各为71例,分别给予盐酸氨 基葡萄糖480 mg/次和硫酸氨基葡萄糖500mg/次,每天口服药物3次,共治疗4周,停药后继续观察2周,采用Lequesne指数作为疗效评分标准,观察服药前 后的膝关节症状变化包括休息痛、运动痛、压痛、肿胀、晨僵和行走能力的改 善程度,纪录不良反应及实验室生化指标等。结果治疗4周后,试验组和对照组的Lequesne指数总评分与基础值相比分别下降至3.4±1.9(P<0.05)和 3.4±1.8(P<0.05),症状改善率分别为91.4%(64//70)和90.0%(63/70),两组间差异无统计学意义(P>0.05);停药两周后,两组皆维持原有的治疗效果,症状 改善率分别为92.4%(61/66)和91.2%(62/68),组间差异无统计学意义(P>0.05);试验组和对照组的不良反应发生率分别为4.2%(3/71)和7.0%(5/71).结论盐酸 氨基葡萄糖治疗骨关节炎的疗效和安全性与硫酸氨基葡萄糖相似,是一种治疗 骨关节炎的安全、有效的药物。 魏长征等【7】通过试验,探讨氨基葡萄糖(GLC)和壳寡糖(cos)对去势大鼠动物模型血液生化指标的影响,进一步研究其抗骨质疏松的作用,以期为临床骨 质疏松的防治和新药、功能性食品开发提供理论和实验依据。方法:通过切除3月龄雌性大鼠双侧卵巢复制绝经骨质疏松动物模型,每日分别给予不同剂量的 氯基葡萄糖和壳寡糖,心脏取血观察血清生化指标的变化。结果:模型组碱性 磷酸酶(ALP)、抗酒石酸酸性磷酸酶(TRAP)、甘油三酯(TG)、胆固醇(CHO)、低密度脂蛋白(LDL)、肌酐(cr)都明显升高,氨基葡萄糖和壳寡糖中剂量(0.25g/kg)能明显降低上述6个指标的水平(P<0.05)。结论:氮基葡萄糖和壳寡糖对去势大

苯胺类染料检测方法研究(修改)

分类号:O657.7+2学校代码:10392 学号:3100709140 福建医科大学 本科生毕业论文 染发剂中苯胺类染料的HPLC检测方法Determination of Aminobenzenes in Hair Dyes by HPLC 所在院系:药学院 学生:伊满飞 指导老师:欧阳立群 起止日期:2014年01月至2014年05月 二〇一四年五月

目录 中文摘要 (1) 英文摘要 (1) 关键词 (1) 前言 (1) 1.1 仪器与试剂 1.11 仪器 (2) 1.12 试剂 (3) 1.2 实验方法 1.2.1 标准溶液配制 (3) 1.2.2 流动相的配制 (4) 1.2.3样品预处理 (4) 1.2.4色谱参考条件 (4) 2 结果与讨论 2.1 色谱条件优化 (5) 2.1.1色谱柱的选择 (5) 2.1.2 流动相选择 (5) 2.1.3 流动相梯度选择 (5) 2.1.4 检测波长选择 (6) 2.2 样品提取实验 (7) 2.2.1提取溶剂选择 (7) 3 方法学实验 3.1 线性及线性范围 (8) 3.1.1标准曲线绘制 (8) 2.2.2提取方法选择 (9) 3.1.2线性范围 (9) 3.2 方法检出限 (9) 3.3 方法回收率和精密度 (10) 4 结论 (11) 参考文献 (12) 附录 属性信息 (14)

染发剂中苯胺类染料的HPLC检测方法 中文摘要 本文目的是建立一种以苯胺类成分检测为主的研究方法,使其能对《化妆品卫生规范》中的染发剂苯胺类成分的液相色谱检测方法做一个补充,使其覆盖率高且灵敏,快捷而准确。流动相选择,结果表明在本实验中采用乙腈+0.02 mol/L乙酸铵溶液作为流动相时,使用XB-C18色谱柱时可以较好分离这几种目标分析物,且色谱峰形良好。提取溶剂选择,结果表明50%甲醇提取效率最佳。方法回收率和精密度,8种染料加标样品的回收率在84.6%~104.2%之间,平行6次测定结果RSD值在2.1%~4.1%之间,结果令人满意,这些结果表明该方法具有良好的精密度和准确度。 关键词:苯胺类化合物,染发剂,HPLC Abstract The purpose of this paper is to find a method for determination of aminobenzenes in hair dyes by HPLC, and to modified the more accurate and reliable method in Hygienic Standard for Cosmetics.Mobile phase selection, the result shows that choicing acetonitrile +0.02mol/L ammonium acetate solution as the mobile phase in this experiment, and using XB-C18 column can well separate the target analytes , keeps the peak shape perfect. Selection of extraction solvent, the result shows that 50% methanol is the most efficient. The recovery rate and precision, the recovery rate of 8 kinds of dyes sample is between 84.6% ~ 104.2%, and the number of RSD of 6 average determinations is between 2.1% ~ 4.1%。The result is satisfactory, and these results show that the methods are full of good precision and accuracy. Key word: Aminobenzenes Compounds , Hair dye , High Performance Liquid 前言 早在4000年前人类就开始染发,古埃及的法老墓出土的一些文献上记载着,法老拉美西斯一世派人去美洲寻找草药,结果带来许多能用于染色的植物,除了用于染发以外,还能用来染指甲。2000多年前我国也开始出

亚硝酸盐氮含量测定方法

1试验目的 为检测宁波市城市内河水体质量,本实验采用中华人民共和国国家标准《水质亚硝酸盐氮的测定》规定的亚硝酸盐氮的测定方法。 亚硝酸盐氮是氮循环的中间产物,不稳定。在水环境不同的条件下,可氧化成硝酸盐氮,也可被还原成氨。 2试验方法 N-(1-萘基)-乙二胺光度法: 1、原理 在磷酸介质中,PH值为1.8±0.3时,亚硝酸盐与对氨基苯磺酰胺(简称磺胺)反应,生成重氮盐,再与N-(1-萘基)-乙二胺偶联生成红色染料,在波长540nm处有最大吸收。 2、干扰及消除№ 水样呈碱性(pH≧11)时,可加酚酞指示剂,滴加磷酸溶液至红色消失;水样有颜色或悬浮物,加氢氧化铝悬浮液并过滤。 3、适用范围 本法适用于饮用水、地面水、生活污水、工业废水中亚硝酸盐的测定,最低检出浓度为0.003mg/L;测定上限为0.20mg/L。 4、仪器:分光光度计、G-3玻璃砂心漏斗 试剂: (1)显色剂:于500ml烧杯中加入250ml水和50ml磷酸,加入20.0g对氨基苯磺酰胺;再将 1.00gN-(1-萘基)-乙二胺二盐酸盐溶于上述溶液中,转移至500ml容量瓶中,用水稀至标线 (2)磷酸(ρ=1.70g/ml) (3)高锰酸钾标准溶液(1/5K2MnO4,0.050mol/L):溶解1.6g高锰酸钾于1200ml水中,煮沸0.5-1h,使体积减少到1000ml左右放置过夜,用G-3玻璃砂心漏斗过滤后,贮于棕色试剂瓶中避光保存,待标定。 (4)草酸钠标准溶液(1/2Na2C2O4,0.0500mol/L):溶解经105℃烘干2小时的优级纯或基准试无水草酸钠3.350g于750ml水中,移入1000ml容量瓶中,稀至标线。 (5)亚硝酸盐氮标准贮备液:称取1.232g亚硝酸钠溶于150ml水中,移至1000ml容量瓶中,稀释到标线。每毫升约含0.25mg亚硝酸盐氮。本溶液加入1ml三氯甲烷,保存一个月。标定:在300ml具塞锥形瓶中,移入50.00ml0.050mol/L高锰酸钾溶液,5ml浓硫酸,插入高锰酸钾液面下加入50.00ml亚硝酸钠标准贮备液,轻轻摇匀,在水浴上加热至70-80℃,按每次10.00ml的量加入足够的草酸钠标准溶液,使红色褪去并过量,记录草酸钠标液的用量(V2)。然后用高锰酸钾标液滴定过量的草酸钠至溶液呈微红色,记录高锰酸钾标液的总用量(V1)。用50ml水代替亚硝酸盐氮标准贮备液,如上操作,用草酸钠标液标定高锰酸钾的浓度(C1,mol/L)。 按式(1)计算高锰酸钾标准溶液浓度C1(1/5KMnO4mol/L)

4_二甲氨基吡啶合成工艺的改进_孙卫东

2006年5月内蒙古大学学报(自然科学版)M ay2006第37卷第3期Acta Scientiar um Naturalium U nivers itatis NeiM ongol Vol.37No.3 文章编号:1000-1638(2006)03-0276-03 4-二甲氨基吡啶合成工艺的改进X 孙卫东1,王小明2,单红岩2,张锁秦2,李耀先2 (1.赤峰学院化学系,内蒙古赤峰024001;2.吉林大学化学学院,长春130023) 摘要:采用DM F法合成了4-二甲氨基吡啶,并对该合成工艺进行了优化.由吡啶与氯化亚砜 合成中间体双吡啶盐酸盐的收率从文献报道的57%提高到65%;由中间体与DM F合成目标 化合物的收率从文献报道的53%提高到73%.所用合成方法简化了操作步骤,降低了合成成 本,减少了三废排放. 关键词:4-二甲氨基吡啶;双吡啶盐酸盐;合成 中图分类号:T Q253.2 文献标识码:A 4-二甲氨基吡啶(4-Dim ethylam inopyridine,简称DM AP)是一种新型高效催化剂,对酰化、酯化、酯交换、烷基化等有机反应均有明显的催化效果.对于酰化反应,DM AP的催化活性是传统催化剂吡啶的104~105倍.DM AP具有用量少、收率高、反应条件温和、溶剂选择范围广等优点,已经广泛应用到科研及精细化工领域〔1,2〕.随着DM AP应用范围的不断扩展,其需求量与日俱增. DM AP的合成有多种途径,均以吡啶作为起始原料〔3~5〕.一种相对简捷、比较适合于工业化生产的方法是DM F法.该法只有两步,即先用吡啶与氯化亚砜反应生成中间体N-(4-吡啶基)氯化吡啶盐酸盐(简称双吡啶盐酸盐),再与二甲基甲酰胺反应生成DM AP.反应式如下: 国内对该方法的改进已有多篇文献报道〔6~17〕.为了简化操作、提高收率、降低成本和减少三废排放,我们对该法做了进一步的研究,提出一套更为合理的合成工艺,并就有关问题进行了探讨. 1 实 验 1.1 主要试剂与仪器 吡啶经KOH干燥,DM F经4~分子筛干燥,其余试剂均为分析纯. X-4显微熔点测定仪(北京第三光学仪器厂,温度计未经校正),美国M er cury Varian YH-300型核磁共振仪(溶剂为CDCl3,T M S为内标). 1.2 实验操作 1.2.1 双吡啶盐酸盐的合成 向配有机械搅拌器、滴液漏斗、温度计和回流冷凝管(上口接干燥管) X收稿日期:2005-10-29 作者简介:孙卫东(1959~),男(蒙古族),内蒙古喀喇沁旗人,副教授.

甲苯二胺生产工艺

甲苯发生取代反应是亲电反应,电子云密度越高,反应越容易发生,甲苯上甲基具有推电子效应,会使甲基所连得碳上电子云密度偏低,邻位的密度偏高,又因为电子云有传递作用,所以间位的电子云密度低,对位的密度高。甲苯在发生取代反应时邻位和对位上的氢原子表现出活泼性,所以甲苯容易在邻位或对位反应。 甲苯发生取代反应时,只有甲基的邻位和对位上会发生反应,而间位上不发生反应。 二硝基甲苯 如果原料为邻位和对位硝基甲苯的混合物,那么将获得2,4-和2,6-二硝基甲苯的异构混合物,如果原料为对硝基甲苯,将会只生产出2,4-二硝基甲苯。 以甲苯为基础原料合成甲苯二胺,需经过一段硝化反应,结晶分离后才经过二段硝化反应、还原反应 (1)硝化反应使用25%~30%至55%~58%的硝酸硫酸的混合酸与甲苯反应,可生成二硝基甲基,本过程分为一段硝化和二段硝化。一段硝化使之生成一硝基甲苯,反应比较容易进行,而二段硝化反应条件则要苛刻得多,硝酸在混酸中的比例必须加大,通常它与硫酸的混合比例将达到60%。生成的二硝基甲苯应经过无离子水进行水洗、碱洗等后处理步骤,脱除重金属等杂质进行提纯,如若要生产2,4-TDI,在硝化产物阶段就应该采用结晶等方法将2,4-二硝基甲苯从混合物中单独分离出来。 (2)还原反应在二硝基甲苯中间体中中加入甲醇溶剂和2%(质量)雷尼镍(RaneyNi)催化剂的悬浮液,采用中压连续加氢法,在100℃下反应,生成物一部分进行循环,一部分则除去催化剂后蒸馏而获得二氨基甲苯中间体。早期采用的硫酸铁粉还原法,因收率低、铁粉废渣污染等原因,现已逐渐被淘汰。 甲苯混酸硝化的混合硝基甲苯原料定额消耗:甲苯(98%)800kg/t,硝酸(98%)470kg/t,硫酸(92.5%)450kg/t,烧碱(42%)100kg/t 2,4-二硝基甲苯由对硝基甲苯硝化而得:原料消耗定额:对硝基甲苯774kg/t、硫酸(95.5%)785kg/t、硝酸(98%)362kg/t

氨基葡萄糖盐酸盐与氨基葡萄糖盐酸盐的区别

氨基葡萄糖盐酸盐与氨基葡萄糖盐酸盐的区别 氨基葡萄糖硫酸盐治疗髋关节骨关节炎 荷兰鹿特丹Erasmus医学中心Rozendaal等报告,氨基葡萄糖硫酸盐治疗髋关节骨关节炎无效,在减轻髋关节骨关节炎症状和延缓疾病进展方面,其效果与安慰剂相比并无优势[Ann Intern Med 2008,148(4): 268]。 该研究是一项随机对照试验,纳入222例髋关节骨关节炎患者。纳入者每天口服 氨基葡萄糖硫酸盐1500 mg或安慰剂治疗,持续2年。评估氨基葡萄糖硫酸盐治 疗髋关节骨关节炎的效果。 主要观察指标为治疗24个月过程中大略和McMaster大学(WOMAC)疼痛和功能评分与治疗24个月后关节间隙狭窄情况。次要观察指标为在治疗3、12、24个月后 WOMAC 疼痛、功能和僵硬程度评分。在治疗前,两组患者一般情况和临床指标无显着差异。 结果显示,总体上两组患者的WOMAC疼痛评分和WOMAC功能评分无显着差异。治疗24个月后,两组患者的关节间隙狭窄也无显着差异。只有在一项基于对缺失评估数据(因为患者接受了全髋关节置换手术)进行的最大限度假设的敏感性分析 中得出支持氨基葡萄糖硫酸盐无效的结果。 研究者指出,该研究的局限性在于在研究过程中有20例患者接受了全髋关节置 换手术,这可能影响分析的结果。 氨糖,又称为氨基葡萄糖,葡萄糖胺,市面上主要有两类,一类是氨基葡萄糖盐酸盐,一类是氨基葡萄糖硫酸盐. 氨基葡萄糖盐酸盐:英文D-Glucosamine Hydrochloride,分子式C6H13NO5·HCl,分子量,白色结晶,无气味,略有甜味,易溶于水,微溶于甲 醇,不溶于乙醇等有机溶剂,它对人体具有重要的生理功能,参与肝肾解毒,发挥抗炎护肝作用,对治疗风湿性关节炎症和胃溃疡有良好的疗效,是合成抗生素和抗癌药物的主要原料,还可应用于食品,化妆品和饲料添加剂 中.氨基葡萄糖盐酸盐是由天然的甲壳质提取的,是一种海洋生物制剂,是硫酸软骨素的主要成分.它能促进人体粘多糖的合成,提高关节滑液的粘 性,能改善关节软骨的代谢,有利于关节软骨的修复,具有明显的消炎镇痛 作用.它具有促进抗生素注射效能的作用,可供糖尿病者作营养补助剂. 氨基葡萄糖硫酸盐:产品英文名称D-Glucosamine sulfate 别名:D-氨基葡萄糖硫酸盐;D-氨基葡萄糖硫酸钾盐 CAS 号 29031-19-4 分子式分子量产品英文名称 D-Glucosamine sulfate 氨基葡萄糖硫酸 钠盐白色结晶粉末,无气味,略有甜味,易溶于水,微溶于甲醇,不溶于乙醇 等有机溶剂. 用途: 制药原料.对风湿性关节炎,心脏病,肺炎及骨折均有 辅助治疗作用,另有吸收自由基,抗衰老,减肥,调节内分泌等多种有益的 生理作用. 在关节炎治疗效果来说,氨基葡萄糖盐酸盐比硫酸盐效果好,由于其盐酸盐不含钠离子,副作用小.纯度更纯,分子更小,人体容易吸收,可以直

甲基肼的测定对二甲氨基苯甲醛分光光度法

HZHJSZ0080 水质一甲基肼的测定对二甲氨基苯甲醛分光光度法 HZ-HJ-SZ-0080 水质对二甲氨基苯甲醛分光光度法 1 范围 本方法规定了测定水中一甲基肼的对二甲氨基苯甲醛分光光度法 航天工业废水中一甲基肼的测定 水样中一甲基肼含量大于0.80mg/L时肼干扰一甲基肼的测定可用校正曲线校正 水中微量一甲基肼与对二甲氨基苯甲醛反应生成黄色缩合物 用分光光度计在470nm处测定 均使用符合国家标准或专业标准的分析纯试剂和蒸馏水等纯度的水?=1.84g/mL 95%以上 纯度98%以上 c=1.00mol/L c=0.05mol/L 3?è????t?×°±?ù±??×è?[(CH3)2NC6H4CHO] 5.0g 混匀后加入乙醇(3.2)100mL 3.7 氨基磺酸铵或氨基磺酸溶液  称取氨基磺酸铵(NH4SO3NH2)或氨基磺酸(NH2SO3H) 1.0g 3.8 一甲基肼贮备液  吸取硫酸溶液(3.4) 5~10mL于25mL容量瓶中  用注射器吸取一甲基肼(3.3)0.3mL?á?áò??ˉ??×ó 用硫酸溶液(3.4)稀释至标线 200ìg/mL 移入100mL容量瓶中在2~5 3.10 一甲基肼标准溶液  吸取一甲基肼溶液(3.9)5mLó?áò?áèüòo(3.5)稀释至标线 4 仪器 4.1 分光光度计 4.2 玻璃仪器 25mL 500mL25mL 5.1.1 不存在亚硝酸盐时标准曲线的绘制 分别注入00.080.402.00 加入乙醇(3.2)4.5 mL用硫酸溶液(3.5)稀释至标线 5.1.1.2 放置40min后以试剂空白液为参比液

测定三氮的基本原理和方法

实验四水体自净程度的指标 前言 各种形态的氮相互转化和氮循环的平衡变化是环境化学和生态系统研究的重要内容之一。水体中氮产物的主要来源是生活污水和某些工业废水及农业面源。当水体受到含氮有机物污染时,其中的含氮化合物由于水中微生物和氧的作用,可以逐步分解氧化为无机的氨 (NH3)或铵 (NH4+)、亚硝酸盐 (NO2-)、硝酸盐 (NO3-)等简单的无机氮化物。氨和铵中的氮称为氨氮;亚硝酸盐中的氮称为亚硝酸盐氮;硝酸盐中的氮称为硝酸盐氮。通常把氨氮、亚硝酸盐氮和硝酸盐氮称为三氮。这几种形态氮的含量都可以作为水质指标,分别代表有机氮转化为无机氮的各个不同阶段。在有氧条件下,氮产物的生物氧化分解一般按氨或铵、亚硝酸盐、硝酸盐的顺序进行,硝酸盐是氧化分解的最终产物。随着含氮化合物的逐步氧化分解,水体中的细菌和其它有机污染物也逐步分解破坏,因而达到水体的净化作用。 有机氮、氨氮、亚硝酸盐氮和硝酸盐氮的相对含量,在一定程度上可以反映含氮有机物污染的时间长短,对了解水体污染历史以及分解趋势和水体自净状况等有很高的参考价值,见表6-1。目前应用较广的测定三氮方法是比色法,其中最常用的是:纳氏试剂比色法测定氨氮,盐酸萘乙二胺比色法测定亚硝酸盐氮,二磺酸酚比色法测定硝酸盐氮。 一实验目的 1.掌握测定三氮的基本原理和方法。 2.了解测定三氮对环境化学研究的作用和意义。 二仪器器材 (1) 玻璃蒸馏装置。 (2) pH 计。 (3) 恒温水浴。 (4) 分光光度计。 (5) 电炉:220V/1KW。 (6) 比色管:50 mL。 (7) 陶瓷蒸发皿:100或200 mL。 (8) 移液管:1 mL、2 mL、5 mL。容量瓶:250 mL。 三实验步骤 1. 氨氮的测定——纳氏试剂比色法 (1) 原理 氨与纳氏试剂反应可生成黄色的络合物,其色度与氨的含量成正比,可在425 nm波长下比色测定,检出限为0.02 μg/mL。如水样污染严重,需在pH为7.4的磷酸盐缓冲溶液中预蒸馏分离。 (2) 试剂 ①不含氨的蒸馏水:水样稀释及试剂配制均用无氨蒸馏水。配制方法包括蒸馏法(每升蒸馏水中加入0.1 mL浓硫酸,进行重蒸馏,流出物接受于玻璃容器

吡啶

吡啶 汉语拼音:bǐdìng 英文名称:pyridine 中文名称2:氮(杂)苯 CAS No.:110-86-1 分子式:C5H5N 分子量:79.10 吡啶是含有一个氮杂原子的六元杂环化合物。可以看做苯分子中的一个(CH)被N取代的化合物,故又称氮苯。 吡啶及其同系物存在于骨焦油、煤焦油、煤气、页岩油、石油中。 [编辑本段]物理性质 外观与性状:无色或微黄色液体,有恶臭。 熔点(℃):-41.6 沸点(℃):115.3 相对密度(水=1):0.9827 折射率:1.5067(25℃) 相对蒸气密度(空气=1):2.73 饱和蒸气压(kPa): 1.33/13.2℃ 闪点(℃):17 引燃温度(℃):482 爆炸上限%(V/V):12.4 爆炸下限%(V/V): 1.7 溶解性:溶于水、醇、醚等多数有机溶剂。 与水形成共沸混合物,沸点92~93℃。(工业上利用这个性质来纯化吡啶。) [编辑本段]化学性质 吡啶及其衍生物比苯稳定,其反应性与硝基苯类似。典型的芳香族亲电取代反应发生在3、5位上,但反应性比苯低,一般不易发生硝化、卤化、磺化等反应。吡啶是一个弱的三级胺,在乙醇溶液内能与多种酸(如苦味酸或高氯酸等)形成不溶于水的盐。工业上使用的吡啶,约含1%的2-甲基吡啶,因此可以利用成盐性质的差别,把它和它的同系物分离。吡啶还能与多种金属离子形成结晶形的络合物。吡啶比苯容易还原,如在金属钠和乙醇的作用下还原成六氢吡啶(或称哌啶)。吡啶与过氧化氢反应,易被氧化成N-氧化吡啶。 [编辑本段]用途 除作溶剂外,吡啶在工业上还可用作变性剂、助染剂,以及合成一系列产品(包括药品、消毒剂、染料、食品调味料、粘合剂、炸药等)的起始物。 吡啶还可以用做催化剂,但用量不可过多,否则影响产品质量。 [编辑本段]来源(合成方法) 吡啶可从天然煤焦油中获得,也可由乙醛和氨制得。吡啶及其衍生物也可通过多种方法合成,其中应用最广的是汉奇吡啶合成法,这是用两分子的β-羰基化合物,如乙酰乙酸乙酯与一分子乙醛缩合,产物再与一分子的乙酰乙酸乙酯和氨缩合形成二氢吡啶化合物,然后用氧化剂(如亚硝酸)脱氢,再水解失羧即得吡啶衍生物。 也可用乙炔、氨和甲醇在500℃通过催化剂制备。 [编辑本段]衍生物 吡啶的许多衍生物是重要的药物,有些是维生素或酶的重要组成部分。吡啶的衍生物异烟肼是一种抗结核病药,2-甲基-5-乙烯基吡啶是合成橡胶的原料。 中文名称:吡啶 [编辑本段]危险信息及使用注意事项(MSDS) 燃爆危险:本品易燃,具强刺激性。 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂接触猛烈反应。高温时分解,释出剧毒的氮氧化物气体。与硫酸、硝酸、铬酸、发烟硫酸、氯磺酸、顺丁烯二酸酐、高氯酸银等剧烈反应,有爆炸危险。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。 吡啶的危害:

葡萄糖酸钠检测方法

吴江市汇通化工有限公司https://www.wendangku.net/doc/282443643.html,/company.asp 葡萄糖酸钠检测方法 1.1 非水滴定 1.1.1 溶液的配制 高氯酸标准溶液(0.1mol):喹哪啶红指示液:取喹哪啶红0.1g,加甲醇100mL使溶解,即得。变色范围ph1.4~3.2(无色~红)。 1.1.2 标准曲线的绘制: 准确称取1.940 0 g 于105 ℃下烘至恒重的葡萄糖酸钠,用冰醋酸微热溶解,冷却,用冰醋酸定容至500 mL。分别取5,10,20,30,40,50 mL 葡萄糖酸钠的冰醋酸溶液,用冰醋酸定容至50 mL,用电位滴定仪以0.10 mol/L HClO4 标准溶液为滴定剂滴定葡萄糖酸钠冰醋酸溶液,记录消耗的高氯酸溶液的毫升数,绘制标准曲线。也可以用喹哪啶红指示剂,终点红色消失。 1.1.3 样品的测定 准确称取2.0g于105 ℃下烘至恒重的样品葡萄糖酸钠,用冰醋酸微热溶解,冷却,用冰醋酸定容至100mL。取10mL葡萄糖酸钠的冰醋酸溶液,用冰醋酸定容至50 mL,用电位滴定仪以0.10 mol/L HClO4 标准溶液为滴定,记录消耗的高氯酸溶液的体积。 也可以:准确称取0.15g 葡萄糖酸钠于250m l 三角瓶中加入75m l冰醋酸,加热,使之溶解。冷却,加入喹哪啶红指示剂,用0. 1 mol的高氯酸标准溶液滴至无色为终点。每毫升0. 1mol 高氯酸标液相当于21. 81 mg 葡萄糖酸钠。该法快速准确,不足之处是以冰醋酸为溶剂,冬天易结晶,给分析操作带来一定不便。 吴江市汇通化工有限公司https://www.wendangku.net/doc/282443643.html,/company.asp

2,5-二氨基甲苯

2,5-二氨基甲苯化学品安全 技术说明书 第一部分:化学品名称 化学品中文名称:2,5-二氨基甲苯 化学品英文名称:2,5-diaminotoluene 中文名称2:甲苯-2,5-二胺 英文名称2:toluene-2,5-diamine 技术说明书编码:652 CAS No.:95-70-5 分子式:C7H10N2 分子量:122.17 健康危害:吸入、口服或经皮肤吸收可引起中毒。对呼吸道、粘膜、皮肤有刺激性。 燃爆危险:本品可燃,有毒,具刺激性。第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。第五部分:消防措施 危险特性:遇明火、高热可燃。受热分解放出有毒的氧化氮烟气。与强氧化剂接触可发生化学反应。 有害燃烧产物:一氧化碳、二氧化碳、氧化氮。 灭火方法:采用雾状水、抗溶性泡沫、二氧化碳、砂土灭火。 第六部分:泄漏应急处理 应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。小量泄漏:用洁净的铲子收集于干燥、洁净、有盖的容器中。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:收集回收或运至废物处理场所处置。 第七部分:操作处置与储存

操作注意事项:密闭操作,提供充分的局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。避免产生粉尘。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。包装密封。应与氧化剂、酸类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。 第八部分:接触控制/个体防护 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3):未制定标准 TLVTN:未制定标准 TLVWN:未制定标准 工程控制:严加密闭,提供充分的局部排风。提供安全淋浴和洗眼设备。 呼吸系统防护:空气中粉尘浓度超标时,佩戴自吸过滤式防尘口罩。紧急事态抢救或撤离时,应该佩戴自给式呼吸器。 眼睛防护:戴化学安全防护眼镜。身体防护:穿防毒物渗透工作服。 手防护:戴橡胶手套。 其他防护:工作现场禁止吸烟、进食和饮水。及时换洗工作服。工作前后不饮酒,用温水洗澡。实行就业前和定期的体检。 第九部分:理化特性 主要成分:纯品 外观与性状:无色结晶。 熔点(℃):64 沸点(℃):274相对密度(水=1):无资料 相对蒸气密度(空气=1):无资料 饱和蒸气压(kPa):无资料 燃烧热(kJ/mol):无资料 临界温度(℃):无资料 临界压力(MPa):无资料 辛醇/水分配系数的对数值:无资料 闪点(℃):无意义 引燃温度(℃):无资料 爆炸上限%(V/V):无资料 爆炸下限%(V/V):无资料 溶解性:溶于水、乙醇、乙醚、热苯。 主要用途:用于有机合成,染料中间体。 第十部分:稳定性和反应活性

氨基葡萄糖盐酸盐标准

氨基葡萄糖盐酸盐标准标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

食品添加剂氨基葡萄糖盐酸盐3结构式、分子式和相对分子量 结构式: 分子式:C 6H 13 NO 5 .HCl 相对分子量:215.63 4要求 4.1性状 产品为白色或类白色结晶粉末。 4.2理化指标 应符合表1的规定。 表1 应符合表2的规定。 表2 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T6682中规定的水。 5.1感官 将样品置于清洁、干燥的白瓷盘中,在自然光线下,观察其色泽和状态。 5.2氨基葡萄糖盐酸盐(C 6H 13 NO 5 .HCl)含量 5.2.1仪器设备 5.2.1.1液相色谱仪;

5.2.1.2氨基柱(4.6mm×25cm,5μm); 5.2.1.310μL定量环; 5.2.1.4电子分析天平(万分之一)。 5.2.2分析要求 5.2.2.1鉴别:在含量测定项下记录色谱图,对照品溶液的主峰保留时间与样品溶液的主峰保留时间应一致; 5.2.2.2系统适应性:拖尾因子≤2,理论塔板数≥1500,RSD≤2%。 5.2.3色谱条件 5.2.3.1流速:1.5mL/min; 5.2.3.2色谱柱温度:35℃; 5.2.3.3检测器:紫外检测器; 5.2.3.4检测器波长:195nm; 5.2.3.5进样量:10μL; 5.2.3.6运行时间:20分钟; 5.2.4溶液制备 5.2.4.1流动相溶液制备 流动相A:乙腈; 流动相B:称取3.5g磷酸氢二钾,加入0.25ml的氨水,用水定容至1L,混匀,用磷酸调节PH至7.5; 流动相A:流动相B=75:25。 蒸馏水和所用试剂均使用色谱级,流动相要用0.45μm的有机相滤膜过滤后并超声15分钟,待用。 5.2.4.2稀释液的配制 乙腈:水=50:50,蒸馏水和乙腈均使用色谱级,流动相要用0.45μm的有机相滤膜过滤后并超声15分钟,待用。 5.2.4.3对照品液 精确称取对照品三份0.38g(精确至0.0002g)置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 5.2.4.4供试品液 精确称取烘干的供试品两份0.38g(精确至0.0002g)置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 样品与对照品溶液需要通过0.45μm有机相滤头过滤后进样。 5.2.5操作步骤 5.2.5.1系统适应性 按液相色谱仪检验操作规程,开启仪器并使仪器达到稳定状态后,用相同体积的进样针将三个对照品溶液按顺序依次注入色谱(定量环10μL),每个对照品分别进两针,共计六针,分别计算校正因子f1……f6,利用校正因子按下式计算得:RSD≤2%。 相对标准偏差计算公式: 式中: RSD——相对标准偏差; f i——第i针工作对照品的校正因子,是相应工作对照品的重量与面积的比值; f——工作对照品的平均校正因子; n——连续取了n针工作对照品校正因子。 5.2.5.2测定 按样品溶液的配制,在系统适应性验证的基础上,先用样品溶液清洗进样针和进样器后,将样品溶液以相同的方法注入色谱(定量环10μL),每个样品分别进两针平行样,最后再进2针对照液,以验证对照液相应是否漂移,具体按附表1进样顺序进样。

氮的相关指标检测方法

一、沉积物总氮测定方法:凯式定氮法 1.1方法原理 凯式定氮法是测定化合物或混合物中总氮的一种常用方法,它是用浓硫酸消煮,借催化剂和增温剂等的作用加速有机质分解,并使有机氮转化为氨氮而进入溶液,最后用标准酸滴定蒸馏出的氨,以氨氮的量反应总氮含量。 具体反应式如下 2NH2(CH2)2COOH + 13H2SO4 = (NH4)2SO4 + 6CO2 + 12SO2 + 16H2O (NH4)2SO4 + 2NaOH = 2NH3 + 2 H2O + Na2SO4 2 NH 3 + 4H3BO3 = (NH4)2B4O7 + 5 H2O (NH4)2B4O7 + H2SO4 + 5 H2O = (NH4)2SO4 + 4H3BO3 或(NH4)2B4O7 + 2HCI+ 5 H2O = 2NH4CI+ 4H3BO3 凯式定氮仪的主要工作原理是Kjeldahl蒸馏法测定氨氮含量,测氮时水样不经消解直接加碱调为弱碱性蒸馏,用硼酸溶液吸收,然后用电位滴定仪滴定。 硼酸溶液吸收氨后,溶液pH值上升,用硫酸溶液滴定至初始pH值,pH计控制滴定终点,当接近终点时,降低滴定速度,利用消耗硫酸的量计算氨氮含量。 1.2 需要的设备与实验条件 (1)分析天平:精度0.0001g; (2)自动凯式定氮分析仪; (3)通风橱; (4)消煮炉; (5)烘干箱; (6)pH计:精度0.01pH单位; (7)沸水浴器; (8)干燥器。 1.3所需试剂及操作步骤 1.所需试剂 (1)40%NaOH:称取400g NaOH加入1000 ml蒸馏水中,边加边搅动,防止黏结。 (2)甲基红-溴甲酚绿指示剂:0.1g甲基红和0.07g溴甲酚绿溶解于100 ml乙醇中。 (3)混合加速剂:硫酸钾、硫酸铜、硒粉按100:10:1的比例混合,研磨,过80

氨基葡萄糖盐酸盐标准

食品添加剂氨基葡萄糖盐酸盐 3结构式、分子式和相对分子量 结构式: 分子式: 相对分子量: 4要求 性状 产品为白色或类白色结晶粉末。 理化指标 应符合表1的规定。 表1 微生物指标 应符合表2的规定。

表2 5试验方法 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T6682中规定的水。 感官 将样品置于清洁、干燥的白瓷盘中,在自然光线下,观察其色泽和状态。 氨基葡萄糖盐酸盐()含量 仪器设备 液相色谱仪; 氨基柱×25cm,5μm); μL定量环; 电子分析天平(万分之一)。 分析要求 鉴别:在含量测定项下记录色谱图,对照品溶液的主峰保留时间与样品溶液的主峰保留时间应一致;系统适应性:拖尾因子≤2,理论塔板数≥1500,RSD≤2%。 色谱条件 流速:min; 色谱柱温度:35℃; 检测器:紫外检测器; 检测器波长:195nm; 进样量:10μL; 运行时间:20分钟; 溶液制备 流动相溶液制备 流动相A:乙腈; 流动相B:称取磷酸氢二钾,加入的氨水,用水定容至1L,混匀,用磷酸调节PH至; 流动相A:流动相B=75:25。 蒸馏水和所用试剂均使用色谱级,流动相要用μm的有机相滤膜过滤后并超声15分钟,待用。 稀释液的配制 乙腈:水=50:50,蒸馏水和乙腈均使用色谱级,流动相要用μm的有机相滤膜过滤后并超声15分钟,待用。

对照品液 精确称取对照品三份(精确至置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 供试品液 精确称取烘干的供试品两份(精确至置于100mL容量瓶中,用稀释液溶解并定容至刻度,摇匀待用。 样品与对照品溶液需要通过μm有机相滤头过滤后进样。 操作步骤 系统适应性 按液相色谱仪检验操作规程,开启仪器并使仪器达到稳定状态后,用相同体积的进样针将三个对照品溶液按顺序依次注入色谱(定量环10μL),每个对照品分别进两针,共计六针,分别计算校正因子f1……f6,利用校正因子按下式计算得:RSD≤2%。 相对标准偏差计算公式: 式中: RSD——相对标准偏差; f i——第i针工作对照品的校正因子,是相应工作对照品的重量与面积的比值; f——工作对照品的平均校正因子; n——连续取了n针工作对照品校正因子。 测定 按样品溶液的配制,在系统适应性验证的基础上,先用样品溶液清洗进样针和进样器后,将样品溶液以相同的方法注入色谱(定量环10μL),每个样品分别进两针平行样,最后再进2针对照液,以验证对照液相应是否漂移,具体按附表1进样顺序进样。 表进样顺序 注1:当只有一批样品时,进完该批样品最后一针后还要进两针序号6的对照品,该两针对照品与样品前面的四针对照品一起计算f的RSD≤2%。 注2:当有多批样品时,每批样品之间要按序号6要求进2针对照品溶液,该样品之前的最后6针对照液的校正因子的平均值参与样品结果计算,f的RSD≤2%。 注3:每批批检验记录均要附有所有参与计算的图谱,图谱上要有编号,图谱上要有签名。 按外标法以峰面积计算。 计算公式: 式中: fi——对照品的校正因子; M对照品——对照品的质量; S对照品——对照品的主峰峰面积。 式中: f——对照品的平均校正因子; f1~f6——对照品的校正因子。 式中: r u——样品溶液的峰面积; r s——标准溶液的峰面积;

二氧化碳含量的测定方法

实验:水中亚硝酸盐的测定 学号: 姓名: 班级: 【实验方法】 偶合分光光度法 【实验原理】 在PH 以下,水中亚硝酸盐与对氨基苯磺酰胺重氮化,再与盐酸N-(1-萘)-乙二胺产生偶合反应,生成紫红色的偶氮染料,比色定量。 【实验试剂】 1、对氨基苯磺酰胺溶液(10g/L):称取5g对氨基苯磺酰胺(H2NC6H4SO3NH2),溶于350 mL 盐酸溶液中。用纯水稀释至500 mL。 2、盐酸N-(1-萘)-乙二胺溶液(1.0g/L):又名NEDD溶液,称取0.2g盐酸N-(1-萘基)- 乙二胺(C10H7NH2CHCH2·NH2·2HCl),溶于200 mL纯水中。储存于冰箱中。可稳定数周,如试剂颜色变深,应弃去重配。 3、亚硝酸盐氮标准使用溶液【ρ(NO2-N)=μg/mL】 【实验仪器】 1、分光光度计 2、50 mL具塞比色管:30支 3、5 mL刻度吸管:10支 4、1mL比色皿:1个 【分析步骤】 1、取50mL水样置于比色管中。 2、取50mL比色管7支,分别加入亚硝酸盐氮标准液0mL、、、、、、,用纯水稀释至50mL。 3、向水样及标准色列管中分别加入1 mL对氨基苯磺酰胺溶液,摇匀后放置2min~8min。加 入mL盐酸N-(1-萘基)-乙二胺溶液,立即混匀。 4、于540nm波长,用1cm比色皿,以纯水作参比,在10min至2h内,测定吸光度。 5、绘制标准曲线,从曲线上查出水样中亚硝酸盐氮的含量。 【数据分析】 ρ(NO2-N)=m/V

注:ρ(NO2-N)——水样中亚硝酸盐氮的质量浓度,单位为mg/L m——从标准曲线上查得样品管中亚硝酸盐氮的质量,单位为微克(μg) V——水样体积,单位为毫升(mL)

有机化学合成常见缩写集锦

1 有机化学合成常见缩写 Ac Acetyl 乙酰基 DMAP 4-dimethylaminopyridine 4-二甲氨基吡啶 acac Acetylacetonate 乙酰丙酮基 DME dimethoxyethane 二甲醚 AIBN Azo-bis-isobutryonitrile 2,2'-二偶氮异丁腈 DMF N,N'-dimethylformamide 二甲基甲酰胺 aq. Aqueous 水溶液 dppf bis (diphenylphosphino)ferrocene 双(二苯基膦基)二茂铁 9-BBN 9-borabicyclo[3.3.1]nonane 9-硼二环[3.3.1]壬烷 dppp 1,3-bis (diphenylphosphino)propane 1,3-双(二苯基膦基)丙烷 BINAP (2R,3S)-2,2’-bis (diphenylphosphino)-1,1’-binaphthyl (2R,3S)-2.2'-二苯膦-1.1'-联萘亦简称为联二萘磷 BINAP是日本名古屋大学的Noyori(2001年诺贝尔奖)发展的一类不对称合成催化剂dvb Divinylbenzene 二乙烯苯 Bn Benzyl 苄基 e- Electrolysis 电解 BOC t-butoxycarbonyl 叔丁氧羰基(常用于氨基酸氨基的保护) %ee % enantiomeric excess 对映体过量百分比(不对称合成术语)%de % diasteromeric excess 非对映体过量百分比(不对称合成术语) Bpy (Bipy) 2,2’-bipyridyl 2,2'-联吡啶 EDA (en) ethylenediamine 乙二胺 Bu n-butyl 正丁基 EDTA Ethylenediaminetetraacetic acid 乙二胺四乙酸二钠 Bz Benzoyl 苯甲酰基 EE 1-ethoxyethyl 乙氧基乙基 c- Cyclo 环- Et Ethyl 乙基 FMN Flavin mononucleotide 黄素单核苷酸 CAN Ceric ammonium nitrate 硝酸铈铵 Cat. Catalytic 催化 Fp flash point 闪点 CBz Carbobenzyloxy 苄氧羰基 FVP Flash vacuum pyrolysis 闪式真实热解法 h hours 小时 Min Minute 分钟 hv Irradiation with light 光照 COT 1,3,5-cyclooctatrienyl 1,3,5-环辛四烯 1,5-HD 1,5-hexadienyl 1,5-己二烯 Cp Cyclopentadienyl 环戊二烯基 HMPA Hexamethylphosphoramide 六甲基磷酸三胺 CSA 10-camphorsulfonic acid 樟脑磺酸

相关文档
相关文档 最新文档