文档库 最新最全的文档下载
当前位置:文档库 › 高中物理磁场-完美总结

高中物理磁场-完美总结

高中物理磁场-完美总结
高中物理磁场-完美总结

磁场基本性质

一、磁场

1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.

2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.

二、磁感线

为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.

1.疏密表示磁场的强弱.

2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.

3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.

5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·

*熟记常用的几种磁场的磁感线:

【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A)

A.带负电;

B.带正电;

C.不带电;

D.不能确定

解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A. 三、磁感应强度

1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。

2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.

①表示磁场强弱的物理量.是矢量.

②大小:B=F/Il(电流方向与磁感线垂直时的公式).

③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.

④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.

⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.

⑥匀强磁场的磁感应强度处处相等.

⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.

【例2】如图所示,正四棱柱abed一a'b'c'd'的中心轴线00'处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是(AC)

A.同一条侧棱上各点的磁感应强度都相等

B.四条侧棱上的磁感应强度都相同

C.在直线ab上,从a到b,磁感应强度是先增大后减小

D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大

解析:因通电直导线的磁场分布规律是B∝1/r,故A,C正确,D错误.四条侧棱

上的磁感应强度大小相等,但不同侧棱上的点的磁感应强度方向不同,故B错

误.

【例3】如图所示,两根导线a、b中电流强度相同.方向如图所示,则离两导

线等距离的P点,磁场方向如何?

解析:由P点分别向a、b作连线Pa、Pb.然后过P点分别做Pa、Pb垂线,根据安培定

则知这两条垂线用PM、PN就是两导线中电流在P点产生磁感应强度的方向,两导线中

的电流在P处产生的磁感应强度大小相同,然后按照矢量的合成法则就可知道合磁感应

强度的方向竖直向上,如图所示,这也就是该处磁场的方向.答案:竖直向上

【例4】六根导线互相绝缘,所通电流都是I,排成如图10一5所示的形状,区域A、B、

C、D均为相等的正方形,则平均磁感应强度最大的区域是哪些区域?该区域的磁场方向

如何?

解析:由于电流相同,方格对称,从每方格中心处的磁场来定性比较即可,如I1在任方格

中产生的磁感应强度均为B,方向由安培定则可知是向里,在A、D方格内产生的磁感应强

度均为B/,方向仍向里,把各自导线产生的磁感应强度及方向均画在四个方格中,可以看

出在B、D区域内方向向里的磁场与方向向外的磁场等同,叠加后磁场削弱.

答案:在A、C区域平均磁感应强度最大,在A区磁场方向向里.C区磁场方向向外.

【例5】一小段通电直导线长1cm,电流强度为5A,把它放入磁场中某点时所受磁场力大小为0.1N,则该点的磁感强度为()

A.B=2T;B.B≥2T;C、B≤2T ;D.以上三种情况均有可能

解析:由B=F/IL可知F/IL=2(T)当小段直导线垂直于磁场B时,受力最大,因而此时可能导线与B不垂直,即Bsinθ=2T,因而B≥2T。

说明:B的定义式B=F/IL中要求B与IL垂直,若不垂直且两者间夹角为θ,则IL在与B垂直方向分上的分量即ILsinθ,因而B=F/ILsinθ,所以F/IL=Bsinθ.则B≥F/IL。

【例6】如图所示,一根通电直导线放在磁感应强度B=1T的匀强磁场中,

在以导线为圆心,半径为r的圆周上有a,b,c,d四个点,若a点的实际磁感

应强度为0,则下列说法中正确的是(AC)

A.直导线中电流方向是垂直纸面向里的

B.C点的实际磁感应强度也为0

C. d

,方向斜向下,与B夹角为450

D.以上均不正确

解析:题中的磁场是由直导线电流的磁场和匀强磁场共同形成的,磁场中

任一点的磁感应强度应为两磁场分别产生的磁感应强度的矢量和.a处磁感应强度为0,说明直线电流在该处产生的磁感应强度大小与匀强磁场B的大小相等、方向相反,可得直导线中电流方向应是垂直纸面向里.在圆周上任一点,由直导线产生的磁感应强度大小均为B=1T,方向沿圆周切线方向,可知C点的磁

感应强度大小为2T,方向向右.d

,方向与B成450斜向右下方.

四、磁通量与磁通密度

1.磁通量Φ:穿过某一面积磁力线条数,是标量.

2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B 方向上的投影,θ是B与S法线的夹角.

B

【例7】如图所示,A为通电线圈,电流方向如图所示,B、C为与A在同一平面内的两同心圆,φB、φ分别为通过两圆面的磁通量的大小,下述判断中正确的是()

C

A.穿过两圆面的磁通方向是垂直纸面向外

B.穿过两圆面的磁通方向是垂直纸面向里

C.φB>φC D.φB<φC

解析:由安培定则判断,凡是垂直纸面向外的磁感线都集中在是线圈内,因磁感线是闭合曲线,则必有相应条数的磁感线垂直纸面向里,这些磁总线分布在线圈是外,所以B、C两圆面都有垂直纸面向里和向外的磁感线穿过,垂直纸面向外磁感线条数相同,垂直纸面向里的磁感线条数不同,B圆面较少,c圆面较多,但都比垂直向外的少,所以 B、C磁通方向应垂直纸面向外,φB>φC,所以A、C正确.

分析磁通时要注意磁感线是闭合曲线的特点和正反两方向磁总线条数的多少,不能认为面积大的磁通就大.答案:AC

1.磁通量的计算

【例8】如图所示,匀强磁场的磁感强度B=2.0T,指向x轴的正方向,且ab=40cm,bc=30cm,ae=50cm,求通过面积Sl(abcd)、S2(befc)和S3(aefd)的磁通量φ1、φ2、φ3分别是多少?

解析:根据φ=BS垂,且式中S垂就是各面积在垂直于B的yx平面上投影的大小,所

以各面积的磁通量分别为

φ1=BS1=2.0×40×30×10-4=0.24 Wb;φ2=0

φ3=φ1=BS1=2.0×40×30×10-4=0.24 Wb

答案:φ1=0.24 Wb,φ2=0,φ3=0.24 Wb

【例9】如图4所示,一水平放置的矩形闭合线圈abcd在细长磁铁N极附近下落,

保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过程中,线圈中的磁通量

A.是增加的;B.是减少的

C.先增加,后减少;D.先减少,后增加

解析:要知道线圈在下落过程中磁通量的变化情况,就必须知道条形磁铁

在磁极附近磁感线的分布情况.条形磁铁在 N极附近的分布情况如图所

示,由图可知线圈中磁通量是先减少,后增加.D选项正确.

点评:要知道一个面上磁通量,在面积不变的条件下,也必须知道磁场的磁感线的分布情况.因此,牢记条形磁铁、蹄形磁铁、通电直导线、通电螺线管和通电圆环等磁场中磁感线的分布情况在电磁学中是很必要的.

【例10】如图所示边长为100cm的正方形闭合线圈置于磁场中,线圈AB、CD两边中点连线OO/的左右

两侧分别存在方向相同、磁感强度大小各为B1=0.6T,B2=0.4T的匀强磁场。若从

上往下看,线圈逆时针转过370时,穿过线圈的磁通量改变了多少?

解析:在原图示位置,由于磁感线与线圈平面垂直,因此

Φ1=B1×S/2+B2×S/2=(0.6×1/2+0.4×1/2)Wb=0.5Wb

当线圈绕OO/轴逆时针转过370后,(见图中虚线位置):

Φ2=B1×S n/2+B2×S n/2=B1×Scos370/2+B2×Scos370/2=0.4Wb

磁通量变化量ΔΦ=Φ2-Φ1=(0.4-0.5)Wb=-0.1Wb

所以线圈转过370后。穿过线圈的磁通量减少了0.1Wb.

2.磁场基本性质的应用

【例11】从太阳或其他星体上放射出的宇宙射线中含有高能带电粒子,若到达地球,对地球上的生命将带来危害.对于地磁场对宇宙射线有无阻挡作用的下列说法中,正确的是(B)

A.地磁场对直射地球的宇宙射线的阻挡作用在南北两极最强,赤道附近最弱

B.地磁场对直射地球的宇宙射线的阻挡作用在赤道附近最强,南北两极最弱

C.地磁场对宇宙射线的阻挡作用各处相同

D.地磁场对宇宙射线无阻挡作用

解析:因在赤道附近带电粒子运动方向与地磁场近似垂直,而在两极趋于平行.

【例12】超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体

有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术,磁体悬浮的原理是(D)

①超导体电流的磁场方向与磁体的磁场方向相同.

②超导体电流的磁场方向与磁体的磁场方向相反.

③超导体使磁体处于失重状态.

④超导体对磁体的磁力与磁体的重力相平衡.

A.①③

B.①④

C.②③

D.②④

解析:

向相反,对磁体产生排斥作用力,这个力与磁体的重力达平衡.

【例13】.

如图所示,用弯曲的导线环把一铜片和锌片相连装在一绝缘的浮标上,

然后把浮标浸在盛有稀硫酸的容器中,设开始设置时,

环平面处于东西方向上.放

手后,环平面将最终静止在方向上.

解析:在地表附近地磁场的方向是大致由南向北的,此题中由化学原理可推知在环

中有环形电流由等效法可假定其为一个垂直于纸面的条形磁体,而条形磁体所受

地磁场的力的方向是南北方向的.

【例14】普通磁带录音机是用一个磁头来录音和放音的。磁头结构如图所示,在

一个环形铁芯上绕一个线圈.铁芯有个缝隙,工作时磁带就贴着这个缝隙移动。录音时磁头线圈跟微音器相连,放音时,磁头线圈改为跟扬声器相连,磁带上涂有一层磁粉,磁粉能被磁化且留下剩磁。微音器的作用是把声音的变化转化为电流的变化;扬声器的作用是把电流的变化转化为声音的变化,根据学过的知识,把普通录音机录、放音的基本原理简明扼要地写下来。

解析:(1)录音原理:当由微音器把声音信号转化为电流信号后,电流信号流经线

圈,在铁芯中产生随声音变化的磁场,磁带经过磁头时磁粉被不同程度地磁化,

并留下剩磁,且剩磁的变化与声音的变化一致,这样,声音的变化就被记录成磁

粉不同程度的变化。即录音是利用电流的磁效应。

(2)放音原理:各部分被不同程度磁化的磁带经过铁芯时,铁芯中形成变化的磁

场,在线圈中激发出变化的感应电流,感应电流经过扬声器时,电流的变化被转化为声音的变化。这样,磁信号又被转化为声音信号而播放出来。即放音过程是利用电磁感应原理。

【例15】磁场具有能量,磁场中单位体积所具有的能量叫做能量密度,其值为B2/2μ,式中B是感应强度,μ是磁导率,在空气中μ为一已知常数.为了近似测得条形磁铁磁极端面附近的磁感应强度B,一学生用一根端面面积为A的条形磁铁吸住一相同面积的铁片P,再用力将铁片与磁铁拉开一段微小距离△L,并测出拉力F,如图所示.因为F所做的功等于间隙中磁场的能量,所以由此可得磁感应强度B与F、A之间的关系为B=

解析:在用力将铁片与磁铁拉开一段微小距离△L的过程中,拉力F可认为

不变,因此F所做的功为:W=F△L.

以ω表示间隙中磁场的能量密度,则间隙中磁场的能量E=ωV=ωA△L

又题给条件ω=B2/2μ,故E=A△LB2/2μ.

因为F所做的功等于间隙中磁场的能量,即W=E,故有F△L= A△LB2/2μ

解得B=

磁场对电流的作用

一、安培力

1.安培力:通电导线在磁场中受到的作用力叫做安培力.

说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.

2.安培力的计算公式:F =BILsin θ(θ是I 与B 的夹角);通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F=0N;00<B <900时,安培力F 介于0和最大值之间.

3.安培力公式的适用条件:

①公式F =BIL 一般适用于匀强磁场中I ⊥B 的情况,对于非匀强磁场只是近似适用(如

对电流元),但对某些特殊情况仍适用.

如图所示,电流I 1//I 2,如I 1在I 2处磁场的磁感应强度为B ,则I 1对I 2的安培力F =BI 2L ,方向向左,同理I 2对I 1,安培力向右,即同向电流相吸,异向电流相斥.

②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作

用力.两根通电导线间的磁场力也遵循牛顿第三定律.

二、左手定则

1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.

2.安培力F 的方向既与磁场方向垂直,又与通电导线垂直,即F 跟BI 所在的面垂直.但B 与I 的方向不一定垂直.

3.安培力F 、磁感应强度B 、电流1三者的关系

①已知I,B 的方向,可惟一确定F 的方向;

②已知F 、B 的方向,且导线的位置确定时,可惟一确定I 的方向;

③已知F,1的方向时,磁感应强度B 的方向不能惟一确定.

4.由于B,I,F 的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.

【例1】如图所示,一条形磁铁放在水平桌面上在其左上方固定一根与磁铁垂直的长直导线,当导线通以如图所示方向电流时( )

A .磁铁对桌面的压力减小,且受到向左的摩擦力作用

B .磁铁对桌面的压力减小,且受到向右的摩擦力作用

C .磁铁对桌面的压力增大,且受到向左的摩擦力作用

D .磁铁对桌面的压力增大,且受到向右的摩擦力作用

解析:导线所在处磁场的方向沿磁感线的切线方向斜向下,对其沿水平竖直方向分解,如图10—15所示.对导线:

B x 产生的效果是磁场力方向竖直向上.

B y 产生的效果是磁场力方向水平向左.

根据牛顿第三定律:导线对磁铁的力有竖直向下的作用力,因而磁铁对桌面压力增大;导

线对磁铁的力有水平向右的作用力.因而磁铁有向右的运动趋势,这样磁铁与桌面间便

产生了摩擦力,桌面对磁铁的摩擦力沿水平方向向左. 答案:

C

【例2】.如图在条形磁铁N 极处悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?

的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。

【例3出的电子流将向哪个方向偏转?

I 1 I 2

解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电

,可判定电子流向左偏转。

①公式F=BIL中L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末

端.如图所示,甲中:/l ,乙中:L/=d(直径)=2R(半圆环且半径为R)

②安培力的作用点为磁场中通电导体的几何中心;

③安培力做功:做功的结果将电能转化成其它形式的能.

【例4】如图所示,在光滑的水平桌面上,有两根弯成直角相同金属棒,

它们的一端均可绕固定转轴O自由转动,另一端b互相接触,组成一

个正方形线框,正方形边长为L,匀强磁场的方向垂直桌面向下,磁感

强度为B.当线框中通以图示方向的电流时,两金属棒b点的相互作用

力为f此时线框中的电流为多少?

解析:由于对称性可知金属棒在O点的相互作用力也为f,所以Oa边和ab边所受安培力的合力为2f,方

向向右,根据左手定则可知Oa边和ab边所受安培力F1、F2分别与这两边垂直,由

力的合成法则可求出F1= F2=2fcos450=2f=BIL,I=2f/BL

点评:本题也利用了对称性说明O点的作用力为f,当对左侧的金属棒作受力分析

时,受到的两个互相垂直的安培力F1、F2(这两个安培力大小相等为F)的合力是

水平向右的,大小为2F,与O、b两点受到的作用力2f相平衡。

【例5】质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab与导轨间的摩擦因数为μ.有电流时aB恰好在导轨上静止,如图所示,如图10—19所示是沿ba方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是()

解析:杆的受力情况为:

答案:AB

2、安培力作用下物体的运动方向的判断

(1)电流元法:即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断整段电流所受合力方向,最后确定运动方向.

(2)特殊位置法:把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向.(3)等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析.

(4)利用结论法:①两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;②两电流不平行时,有转动到相互平行且电流方向相同的趋势.

(5)转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受电流作用力,从而确定磁体所受合力及运动方向.

(6)分析在安培力作用下通电导体运动情况的一般步骤

①画出通电导线所在处的磁感线方向及分布情况

②用左手定则确定各段通电导线所受安培力

③)据初速方向结合牛顿定律确定导体运动情况

(7)磁场对通电线圈的作用:若线圈面积为S ,线圈中的电流强度为I ,所在磁场的孩感应强度为B ,线圈平面跟磁场的夹角为θ,则线圈所受磁场的力矩为:M=BIScos θ.

【例6】如图所示,电源电动势E =2V ,r =0.5Ω,竖直导轨电阻可略,金属棒的质量m =

0.1kg ,R=0.5Ω,它与导体轨道的动摩擦因数μ=0.4,有效长度为0.2 m,靠在导轨的外面,

为使金属棒不下滑,我们施一与纸面夹角为600且与导线垂直向外的磁场,(g=10 m/s 2)求:

(1)此磁场是斜向上还是斜向下?

(2)B 的范围是多少?

解析:导体棒侧面受力图如图所示:

由平衡条件得:B 最小时摩擦力沿导轨向上,则有

μF N +BILcos300=mg, F N =BILsin300 解得B =2.34 T

当B 最大时摩擦力沿导轨向下,则有BILcos300=mg +μF N

F N =BILsin300 解得B=3. 75 T

B 的范围是2.34 T -- 3. 75 T

【例7】在倾角为θ的斜面上,放置一段通有电流强度为I,长度为L ,质量为m 的导体棒a ,(通电方向垂直纸面向里),如图所示,棒与斜面间动摩擦因数μ< tan θ.欲使导体棒静止在斜面上,应加匀强磁场,磁场应强度B 最小值是多少?如果要求导体棒a 静止在斜面上且对斜面无压力,则所加匀强磁场磁感应强度又如何?

解析:(1)设当安培力与斜面成α角时B 最小,则由平衡条件得:

mgsin θ=μF N +BILcos α, F N =mgcos θ+BILsin α.

解得()

()

sin cos cos sin mg B IL θμθαμα-==+1tan βμ=其中 ∴当α+β=900时

, min sin cos mg B θμθ-

(2)当F N =0时,则BIL =mg ,∴BIL=mg,由左手定则知B 方向水平向左.

【例8】如图所示,abcd 是一竖直的矩形导线框,线框面积为S ,放在磁感强度为B 的均匀水平磁场中,ab 边在水平面内且与磁场方向成600角,若导线框中的电流为I ,则导线框所受的安培力对

某竖直的固定轴的力矩等于( )

A .IBS

B .?IBS

C .2

3IBS D .由于导线框的边长及固定轴的位置来给出,无法确定

解析:为便于正确找出力臂,应将题中所给的立体图改画成平面俯视图,如图10—17所

示,设线框ab 边长为11,cd 边长为12,并设竖直转轴过图中O 点(O 点为任选的一点) ,

ao 长l ac ,bo 长l bo ,则l ac +l bo =l 1.为便于分析,设电流方向沿abcda .

由左手定则判断各边所受安培力的方向,可知ab 、cd 边受力与竖直转轴平行,不产

生力矩;ad 、bc 两边所受安培力方向如图,将产生力矩.ad 、bc 边所受安培力的大小均

为F =IBl 2,产生的力矩分别为:M ad =Fl ao cos θ,M bc =Fl bc cos θ.两个力矩的方向相同(困

10—17中均为顺时针力矩),合力矩M=M ad +M bc =F (l ao +l bc )cos θ=IBScos θ,将θ

=600代入,得M=?

IBS .

答案:B

说明:由此题也导出了单匝通电线圈在磁场所受磁力矩的公式M=IBScos θ.若为N 匝线圈,则M =NIBScos θ.式中S 为线圈包围面积,θ为线圈平面与磁场方向的夹角.显然,当θ=00时,即线圈平面与磁场方向平行时,线圈所受磁力矩最大M max =NBIS ,当θ=900,即线圈平面与磁场方向垂直时,线圈所受磁力矩为零.公式也不限于矩形线圈、对称转轴的情况,对任意形状的线圈.任一垂直于磁场的转轴位置都适用.

【例9】通电长导线中电流I 0的方向如图所示,边长为2L 的正方形载流线圈abcd 中的电流

强度为I ,方向由a →b →c →d .线圈的ab 边、cd 边以及过ad 、bc 边中点的轴线OO /都与长

导线平行.当线圈处于图示的位置时,ab 边与直导线间的距离a l a 等于2L ,且a l a 与ad 垂

直.已知长导线中电流的磁场在ab 处的磁感强度为B 1,在cd 处的磁感强度为B 2,则载流

线圈处于此位置受到的磁力矩的大小为 .

解析:ad 、bc 边所受的磁场力和转轴OO /平行,其力矩为零,ab 、cd 边受

力的方向如图10—21所示,大小分别为F 1=B 1I ·2L ,F 2= B 2I ·2L ,F 1、F 2对

转轴OO /的力臂分别为L 和

22L ,则两力对转轴的力矩为M=M 1+M 2=F l L +F 22

2L= IL 2(2B 1+2B 2). 答案:IL 2(2B 1+2B 2)

3.安培力的实际应用

【例10】在原于反应堆中抽动液态金属等导电液时.由于不允许传动机械部分与这些流体相接触,常使用一种电磁泵。图中表示这种电磁泵的结构。将导管置于磁场中,当电流I 穿过导电液体时,这种导电液体即被驱动。若导管的内截面积为a ×h ,磁场区域的宽度为L ,磁感强度为B .液态金属

穿过磁场区域的电流为I ,求驱动所产生的压强差是多大?

解答:本题的物理情景是:当电流 I 通过金属液体沿图示竖直向上流动时,电流将受到

磁场的作用力,磁场力的方向可以由左手定则判断,这个磁场力即为驱动液态金属流动

的动力。由这个驱动力而使金属液体沿流动方向两侧产生压强差ΔP 。故有 F=BIh .Δ

p=F/ah ,联立解得Δp =BI/a

【例11】将两碳棒A,B(接电路)插盛有AgNO 3溶液的容器中,构成如图电路.假设导轨光滑无电阻,宽为d,在垂直导轨平面方向上有大小为B,方向垂直纸面向外的磁场,若经过时间t 后,在容器中收集到nL 气体(标况),问此时滑杆C(质量为m C )的速度,写出A,B 棒上发生的电极反应式(阿伏加德罗常数N 0) 解析:由电解池电极反应可得出通过C 棒的电荷量,求出平均电流,再由安培定则及动量定理可得滑杆速度.

阴极:Ag 十十e=Ag ↓

阳极:4O H ――4e=2H 2O +O 2↑,O 2的摩尔数为n/22.4,则阳极的物质量为n/5.6摩尔.

通过C 捧的电荷量为005.6 5.6

nN e n q N e == 平均电流0 5.6nN e q I t t == 由C BIL m v =得05.6C C C

nBlN e BILt Blq v m m m ===

【例12】如图所示为利用电磁作用输送非导电液体装置的示意图,一边长为L 、截面为正方形的塑料管道水平放置,其右端面上有一截面积为A 的小喷口,喷口离地的高度为h.管道中有一绝缘活塞,在活塞的中部和上部分别嵌有两根金属棒a 、b ,其中棒b 的两端与一电压表相连。

整个装置放在竖直向上的匀强磁场中,当棒a 中通有垂直纸面向里的

恒定电流I 时,活塞向右匀速推动液体从喷口水平射出,液体落地点

离喷口的水平距离为s.若液体的密度为ρ,不计所有阻力,求:

(1)活塞移动的速度;

(2)该装置的功率;

(3)磁感应强度B 的大小;

(4)若在实际使用中发现电压表的读数变小,试分析其可能的原因.

解析:(l )设液体从喷口水平射出的速度为v 0,活塞移动的速度为v.

0v =20v A vL =,02A v v L == (2)设装置功率为P ,Δt 时间内有△m 质量的液体从喷口射出,P Δt =?Δm (v 02一v 2)

∵Δm=Lv Δt ρ.∴P=? L 2v ρ(v 02一v 2)430212A A v L ρ??=- ???,∴()34232422A L A S g P h L ρ-??= ??? (3) ∵P=F 安v.∴222200212A L v v v BILv L ρ??-= ???,∴()()

24242203324v L A L A s g B IL IhL ρρ--== (4)∵U=BLv,∴喷口液体的流量减少,活塞移动速度减小,或磁场变小等会引起电压表读数变小

磁场对运动电荷的作用

一、洛仑兹力

磁场对运动电荷的作用力

1.洛伦兹力的公式: f=qvB sin θ,θ是V 、B 之间的夹角.

2.当带电粒子的运动方向与磁场方向互相平行时,F =0

3.当带电粒子的运动方向与磁场方向互相垂直时,f=qvB

4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0.

二、洛伦兹力的方向

1.洛伦兹力F 的方向既垂直于磁场B 的方向,又垂直于运动电荷的速度v 的方向,即F 总是垂直于B 和v 所在的平面.

2.使用左手定则判定洛伦兹力方向时,伸出左手,让姆指跟四指垂直,且处于同一平面内,让磁感线穿过手心,四指指向正电荷运动方向(当是负电荷时,四指指向与电荷运动方向相反)则姆指所指方向就是该电荷所受洛伦兹力的方向.

三、洛伦兹力与安培力的关系

1.洛伦兹力是单个运动电荷在磁场中受到的力,而安培力是导体中所有定向称动的自由电荷受到的洛伦兹力的宏观表现.

2.洛伦兹力一定不做功,它不改变运动电荷的速度大小;但安培力却可以做功.

四、带电粒子在匀强磁场中的运动

1.不计重力的带电粒子在匀强磁场中的运动可分三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.

2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的轨迹半径r=mv/qB ;其运动周期T=2πm/qB (与速度大小无关).

3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做匀变速曲线运动(类平抛运动);垂直进入匀强磁场,则做变加速曲线运动(匀速圆周运动).

【例1】一带电粒子以初速度V 0垂直于匀强电场E 沿两板中线射入,不计重力,由C 点射出时的速度为V ,若在两板间加以垂直纸面向里的匀强磁场,粒子仍以V 0入射,恰从C 关于中线的对称点D 射出,如图所示,则

粒子从D 点射出的速度为多少?

解析:粒子第一次飞出极板时,电场力做正功,由动能定理可得电场力做功为W 1=m (V 2-v 02)/2……①,当两板间加以垂直纸面向里的匀强磁场后,粒子第二次飞出极板时,洛仑兹力对运动电荷不做功,但是粒子从与C 点关于中线的对称点射出,洛仑兹力大于电场力,由于对称性,粒子克服电场力做功,等于第一次电场力所做的功,由动能定理可得W 2=m (V 02-V D 2

)/2……②,W 1=W 2。由 ①②③式得V D =2202V V 点评:凡是涉及到带电粒子的动能发生了变化,均与洛仑兹力无关,因为洛仑兹力对运动电荷永远不做功。

【例2】如图所示,竖直两平行板P 、Q ,长为L ,两板间电压为U ,垂直纸面的匀强磁场的磁感应强度为B ,电场和磁场均匀分布在两板空间内,今有带电量为Q ,质量为m 的带正电的油滴,从某高度处由静止落下,从两板正中央进入两板之间,刚进入时油滴受到的磁场力和电场力相等,此后油滴恰好

从P 板的下端点处离开两板正对的区域,求(1)油滴原来静止下落的位置离板上端点的

高度h 。(2)油滴离开板间时的速度大小。

解析:(1)油滴在进入两板前作自由落体运动,刚进入两板之间时的速度为V 0,受到的电场力与磁场力相等,则qv 0B =qU /d ,v 0=U /Bd=gh 2 ,h=U 2/2gB 2d 2

(2)油滴进入两板之间后,速度增大,洛仑兹力在增大,故电场力小于洛仑兹力,油滴将向P 板偏转,电

场力做负功,重力做正功,油滴离开两板时的速度为V

x ,由动能定理mg (h +L )-q U /2=mV x 2/2, ·D V 0 ·C

x v ==点评:(1)根据带电油滴进入两板时的磁场力与电场力大小相等求出油滴下落时到板上端的高度;(2)油滴下落过程中的速度在增大,说明了洛仑兹力增大,油滴向P 板偏转,电场力做负功.

【例3】如图所示,在空间有匀强磁场,磁感强度的方向垂直纸面向里,大小为B ,光滑绝缘空心细管MN 的长度为h ,管内M 端有一质量为m 、带正电q 的小球P ,开始时小球P 相对管静止,管带着小球P 沿垂

直于管长度方向的恒定速度u 向图中右方运动.设重力及其它阻力均可忽略不计.(1)

当小球P 相对管上升的速度为v 时,小球上升的加速度多大?(2)小球P 从管的另一

端N 离开管口后,在磁场中作圆周运动的圆半径R 多大?(3)小球P 在从管的M 端

到N 端的过程中,管壁对小球做的功是多少?

解析:(1)设此时小球的合速度大小为v 合,方向与u 的夹角为θ

有v 合 cos θ=u/v 合=u/22u v + ………②

此时粒子受到的洛伦兹力f 和管壁的弹力N 如所示,由牛顿第二定律可求此时小球

上升的加速度为:a=fcos θ=qv 合Bcos θ/m ………③

联立①②③解得:a=quB/m

(2)由上问a 知,小球上升加速度只与小球的水平速度u 有关,故小球在竖直方向

上做加速运动.设小球离开N 端管口时的竖直分速度为v y ,由运动学公式得y v =

此时小球的合速度v = 故小球运动的半径为 mv R qB ==2221u m qumBh qB + (3)因洛化兹力对小球做的功为零,由动能定理得管壁对小球做的功为: W=?mv 2-?mu 2

=quBh

【例4】在两块平行金属板A 、B 中,B 板的正中央有一α粒子源,可向各个方向射出速率不同的α粒子,如图所示.若在A 、B 板中加上U AB =U 0的电压后,A 板就没有α粒子射到,U 0是α粒子不能到达A 板

的最小电压.若撤去A 、B 间的电压,为了使α粒子不射到A 板,而在A 、B

之间加上匀强磁场,则匀强磁场的磁感强度B 必须符合什么条件(已知α粒

子的荷质比m /q=2.l ×10-8kg/C ,A 、B 间的距离d =10cm ,电压U 0=4.2

×104V )?

解析:α粒子放射源向各个方向射出速率不同的α粒子,设最大的速率为v m 。则各个方向都有速率为v m 的α粒子.当A 、B 板加了电压后,A 、B 两板间的电压阻碍α粒子到达A 板,其方向是垂直两板并由A 板指向B 板。

在无电场时,α粒子在沿B 向A 板运动方向上有d=vcos θt ………①,其中θ是α粒子速度与垂直两板的直线的夹角.在①式中最容易到达A 板的α粒子应有θ=0,v =v m ,即其速度方向由B 极指向A 板,且速

率最大的α粒子,这些α粒子若达不到A 板,其余的α粒子均达不到A 板.由动能定理可得qU 0=mv m 2/

2………②;

若撤去电场,在A 、B 间加上匀强磁场,这些α粒子将做匀速圆周运

动,其半径为R ,R=mv/qB ……③,由③式可知,在B 一定的条件下,

v 越大,R 越大,越容易打到A 板;反之,当v 值取最大值v m 后,

若所有具有v m 的α粒子不能达到A 板,则所有的α粒子均不能达到

A 板.在所有方向上的α粒子中,它们的轨迹刚好与A 板相切的情况如图所示.在图中与A 板相切的轨迹中最小半径为R 3,若R 3是具有速率为v m 的α粒子的半径,则其它具有v m 的α粒子均不能到达 A 板.若令R 3为最小值R min 时,即图中R min = d /2是所有α粒子中轨迹与A 板相切的最小半径,将其代入③式后得d /2=mv m /q

B min ……④,由②④两式可得B min =2q mU /20/d=0.84T ,所以,A 、B 两板之间应加上垂直于纸面的匀强磁场,且磁感强度 B ≥0.84 T 时,所有的α粒子均不能到达A 板.

1、带电粒子在磁场中运动的圆心、半径及时间的确定

(1)用几何知识确定圆心并求半径.

因为F 方向指向圆心,根据F 一定垂直v ,画出粒子运动轨迹中任意两点(大多是射入点和出射点)的F 或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系.

(2)确定轨迹所对应的圆心角,求运动时间.

先利用圆心角与弦切角的关系,或者是四边形内角和等于3600(或2π)计算出圆心角θ的大小,再由公式t=θT/3600(或θT/2π)可求出运动时间.

(3)注意圆周运动中有关对称的规律.

如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.

【例5】如图所示,一束电子(电量为e )以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是 ,穿过磁场的时间

是 。

解析:电子在磁场中运动,只受洛伦兹力作用,故其轨迹是圆弧一部分,又因为f ⊥v ,

故圆心在电子穿入和穿出磁场时受到洛伦兹力指向交点上,如图中的O 点,由几何知

识知,AB 间圆心角θ=300,OB 为半径.所以r=d/sin300=2d .

又由r=Be

mv 得m =2dBe /v . 又因为AB 圆心角是300,所以穿过时间 t=121T=121×Be m π2=v

d 3π. 【例6】如图所示,一束电子以大小不同的速率沿图示方向飞入横截面是一正方形的匀强磁场,下列判断

正确的是( )

A 、电子在磁场中运动时间越长,其轨迹线越长

B .电子在磁场中运动时间越长。其轨迹线所对应的圆心角越大

C .在磁场中运动时间相同的电子,其轨迹线一定重合

D .电子的速率不同,它们在磁场中运动时间一定不相同

解析:在图中画出了不同速率的电子在磁场中的轨迹,由前面的知识点可知轨迹的

半径R=mv /qB ,说明了半径的大小与电子的速率成正比.但由于电子在磁场中运动时间的长短仅与轨迹所对应的圆心角大小有关,故可判断图中五条轨迹线所对应的运动时间关系有t 5=t 4=t 3>t 2>t 1显然,本题选项中只有B 正确.

点评:本题所考查的是带电粒子在矩形(包括正方形)磁场中运动的轨迹与相应的运动时间的关系问题.不同速率的电子在磁场中的偏转角大小(也就是在磁场中运动时间的长短),由知识点中的周期表达式看来与半径是没有关系的,但由于磁场区域的边界条件的限制,由图说明了半径不同,带电粒子离开磁场时速度方向变化可能不同,也可能相同.由周期关系式必须明确的一点是:带电粒子在磁场中运动的时间长短决定于轨迹所对应的圆心角.

【例7】如图所示,半径R=10cm 的圆形区域边界跟y 轴相切于坐标系原点O 。磁感强度B =0.332 T ,方向垂直于纸面向里,在O 处有一放射源 S ,可沿纸面向各个方向射出速率均为v=3.2×106m/s 的α粒

子.已知α粒子的质量m= 6.64×10-27 kg ,电量q=3.2 ×10-19 C .

(1)画出α粒子通过磁场空间做圆周运动的圆心的轨迹.(2)求出α粒子通过磁

场空间的最大偏转角θ.(3)再以过O 点并垂直纸面的直线为轴旋转磁场区域,

能使穿过磁场区域且偏转角最大的α粒子射到正方向的y 轴上,则圆形磁场直径

OA 至少应转过多大的角度β.

解析:(l )α粒子的速度相同,在同一匀强磁场中运动的半径相同,均由洛仑兹力提

供向心力 f= qvB=mv 2/r ,r =mv /Qb=20cm

所以α粒子的圆心与S (即O 点)的距离均为r ,其圆心的轨迹为以S 为圆心、以20cm 为半径的一段圆弧,如图所示.

(2)由于α粒子的轨道半径r 大于磁场区域的半径R ,α粒子最长的轨迹所对应的弦

为2R=r=20cm 时,α粒子在磁场中最大的偏转角的轨迹就是α粒子在磁场中最长的轨迹线,由于最长的轨

迹线的弦长与其轨迹半径相等,所以偏转角的最大值为θ=600

(3)由(2)中可知α粒子的最大偏转角为600;且所对的弦为OA ,故α粒子在磁场轨迹的入射点O 和出

射点A 与其轨迹圆心O 1的连线和OA 组成一个正三角形,也就是α粒子离开磁场时与x 轴正方向的夹角γ

=300,如图所示.要使偏转角最大的α粒子离开磁场时能打在y 轴的正方向上,则α粒子与x 轴的正方向夹角γ/>900,则OA 绕过O 点的水平轴至少要转过β=γ/一γ=600.

点评:带电粒子在磁场中的轨迹不大于半圆时,要使带电粒子在磁场中的偏转角最大,就是要求带电粒子在磁场中的轨迹线愈长(由于半径确定),即所对应的弦愈长.在圆形磁场中,只有直径作为轨迹的弦长最长.所以要求带电粒子进入磁场时的入射点、离开磁场时的出射点的连线为圆形磁场区域的直径.这是本题的难点。若是r >R ,情况就完全变了,这时带电粒子在磁场中的轨迹可能大于半圆或等于半圆,带电粒子在磁场中做匀速圆周运动的周期T=2πm /qB ,这是一个与速度大小和半径无关的物理量,也就是说在磁场中运动时间长短仅与轨迹所对圆心花怒放角有关,在具体确定时还与磁场的边界有关,矩形的边界和圆形的边界是不相同的.

2、洛仑兹力的多解问题

(1)带电粒子电性不确定形成多解.

带电粒子可能带正电荷,也可能带负电荷,在相同的初速度下,正负粒子在磁场中运动轨迹不同,导致双解.

(2)磁场方向不确定形成多解.

若只告知磁感应强度大小,而未说明磁感应强度方向,则应考虑因磁场方向不确定而导致的多解.

(3)临界状态不惟一形成多解.

带电粒子在洛伦兹力作用下飞越有界磁场时,它可能穿过去,也可能偏转1800从入射界面这边反向飞出.另在光滑水平桌面上,一绝缘轻绳拉着一带电小球在匀强磁场中做匀速圆周运动,若绳突然断后,小球可能运动状态也因小球带电电性,绳中有无拉力造成多解.

(4)运动的重复性形成多解.

如带电粒子在部分是电场,部分是磁场空间运动时,往往具有往复性,因而形成多解.

【例8】如图所示,一半径为R 的绝缘圆筒中有沿轴线方向的匀强磁场,磁感应强度为B ,一质量为m ,带电荷量为q 的正粒子(不计重力)以速度为v 从筒壁的A 孔沿半径方向进入筒内,设粒子和筒壁的碰撞无电荷量和能量的损失,那么要使粒子与筒壁连续碰撞,绕筒壁一周后恰好又从A 孔射出,问:

(1)磁感应强度B 的大小必须满足什么条件?

(2)粒子在筒中运动的时间为多少?

解析:(1)粒子射入圆筒后受洛仑兹力的作用而发生偏转,设第一次与B 点碰撞,撞后速度方向又指向O 点,设粒子碰撞n-1次后再从A 点射出,则其运动轨迹是n 段相等的弧长.

设第一段圆弧的圆心为O /,半径为r,则θ=2π/2n=π/n.,由几何关系得

tan r R n π

=,又由r=mv/Bq,联立得:( 1.2.3)tan mv

B n Rq n π== (2)粒子运动的周期为:T=2πm/qB,将B 代入得2tan R n T v ππ=

弧AB 所对的圆心角22222n n n πππ?θπ-????=-=-= ? ????? 粒子由A 到B 所用的时间()/2122tan tan 22n R n R t T n v n nv n

π?ππππππ--==???=? (n=3.4.5……) 故粒子运动的总时间为()/2tan n R t nt v n

ππ-== (n=3.4.5……) 【例9】S 为电子源,它只能在如图(l )所示纸面上的3600范围内发射速率相同,质量为m ,电量为e 的电子,MN 是一块竖直挡板,与S 的水平距离OS=L ,挡板左侧充满垂直纸面向里的匀强磁场,磁感强度

为B .

(l )要使S 发射的电子能到达挡板,则发射电子的速度至少多大?

(2)若S 发射电子的速度为eBL /m 时,挡板被电子击中范围多大?(要求指明S

在哪个范围内发射的电子可以击中挡板,并在图中画出能击中挡板距O 上下最远的电

子的运动轨道)

【解析】(l )电子在磁场中所受洛仑较为提供向心力qBV= mV 2/r

当r= L/2时,速度v 最小, 由①、②可得,V=eBL /2m

(2)若S 发射电子速率V /=eBL /m ,由eV /B=mV /2/r / 可得:r /=L

由左手定则知,电子沿SO 发射时,刚好到达板上的b 点,且OB= r /= L ,由SO 逆时针

转1800的范围内发射的电子均能击中挡板,落点由b →O →a →b /→a ,其中沿SO /发射的电

并击中挡板上的a 点,且aO=()222L L -=3L .由上分析可知,挡板能被电子击中的范

围由a →b ,其高度h=3L +L=(3十l )L ,击中a 、b 两点的电子轨迹,如图(2)所

示.

【例10】M 、N 、P 为很长的平行边界面,M 、N 与M 、P 间距分别为L 1、L 2,其间分别有磁感应强度为B 1和B 2的匀强磁场区,Ⅰ和Ⅱ磁场方向垂直纸面向里,B 1≠B 2,有一带正电粒子的电量为q ,质量为m ,以大小为v 的速度垂直边界M 及磁场方向射入MN 间的磁场区域,讨论粒子初速度v 应满足什么条件才可穿过两个磁场区域(不计粒子的重力)。

解析:先讨论粒子穿出B 1的条件:

设粒子以某一速度v 在磁场B 1中运动的圆轨迹刚好与M

相切,此时轨迹半径刚好为L 1,由 得: 由此可得使粒子能穿出B 1的条件是: 。 再讨论粒子穿出B 2条件:

又设粒子以某一11qvB v m

>的速度穿出了B 1后在B 2中穿过 时其圆轨迹又刚好与P 相切,如图所示,粒子在B 1中的运动轨迹所对的圆心角为θ,那么:

,粒子在B 2运动的轨迹半径为:12

mv R qB = 由几何知识得:R -Rsin θ=L 2 所以有:

解得:11221qB L qB L v m +=

,所以当粒子的速度11221qB L qB L v m

+>时就可以穿出B 1和B 2。

111sin L qB mv θ=211v qvB m L =11112221mv mv L qB L qB qB mv -?=11qB L v m =1

1qB L v m >

专题:带电粒子在复合场中的运动

一、复合场的分类:

1、复合场:即电场与磁场有明显的界线,带电粒子分别在两个区域内做两种不同的运动,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.

2、叠加场:即在同一区域内同时有电场和磁场,些类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。

二、带电粒子在复合场电运动的基本分析

1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.

2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.

3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.

4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.

三、电场力和洛伦兹力的比较

1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛伦兹力的作用.

2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛伦兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.

3.电场力的方向与电场的方向或相同、或相反;而洛伦兹力的方向始终既和磁场垂直,又和速度方向垂直.

4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛伦兹力只能改变电荷运动的速度方向,不能改变速度大小

5.电场力可以对电荷做功,能改变电荷的动能;洛伦兹力不能对电荷做功,不能改变电荷的动能.

6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛伦兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.

四、对于重力的考虑

重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.

五、复合场中的特殊物理模型

1.粒子速度选择器

如图所示,粒子经加速电场后得到一定的速度v0,进入正交的电场和磁场,

受到的电场力与洛伦兹力方向相反,若使粒子沿直线从右边孔中出去,则有qv0B

=qE,v0=E/B,若v= v0=E/B,粒子做直线运动,与粒子电量、电性、质量无关

若v<E/B,电场力大,粒子向电场力方向偏,电场力做正功,动能增加.

若v>E/B,洛伦兹力大,粒子向磁场力方向偏,电场力做负功,动能减少.

2.磁流体发电机

如图所示,由燃烧室O燃烧电离成的正、负离子(等离子体)以高速。

喷入偏转磁场B中.在洛伦兹力作用下,正、负离子分别向上、下极板偏

转、积累,从而在板间形成一个向下的电场.两板间形成一定的电势差.当

qvB=qU/d时电势差稳定U=dvB,这就相当于一个可以对外供电的电源.

3.电磁流量计.

电磁流量计原理可解释为:如图所示,一圆形导管直径为d,用非磁性材料

制成,其中有可以导电的液体向左流动.导电液体中的自由电荷(正负离子)在洛伦兹力作用下纵向偏转,a,b间出现电势差.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.

由Bqv=Eq=Uq/d ,可得v=U/Bd.流量Q=Sv=πUd/4B

4.质谱仪

如图所示

组成:离子源O ,加速场U ,速度选择器(E,B ),偏转场B 2,胶片.

原理:加速场中qU=?mv 2

选择器中:v=E/B 1

偏转场中:d =2r ,qvB 2=mv 2/r

比荷:122q E m B B d

= 质量122B B dq m E

= 作用:主要用于测量粒子的质量、比荷、研究同位素.

5.回旋加速器

如图所示

组成:两个D 形盒,大型电磁铁,高频振荡交变电压,两缝间可形成电压U

作用:电场用来对粒子(质子、氛核,a 粒子等)加速,磁场用来使粒子回旋从而能反

复加速.高能粒子是研究微观物理的重要手段.

要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.

关于回旋加速器的几个问题:

(1)回旋加速器中的D 形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只

处在磁场中而不受电场的干扰,以保证粒子做匀速圆周运动‘

(2)回旋加速器中所加交变电压的频率f,与带电粒子做匀速圆周运动的频率相

等:12qB f T m

π== (3)回旋加速器最后使粒子得到的能量,可由公式2222122K q B R E mv m

==来计算,在粒子电量,、质量m 和磁感应强度B 一定的情况下,回旋加速器的半径R 越大,粒子的能量就越大.

【注意】直线加速器的主要特征.

、带电粒子在复合场中的运动

【例1】如图所示,在X 轴上方有匀强电场,场强为E ;在X 轴下方有匀强磁场,磁感应强度为B ,方向如图,在X 轴上有一点M ,离O 点距离为L .现有一带电量为十q 的粒子,使其从静止开始释放后能经过M 点.如果把此粒子放在y 轴上,其坐标应满足什么关系?

(重力忽略不计)

解析:由于此带电粒子是从静止开始释放的,要能经过M 点,

其起始位置只能在匀强电场区域.物理过程是:静止电荷位于

匀强电场区域的y 轴上,受电场力作用而加速,以速度V 进入

磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向X 轴偏转.回转半周期过X 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过X 轴,在磁场回转半周后又从距O 点4R 处飞越X 轴如图10一53所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R

即 R =L /2n ,(n=1、2、3……)…………… ①

设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……②

对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③

解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)

【例

2】

如图所示,

在宽l 的范围内有方向如图的匀强电场,场强为E ,一带电粒子以速度v 垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此

磁场的磁感强度B .

解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有

tg θ=at/v=qEl/mv 2………①

粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB

又:sin θ=l/r=lqB/mv ………②

由①②两式得:B=Ecos θ/v

【例3】初速为零的离子经过电势差为U 的电场加速后,从离子枪T 中水平射出,经过一段路程后进入水平放置的两平行金属板MN 和PQ 之间.离子所经空间存在一磁感强度为B

的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m (q 、m 分别

是离子的电量与质量)在什么范围内,离子才能打在金属板上?

解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别

作出离子在 T 、P 、Q 三点所受的洛伦兹力,分别延长之后相交于O 1、O 2

点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.

离子经电压U 加速,由动能定理得.qU =?mv 2………①

由洛伦兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2

由图直角三角形O 1CP 和O 2CQ 可得

R 12=d 2+(R 1一d/2)2,R 1=5d/4……④

R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤

依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2

228932d B U ≤m q ≤222532d B U . 【例4】如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于

轴线的四条狭缝a 、b 、c 和d ,外筒的半径为r 0。在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B 。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m 、带电量为+q 的粒子,从紧靠内筒且正对狭缝a 的s 点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S ,则两电极之间的电压U 应是多少?(不计重力,整个装置在真空中)。 解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径

向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。粒子再回到S 点的条件是能沿径向穿过狭缝d 。只要穿过了d ,粒子就会在电场力作用下先减速,

再反向加速,经d 重新进入磁场区。然后,粒子将以同样方式经过c 、d ,再经过

a 回到s 点。

设粒子射入磁场区的速度为V ,根据能量守恒,有?mv 2=qU 设粒子在洛仑兹力作用下做匀速圆周运动的半径为R ,由洛仑兹力公式和牛顿定律得 mv 2/R=qvB

由前面分析可知,要回到S 点,粒子从a 到d 必经过3/4圆周。所以半径R

必定等于筒的外半径r 0,则v=qBR/m=qBr 0/m ,U=mv 2/2q=qB 2r 20/2m 。 【例5】如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大

小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有

小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B

保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A 粒子在电场一次次加速下动能不断增大,而绕行半径不变.

(l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n .

(2)为使粒子始终保持在半径为R 绕行第

n

圈时的磁感应强度B

n .

(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).

(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可).

a

c

(5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?

解析:(1)E n =nqv

(2)∵mqU=?mv 2n ∴v n =m nqU 2 R

mv n 2=qU n B n B n =mv n /qR 以v n 结果代入,B n =qR m

m nqU 2=R 1q

nmv 2 (3)绕行第n 圈需时

n v R π2=2πR qv m 2n 1 ∴t n =2πR qv m 2(1+21+31+…+n 1

(4)如图所示,(对图的要求:越来越近的等幅脉冲)

(5)不可以,因为这样粒子在是、B 之间飞行时电场对其做功+qv ,使之加速,在是、B 之外飞行时电场又对其做功-qv 使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大。

2、带电粒子在叠加场中的运动

【例6】如图所示,从正离子源发射的正离子经加速电压U 加速后进入相互垂直的匀强电场E (方向竖直向上)和匀强磁场B (方向垂直于纸面向外)中,发现离子向上偏转,要使此离子沿直线穿过电场?

A .增大电场强度E ,减小磁感强度B

B .减小加速电压U ,增大电场强度E

C .适当地加大加速电压U

D .适当地减小电场强度E

解析:正离子进入相互垂直的匀强电场和匀强磁场的区域中,受到的电场力F =qE ,方向向上,受到的洛仑兹力f =qVB ,方向向下,离子向上偏,说明了电场力大于洛仑兹力,要使离子沿直线运动,则只有使洛仑兹力磁大或电场力减小,增大洛仑兹力的途径是增大加速电场的电压U 或或增大磁感强度B ,减小电场力的途径是减小场强E .对照选项的内容可知C 、D 正确.?

点评:带电粒子进入相互垂直的匀强电场和匀强磁场区域,则它的速度V=E /B ,这个区域就是速度选择器,且速度选择器对进入该区域的粒子所带电荷的符号无关,只要是具有相同的速度的带电粒子均能沿直线通过这一区域,但是有一点必须明确的是:速度选择器的进口与出口的位置不具有互换性。

【例7】如图所示,静止在负极板附近的带负电的微粒在MN 间突然加上电场时

开始运动,水平匀速地击中速度为零的中性微粒后粘合在一起恰好沿一段圆弧落

在N 极板上,若m l =9.995×10-7千克,带电量q=l08库,电场强度E=103伏/

米,磁感应强度B=0.5特,求击中m 2时的高度,击中m 2前的微粒速度,m 2的

质量和圆弧的半径.

解析:由于击中m 2前微粒已达水平匀速,由匀速直线运动条件得:

m l g +f 洛=qE m l g +qvB =qE 。 v =(qE —m 1g )/qB ,代入数据可算得: v =1米/秒 m 1从开始运动到击中m 2的过程,只有重力和电场力做功.洛伦兹力不做功.由于涉及m 1竖直方向的位移h ,故选用动能定理分析得: qU 一m 1gh=?m 1v 2一0

qEh —m 1gh=?m 1v 2

,h =()g m qE v m 12

12- 代入数据可算得h ≈0.1米.

又由于m 1击中m 2 能沿圆弧运动,说明这时重力已与电场力平衡,只是洛仑兹力充当向心力使它们

作匀速圆周运动,故有:m 1g +m 2g =qE 得m 2=g

g m qE 1-,代入数据可算得m 2=5×10-10千克 m 1、m 2粘合在一起作圆周运动半径为: r =(m l 十m 2)v //

qB

在m l 击中m 2瞬间,动量守恒, 即:m 1v l =(m 1+m 2)v /

代入数据解①②两式得:r ≈200.

【例8】如图所示,空间存在着垂直向外的水平的匀强磁场和竖直向上的匀强电场,磁感应强度为B ,电场强度为E.在这个场区内,有一带正电的液滴a 在电场力和重力作用下处于静止.现从场中某点由静止释放一个带负电的液滴b(图中未画出),当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,并沿水平方向做匀速直线运动.已知液滴b 的质量是a 质量的2倍,b 所带电荷量是a 所带电荷量的4倍,且相撞前a,b 间的静电力忽略不计. (1)求两液滴相撞后共同运动的速度大小; (2)画出液滴b 在相撞前运动的轨迹示意图; (3)求液滴b 开始下落时距液滴a 的高度h. 解析:液滴在匀强磁场、匀强电场中运动.同时受到洛伦兹力、电场力和重力作用,‘ (1)可设a 液滴质量为m 、电量为q,b 液滴质量为2m 、电量为一4q. 平衡时,有qE=mg ……①,a 、b 相撞合为一体时,质量为3m,电量为-3q,速度为v ,由题意知处于平衡状态,重力3mg,电场力3qE 均竖直向下,所以洛伦兹力必定竖直向上,满足3qvB=3mg+3qE ……②

由①、②两式,可得撞后速度v=2E/B

(2)对b 液滴开始时重力2mg,电场力4qE 均竖直向下,所以开始向下加

速,由左手定则,洛伦兹力向右,可见b 液滴从初始位置沿一曲线向右

下方运动,当与a 相撞前b 的速度已水平向右,其轨迹示意图如图所示.

(3)对b,从开始运动至与a 相撞之前,由动能定理:w e +w G =△E K ,即(4qE

+2mg)h=?(2m )v 02 a,b 相撞时,可看做动量守恒,有2mv 0=3mv

由以上几式可得v 0=3E/B

再由上两式得2

220034262mv v E h qE mg g g B ??=== ?+?? 【例9】汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内加速后,穿过A'中心的小孔沿中心轴010的方向进入到两块水平正对放置的平行极板P 和P /,间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心0点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到0'点,(O'与0点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P /间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到0点.已知极板水平方向的长度为L 1,极板间距为b ,极板右端到荧光屏的距离为L 2(如图所示).

(1)求打在荧光屏0点的电子速度的大小.

(2)推导出电子的比荷的表达式

解析:(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心0点,设电子的速度为v ,则evB =Ee,得v=E/B=U/Bb.

(2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向作匀加速运动,加速度为a=eU/mb. 电子在水平方向作匀速运动,在电场内的运动时间为t 1=L 1/v 这样,电子在电场中,竖直向上偏转的距

离为221112122eL U d at mv b

== 离开电场时竖直向上的分速度为11eLU v at mvb

⊥== 电子离开电场后做匀速直线运动,经t 2时间到达荧光

屏22L t v

= t 2时间内向上运动的距离为:12222eUL L d v t mv b ⊥==

· ·E

· ·

· ·

· · ·

a · · ·

· B

这样,电子向上的总偏转距离为d=d 1+d 2=

11222eU L L L mv b ??+ ??? 可解得21122e Ud L m B bL L =??+ ???

例6 设在地面上方的真空室内,存在匀强电场和匀强磁场,已知电场强度和磁

感应强度的方向是相同的,电场强度的大小E=4.0V/m ,磁感应强度的大小

B=0.15T .今有一个带负电的质点以v=20m/s 的速度在的区域内沿垂直场强方向

做匀速直线运动,求此带电质点的电量与质量之比q/m 以及磁场的所有可能方向

(角度可用反三角函数表示).

分析:带负电的质点在同时具有匀强电场、匀强磁场和重力场中做匀速直线运动,

表明带电质点受重力mg 、电场力qE 和洛仑兹力qvB 的作用处于平衡状态.因重

力方向竖直向下,3个力合力为零,要求这3个力同在一竖直平面内,且电场力

和洛仑兹力的合力方向应竖直向上.

由此推知,带电质点的受力图,如图所示;再运用力学知识就可求解.

解:带电质点受3个力(重力、电场力、洛仑兹力)作用.根据题意及平衡条件可得质

点受力图,如图所示(质点的速度垂直纸面向外)

()()()222mg Eq qvB =+所以

1.96/q c kg m ==

=

由质点受力图可得tan θ=qvB/qE,所以0200.15arctan arctan arctan 0.75374.0

vB E θ?==== 即磁场是沿着与重力方向夹角θ=37?,且斜向下方的一切方向.

答:带电质点的荷质比q/m 等于1.96C/kg ,

磁场的所有可能方向是与重力方向夹角θ=37?的斜

向下方的一切方向.

3、磁偏转技术的应用

【例10】电视机显像管中电子束的偏转是用磁偏转

技术实现的,电子束经电压为U 的加速电场加速后,

进入一圆形磁场区,如图所示,磁场方向垂直圆面,

磁场区的中心为O ,半径为r ,当不加磁场时,电子束将通过O 点而打到屏幕中心M 点,为了使电子束

射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强

度B 为多大?

解析:电子在磁场中沿圆弧ab 运动如图所示,圆心为C ,半径为R ,以v 表示电子

进入电场的速度,m 、e 分别表示电子质量和电量,则:eU=?mv 2

evB=mv 2/R,又有tan(θ/2)=r/R,

联立解得2B θ= 【例11】核聚变反应需几百万摄氏度高温,为了把高温条件下高速运动粒子约束在

小范围内(否则不可能发生核聚变),可采用磁约束的方法.如所示,环状匀强磁场

围成中空区域,中空区域内的带电粒子只要速度不是很大,都不会穿出磁场的外边缘,设环形磁场的内半径R 1=0. 5 m ,外半径R 2=1m ,磁场的磁感应强度B =0. 1T ,若被约束的带电粒子的比荷q/m=4×107C/kg,中空区域内的带电粒子具有各个方向大小不同的速度,问(1)粒子沿环状半径方向射入磁场,不能穿越磁场的最大速度;(2)所有粒子不能穿越磁场的最大速度.

解析根据Bqv =mv 2 /r 得r=mv/Bq ,由于

B 、q/m 一定,所以v 越大,r

越大,且最大半径对应最大速度,

M

P

完整word版,高中物理重要二级结论(全)

物理重要二级结论 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同 3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即 γ βαsin sin sin 321F F F == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G 。 9 .已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。 用“三角形”或“平行四边形”法则 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内· ·····位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ) ::3:2:1n Λn ::3:2:1ΛF 已知方向 F 2的最小值 F 2的最小值 F 2的最小值 F 2

高中物理公式知识点总结大全资料

高中物理公式知识点 总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) 7、 万有引力: F=G m m r 12 2 (1). 适用条件 (2) .G 为万有引力恒量 (3) .在天体上的应用:(M 一天体质量 R 一天体半径 g 一天体表面重力 加速度) a 、万有引力=向心力 1

高中物理的所有公式归纳

高中物理公式、规律汇编表 一、力学 1、 胡克定律: F = kx (x 为伸长量或压缩量;k 为劲度系数,只与弹簧的 原长、粗细和材料有关) 2、 重力: G = mg (g 随离地面高度、纬度、地质结构而变化;重力约等 于地面上物体受到的地球引力) 3 、求F 1、F 2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 + F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合 外力为零。 F 合=0 或 : F x 合=0 F y 合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值 反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明 : ① F N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G ② μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关. (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明:

高中物理重要二级结论全

精心整理 物理重要二级结论(全) 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 γ sin 3 F = 9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。 用“三角形”或“平行四边形”法则 二、运动学 1 时间等分(T):①1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32 F2

②1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2S n -S n-k =kaT 2 a=ΔS/T 2 a=(S n -S n-k )/kT 2 位移等分(S 0):①1S 0处、2S 0处、3S 0处···速度比:V 1:V 2:V 3:···V n = ②经过1S 0时、2S 0时、3S 0时···时间比: t 0as v t 2=o 002 at t v s +=9.匀加速直线运动位移公式:S=At+Bt 2式中a=2B (m/s 2)V 0=A (m/s ) 10.追赶、相遇问题 )::3:2:1n Λn ::3:2:1Λ

匀减速追匀速:恰能追上或恰好追不上V 匀=V 匀减 V 0=0的匀加速追匀速:V 匀=V 匀加时,两物体的间距最大S max = 同时同地出发两物体相遇:位移相等,时间相等。 A 与 B 相距△S ,A 追上B :S A =S B +△S ,相向运动相遇时:S A =S B +△S 。 11.小船过河: 3 4 5. α

高中物理重要二级结论(全)

物理重要二级结论(全) 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2?两个力的合力: 卩! F 2 F F 1 F 2 方向与大力相同 3?拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点, 且每一 个力必和其它两力间夹角之正弦成正比,即 F 1 F 2 F 3 sin sin sin 4.两个分力F i 和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或 合力)的方 向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 5?物体沿倾角为a 的斜面匀速下滑时的最小值卩=ta a 6?“二力杆” (轻质硬杆)平衡时二力必沿杆方向。 7?绳上的张力一定沿着绳子指向绳子收缩的方向。 &支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力 9. 已知合力不变,其中一分力 F i 大小不变,分析其 大小,以及另一分力 F 2。 用“三角形”或“平行四边形”法则 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ):①1T 内、2T 内、3T 内??…位移比:S i : S 2: ② 1T 末、2T 末、3T 末??…速度比:V 1: V 2: V 3=1 : 2: 3 ③ 第一个T 内、第二个T 内、第三个T 内??的位移之比: S i : S n : S m = 1 : 3: 5 ④ 厶 S=aT 2 S n -S n-k = k aT 2 a= △ S/T a = ( S n -S n-k ) /k T 2 位移等分(S 0): ① 1S 0 处、2 S 0 处、3 S 0处??速度比:V 1: V 2: V 3: --V n = 1:2:3 : n F i 已知方向 N 不一定等于重力G S 3=1 F 2的最小值 F 2

高中物理全部公式大全汇总

[转] 高中所有物理公式整理,参考下的。 超级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

高中物理公式大全整理版)

高中物理公式大全 一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g ) 3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++= 合,两个分力垂直时: 2 221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围:? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = μN (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ②μ为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0≤ f 静≤ f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 2 2 1r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '4222 22mg ma r T m r m r v m r Mm G =====πω 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 2 3 24GT r M π=r GM v =

高中物理所有公式总结

一, 质点的运动(1)----- 直线运动 1)匀变速直线运动 1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as 3.中间时刻速度Vt / 2= V平=(V t + V o) / 2 4.末速度V=Vo+at 5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2 6.位移S= V平t=V o t + at2 / 2=V t / 2 t 7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s 时间(t):秒(s) 位移(S):米(m)路程:米 速度单位换算:1m/ s=3.6Km/ h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度V_o =0 2.末速度V_t = g t 3.下落高度h=gt2 / 2(从V_o 位置向下计算) 4.推论V t2 = 2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=V_o t –gt 2 / 2 2.末速度V_t = V_o –g t (g=9.8≈10 m / s2 ) 3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起) 5.往返时间t=2V_o / g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 平抛运动

高中物理学考公式大全

学习必备 欢迎下载 高中物理学考公式大全 一、运动学基本公式 1.匀变速直线运动基本公式: 速度公式:(无位移)at v v t +=0 位移公式:(无末速度)2 02 1at t v x + = 推论公式(无时间):ax v v t 2202=- (无加速度)t v v x t 2 0+= 2、计算平均速度 t x v ??=【计算所有运动的平均速度】 2 0t v v v += 【只能算匀变速运动的平均速度】 3、打点计时器 (1)两种打点计时器 (a )电磁打点计时器: 工作电压(6V 以下) 交流电 频率50HZ (b )电火花打点计时器:工作电压(220v ) 交流电 频率50HZ 【计数点要看清是相邻的打印点(间隔 )还是每隔个点取一个计数点(间隔0.1s)】 (2)纸带分析 (a (b)求某点速度公式:t x v v t 22==【会根据纸带计算某个计数点的瞬时速度】 二、力学基本规律 1、不同种类的力的特点 (1).重力:mg G =(2r GM g ∝ ,↓↑g r ,,在地球两极g 最大,在赤道g 最小) (2). 弹力: x k F ?= 【弹簧的劲度系数k 是由它的材料,粗细等元素决定的,与它受不受力以及在弹 性线度内受力的大小无关】 (3).滑动摩擦力 N F F ?=μ;【在平面地面上,FN=mg ,在斜面上等于重力沿着斜面的分力】 静摩擦力F 静 :0~F max ,【用力的平衡观点来分析】 2.合力:2121F F F F F +≤≤-合 力的合成与分解:满足平行四边形定则 三、牛顿运动定律 (1)惯性:只和质量有关 (2)F 合=ma 【用此公式时,要对物体做受力分析】 (3)作用力和反作用力:大小相等、方向相反、性质相同、同时产生同时消失,作用在不同的物体上(这是与平衡力最明显的区别) (4)运用牛顿运动定律解题

高中物理重要二级结论总结

高中物理重要二级结论总结 1. 若三个力大小相等方向互成120°,则其合力为零。 2. 几个互不平行的力作用在物体上,使物体处于平衡状态,则其中一部分力的合力必与其余部分力的合力等大反向。 3. 在匀变速直线运动中,任意两个连续相等的时间内的位移之差都相等。即2 aT x =?(可判断 物体是否做匀变速直线运动)推广:2)(aT n m x x n m -=- 4. 在匀变速直线运动中,任意过程的平均速度等于该过程中点时刻的瞬时速度。即2/t V V = 5. 对于初速度为零的匀加速直线运动 (1)T 末、2T 末、3T 末、…的瞬时速度之比为:n v v v v n ::3:2:1::::321ΛΛ= (2) T 内、2T 内、3T 内、…的位移之比为:2222321::3:2:1::::n x x x x n ΛΛ= (3)第一个T 内、第二个T 内、第三个T 内、…的位移之比为: (4)通过连续相等的位移所用的时间之比:()()() 1::23:12:1::::321----=n n t t t t n ΛΛ 6. 物体做匀减速直线运动,末速度为零时,可以等效为初速度为零的反向的匀加速直线运动。 7. 对于加速度恒定的匀减速直线运动对应的正向过程和反向过程的时间相等,对应的速度大小相等(如竖直上抛运动) 8. 质量是惯性大小的唯一量度。惯性的大小与物体是否运动和怎样运动无关,与物体是否受力和怎样受力无关,惯性大小表现为改变物理运动状态的难易程度。 9. 做平抛或类平抛运动的物体在任意相等的时间内速度的变化都相等。方向与加速度方向一致(即at V =?)。 10. 做平抛或类平抛运动的物体,末速度的反向延长线过水平位移的中点。 11. 物体做匀速圆周运动的条件是合外力大小恒定且方向始终指向圆心,或与速度方向始终垂直。 12. 做匀速圆周运动的的物体,在所受到的合外力突然消失时,物体将沿圆周的切线方向飞出做匀速直线运动;在所提供的向心力大于所需要的向心力时,物体将做向心运动;在所提供的向心力小于所需要的向心力时,物体将做离心运动。 13.开普勒第一定律的内容是所有的行星围绕太阳运动的轨道都是椭圆,太阳在椭圆轨道的一个焦点上。 第三定律的内容是所有行星的半长轴三次方跟公转周期的平方的比值都相等,即k T R =23 14. 地球质量为M ,半径为R ,万有引力常量为G ,地球表面的重力加速度为g ,则其间存在的一个常用的关系是2 gR GM =。(类比其他星球也适用) 15. 第一宇宙速度(近地卫星的环绕速度)的表达式gR R GM v ==1,大小为s m /9.7,它是发射卫星的最小速度,也是地球卫星的最大环绕速度。随着卫星的高度h 的增加,v 减小,ω减小,a 减小,T 增加。

高中物理公式知识点总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与 弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212 sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) F 1

2017人教版高中物理公式详细大全

人教版高考复习——物理公式大全 一、质点的运动------直线运动 (一)匀变速直线运动 1、平均速度(定义式):t s v = ; 2、有用推论:as v v t 22 02 =-; 3、中间时刻速度:2 02 t t v v v v += =; 4、末速度:at v v t +=0; 5、中间位置速度:22 202 t s v v v +=; 6、位移:20021 2at t v t v v t v s t +=?+= ?=; 7、加速度:t v v a t 0 -={以0v 为正方向,a 与0v 同向(加速)0>a ;反向则0

高中物理现行高考所有公式大全(最全整理)

高中物理现行高考常用公式 一. 力学 1.1 静力学 物理概念规律名称 公式 重力 G mg = (g 随高度、纬度而变化) 摩擦力 (1) 滑动摩擦力: f= μN (2) 静摩擦力:大小范围O ≤ f 静≤ f m (f m 为最大静摩擦力与正压力有关) 浮力、密度 浮力F 浮= ρ液gV 排 ;密度ρ=m V 压强、液体压强 压强p F S = ;液体压强 p gh =ρ 胡克定律 F kx =(在弹性限度内) 万有引力定律 a 万有引力=向心力:F G m m r =?12 2 G Mm R h m () +=2 V R h m R h m T R h 2 22 2 24()()()+=+=+ωπ b 、近地卫星mg = G Mm R 2(黄金代换);地球赤道上G 2 R Mm -N=mR ω2 不从心 同步卫星G 2 r Mm =mr ω2 c. 第一宇宙速度mg = m V R 2 V= gR GM R =/ d. 行星密度 ρ= 2 3GT π(T 为近地卫星的周期) V 球= 3 3 4R π S 球=4πR 2 e. 双星系统 G m m r 122 =m 1R 1ω2=m 2R 2ω2 (R 1+R 2=r) 互成角度的二力的合成 F F F F F F F F 合= ++= ?+1222122122cos tan sin cos α θα α 正交分解法: F F F F F x y y x 合= += 22tan α 力矩 M FL =(不要求) 共点力的平衡条件 F 合=0或F F x y ==?? ?00 ∑F=o 或∑F x =o ∑F y =o 有固定转轴物体的平衡 条件 M 合=0或M M 逆顺= 共面力的平衡 F M 合合,==00

高中物理重要推论规律总结

物理二级结论 “二级结论”是在一些常见的物理情景中,由基本规律和基本公式导出的推论,又叫“半成品”。由于这些情景和这些推论在做题时出现率高,或推导繁杂,因此,熟记这些“二级结论”,在做填空题或选择题时,就可直接使用。在做计算题时,虽必须一步步列方程,一般不能直接引用“二级结论”,但只要记得“二级结论”,就能预知结果,可以简化计算和提高思维起点,也是有用的。 细心的学生,只要做的题多了,并注意总结和整理,就能熟悉和记住某些“二级结论”,做到“心中有数”,提高做题的效率和准确度。 运用“二级结论”,谨防“张冠李戴”,因此要特别注意熟悉每个“二级结论”的推导过程,记清楚它的适用条件,避免由于错用而造成不应有的损失。 下面列出一些“二级结论”,供做题时参考,并在自己做题的实践中,注意补充和修正。 一、静力学 1.几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2.两个力的合力: 2 1 2 1 F F F F F+ ≤ ≤ -方向与大力相同 3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即 γ β αsin sin sin 3 2 1 F F F = = 4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 5.物体沿倾角为α的斜面匀速下滑时,μ= tanα 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7.绳上的张力一定沿着绳子指向绳子收缩的方向。 8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。 9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。 用“三角形”或“平行四边形”法则 F 已知方向 2 F2的最小值 F2的最小值 F2

高中物理公式大全

高中物理公式大全; 一、质点的运动(1)——直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论 Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt =Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt= Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

高中物理公式总结简洁版

一、力学 1、胡克定律:f = k x 2、滑动摩擦力: f = N 3、万有引力 F =G 221r m m ( G 为万有引力 常量:G = ×10-11 N·m 2 / kg 2 ) 4、 牛顿第二定律: F ma =合 5、匀变速直线运动: 基本规律:⑴v t =v 0+at , ⑵s=v 0t+at 2 /2 推论:⑴v t 2 -v 02 =2as ⑵0/22 t t v v s v v t +== = ⑶△s=aT 2 6、匀速圆周运动 v =2πr T =ωr =2πrf a =2v r =r ω2 =r 4π2 T 2 7.人造卫星的加速度、线速度、角速度、 周期跟轨道半径的关系 8、开普勒第三定律2 3T k r = 9、星球表面(附近)认为2 GMm mg R =, 可得:①星球表面重力加速度2GM g R = ②常用代换: 2 GM gR = 10、恒力做功 : W = Fs cosα 11、动能定理: W 合= E k 12、机械能守恒定律: mgh 1 + 222212 121mv mgh mv += 或P K E E ?=-? 13、功率: P = W t P = F v 14、摩擦生热 Q f S =?相对 15、物体的动量 P=mv 16、动量守恒定律 11v m +m 2v 2 = m 1v 1’ +m 2v 2 ’ 或p 1 = - p 2 或p 1 +p 2=0 弹性碰撞结论: '12122 112 ()2m m v m v v m m -+= +; ' 21211212()2m m v m v v m m -+=+; ①、若m 1=m 2,则v 1′=v 2,v 2′=v 1, 即质量相等速度互换; ②、若10v ≠,20v =, 则' 121112()m m v v m m -= +,' 11212 2m v v m m =+ 二、电磁学 1、库仑力:2 2 1r q q k F = (静电力常量k = ×109 N·m 2 / c 2 ) 2、电场力:F = q E 3、电场强度: 定义式: q F E = 单位: N / C 点电荷场强2Q E k r =匀强电场场强d U E = 4、电势差q W U = U AB = φA -φB 5、电场力做功W AB = q U AB 6、电容器的电容 Q C U = 平行板电容器的电容 4S C kd επ= 7、电流的定义:I = Q t 微观式:I =nesv 8、电阻定律:l R S ρ= 电阻率ρ:只与导体材料和温度有关,单位:Ω·m 9、欧姆定律:(1)部分电路:I U R = 2GMm r =高中物理公式汇总

高中物理重要二级结论(全)汇总(可编辑修改word版)

3 F 1 F 1 F 物理重要二级结论(全) 一、静力学 1. 几个力平衡,则任一力是与其他所有力的合力平衡的力。 三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。 2. 两个力的合力: F 1 - F 2 ≤ F ≤ F 1 + F 2 方向与大力相同 3. 拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点, 且 每一个力必和其它两力间夹角之正弦成正比,即 F 1 = sin F 2 = sin F 3 sin 4. 两个分力 F 1 和 F 2 的合力为 F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或 合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 F 1已知方向F F 2的最小值 F 2的最小值 2mg 5. 物体沿倾角为α的斜面匀速下滑时, μ= tan α 6. “二力杆”(轻质硬杆)平衡时二力必沿杆方向。 7. 绳上的张力一定沿着绳子指向绳子收缩的方向。 8. 支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力 N 不一定等于重力 G 。 9. 已知合力不变,其中一分力 F 1 大小不变,分析其大小,以及另一分力 F 2。用 “三角形”或“平行四边形”法则 二、运动学 2 1. 初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内 ····· 位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末 ····· 速度比:V 1:V 2:V 3=1:2:3 ③ 第一个 T 内、第二个 T 内、第三个 T 内 ·· 的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0 处、2 S 0 处、3 S 0 处 ·· 速度比:V 1:V 2:V 3: ·· V n = ② 经过 1S 0 时、2 S 0 时、3 S 0 时···时间比: 1 : 2 : 1 : 3 : : : : : n ) 2 n F 1 F F

(完整版)高中物理公式大全

力学 一、力 1,重力:G=mg ,方向竖直向下,g=9.8m/s 2≈10m/s 2,作用点在物体重心。 2,静摩擦力:0≤f 静≤≤f m ,与物体相对运动趋势方向相反,f m 为最大静摩擦力。 3,滑动摩擦力:f=μN ,与物体运动或相对运动方向相反,μ是动摩擦因数,N 是正压力。 4,弹力:F = kx (胡克定律),x 为弹簧伸长量(m ),k 为弹簧的劲度系数(N/m )。 5,力的合成与分解: ①两个力方向相同,F 合=F 1+F 2,方向与F 1、F 2同向 ②两个力方向相反,F 合=F 1-F 2,方向与F 1(F 1较大)同向 互成角度(0<θ<180o):θ增大→F 减少 θ减小→F 增大 θ=90o,F=2221F F +,F 的方向:tg φ= 1 2 F F 。 F 1=F 2,θ=60o,F=2F 1cos30o, F 与F 1,F 2的夹角均为30o,即φ=30o θ=120o,F=F 1=F 2,F 与F 1,F 2的夹角均为60o,即φ=60o 由以上讨论,合力既可能比任一个分力都大,也可能比任一个分力都小,它的大小依赖于两个分力之间的夹角。合力范围:(F 1-F 2)≤F ≤(F 1+F 2) 求 F 1、F 2两个共点力 的合力大小的公式(F1与F2夹角为θ): 二、直线运动 匀速直线运动:位移vt s =。平均速度t s v = 匀变速直线运动: 1、位移与时间的关系,公式:22 1at t v s o + = 2、速度与时间的关系,公式:at v v o t += 3、位移与速度的关系:as v v o t 22 2=-,适合不涉及时间时的计算公式。 4、平均速度t s v v v v t o t =+= =22 ,即为中间时刻的速度。 5、中间位移处的速度大小22 2 2t o s v v v +=,并且2 2t s v v > 匀变速直线运动的推理: 1、匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量,即 △s=s n+1 —s n =aT 2=恒量 2、初速度为零的匀加速直线运动(设T 为等分时间间隔): ①1T 末、2T 末、3T 末……瞬时速度的比值为 v 1:v 2:v 3......:v n =1:2:3......:n ②1T 内、2T 内、3T 内……的位移之比为 s 1:s 2:s 3:……:s n =12:22:32……:n 2 ③第一个T 内、第二个T 内、第三个T 内……位移之比为 S I :S II :S III :……:S n =1:3:5……:(2n-1) θ cos 2212221F F F F F ++=

高中物理最全最准公式汇总

高中物理最全最准公式汇总 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。(3)竖直上抛运动1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

高中物理高分必备二级结论

物理重要二级结论(全) 熟记 “二级结论”,在做填空题或选择题时,就可直接使用。在做计算题时,虽必须一步步列方程,一般不能直接引用“二级结论”,但只要记得“二级结论”,就能预知结果,可以简化计算和提高思维起点,也是有用的。 细心的学生,只要做的题多了,并注意总结和整理,就能熟悉和记住某些“二级结论”,做到“心中有数”,提高做题的效率和准确度。 运用“二级结论”,谨防“张冠李戴”,因此要特别注意熟悉每个“二级结论”的推导过程,记清楚它的适用条件,避免由于错用而造成不应有的损失。 下面列出一些“二级结论”,供做题时参考,并在自己做题的实践中,注意补充和修正。 一、电磁感应 1.楞次定律:(阻碍原因) 内外环电流方向:“增反减同”自感电流的方向:“增反减同” 磁铁相对线圈运动:“你追我退,你退我追” 通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉” 电流变化时:“你增我远离,你减我靠近” 2.i 最大时( 0=??t I ,0=框I )或i 为零时(最大t I ??最大框I )框均不受力。 3.楞次定律的逆命题:双解,加速向左=减速向右 4.两次感应问题:先因后果,或先果后因,结合安培定则和楞次定律依次判定。 5.平动直杆所受的安培力:总 R V L B F 22=,热功率:总热R V L B P 2 22=。 6.转杆(轮)发电机:ωε2 2 1 BL = 7.感生电量:总 R n Q φ ?= 。

图1线框在恒力作用下穿过磁场:进入时产生的焦耳热小于穿出时产生的焦耳热。 图2中:两线框下落过程:重力做功相等甲落地时的速度大于乙落地时的速度。 二、运动学 1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、 2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末 ·· ·· ··速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2 位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n = ② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比 ) 1(::)23(:)12(:1::::321----=n n t t t t n ) ::3:2:1n n ::3:2:1

相关文档
相关文档 最新文档