文档库 最新最全的文档下载
当前位置:文档库 › 单周期和软开关控制的无桥PFC电路设计

单周期和软开关控制的无桥PFC电路设计

单周期和软开关控制的无桥PFC电路设计
单周期和软开关控制的无桥PFC电路设计

整流二极管的作用及其整流电路

整流二极管的作用及其整流电路 整流二极管的作用及其整流电路 一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。 P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。 若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。 整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 二极管整流电路 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压 Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路(单向桥式整流电路) 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

无桥PFC电路说明

无桥P F C电路说明文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

氮化镓 (GaN)技术由于其出色的开关特性和不断提升的品质,近期逐渐得到了电力转换应 用的青睐。具有低寄生电容和零反向恢复的安全GaN可实现更高的开关频率和效率,从而 为全新应用和拓扑选项打开了大门。连续传导模式 (CCM)图腾柱PFC就是一个得益于GaN 优点的拓扑。与通常使用的双升压无桥PFC拓扑相比,CCM图腾柱无桥PFC能够使半导体 开关和升压电感器的数量减半,同时又能将峰值效率推升到95%以上。本文分析了AC交叉区域内出现电流尖峰的根本原因,并给出了相应的解决方案。一个750W图腾柱PFC原型 机被构造成具有集成栅极驱动器的安全GaN,并且展示出性能方面的提升。 关键字—GaN;PFC;图腾柱;数字控制 I.?简介 当按下智能手机上的一个按钮时,这个手机会触发一个巨大的通信网络,并且连接到数千 英里之外的数据中心。承载通信数据时的功耗是不可见的,而又大大超过了人们的想象。 世界信息通信技术 (ICT) 生态系统的总体功耗正在接近全球发电量的10% [1]。单单一个数据中心,比如说位于北卡罗来纳州的脸谱公司的数据中心,耗电量即达到40MW。另外还有两个位于美国内华达州和中国重庆的200MW数据中心正在建设当中。随着数据存储和通 信网络的快速增长,持续运行电力系统的效率变得越来越重要。现在比以前任何时候都需 要对效率进行空前的改进与提升。 几乎所有ICT生态系统的能耗都转换自AC。AC输入首先被整流,然后被升压至一个预稳 压电平。下游的DC/DC转换器将电压转换为一个隔离式48V或24V电压,作为电信无线系 统的电源,以及存储器和处理器的内核电压。随着MOSFET技术的兴起和发展,电力转换 效率在过去三十年间得到大幅提升。自2007年生效以来,Energy Star(能源之星)80 PLUS效率评价技术规范 [2] 将针对AC/DC整流器的效率等级从黄金级增加到更高的白金级,并且不断提高到钛金级。然而,由于MOSFET的性能限制,以及与钛金级效率要求有 关的重大设计挑战,效率的改进与提升正在变慢。为了达到96%的钛金级峰值效率,对于 高压线路来说,功率因数校正 (PFC) 电路效率的预算效率应该达到98.5%及以上,对于低压电路,这个值应该不低于96.4%。发展前景最好的拓扑是无桥PFC电路,它没有全波AC 整流器桥,并因此降低了相关的传导损耗。[3] 对于不同无桥PFC的性能评价进行了很好 的总结。这个性能评价的前提是,所使用的有源开关器件为MOSFET或IGBT。大多数钛金 级AC/DC整流器设计使用图6中所示的拓扑 [3],由两个电路升压组成。每个升压电路在 满功率下额定运行,不过只在一半AC线路周期内运行,而在另外周期内处于空闲状态。 这样的话,PFC转换器以材料和功率密度为代价实现了一个比较高的效率值 [4]。通常情 况下,由于MOSFET体二极管的缓慢反向恢复,一个图腾柱PFC无法在连续传导模式 (CCM) 下高效运行。然而,它能够在电压开关为零 (ZVS) 的变换模式下实现出色的效率值。数 篇论文中已经提到,PFC效率可以达到98.5%-99%。对于高功率应用来说,多个图腾柱升 压电路可以交错在一起,以提高功率水平,并且减少输入电流纹波。然而,这个方法的缺 点就是控制复杂,并且驱动器和零电流检测电路的成本较高。此外,因此而增加的功率组 件数量会产生一个低功率密度设计。因此,这个简单的图腾柱电路需要高效运行在CCM 下,以实现高功率区域,并且在轻负载时切换至具有ZVS的TM。通过使用这个方法,可以同时实现高效率和高功率密度。作为一款新兴半导体开关,氮化镓 (GaN) FET正在逐渐走向成熟,并且使此类应用成为可能。Transphorm公司已经在APEC 2013上展示了一款峰值效率达到99%的基于GaN的图腾柱CCM PFC [9]。[10-12] 还介绍了GaN器件出色的开关 特性,以及应用优势。为了更好地理解GaN特性,并且进一步解决应用中存在的顾虑,特 别是开关频率和交叉电流尖峰问题,这篇文章讨论了:II. GaN技术概述、III. 图腾柱CCM PFC控制、IV. 实验和V. 结论。 II. GaN技术概述

整流桥电路大全

整流电路大全 9.3.7 正、负极性全波整流电路及故障处理 如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。 图9-24 输出正、负极性直流电压的全波整流电路 1.电路分析方法 关于正、负极性全波整流电路分析方法说明下列2点: (1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。 (2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。 2.电路工作原理分析 如表9-28所示是这一正、负极性全波整流电路的工作原理解说。 关键词说明

3.故障检测方法 关于这一电路的故障检测方法说明下列几点: (1)如果正极性和负极性直流输出电压都不正常时,可以不必检查整流二极管,而是检测电源变压器,因为几只整流二极管同时出现相同故障的可能性较小。 (2)对于某一组整流电路出现故障时,可按前面介绍的故障检测方法进行检查。这一电路中整流二极管中的二极管VD1和VD3、VD2和VD4是直流电路并联的,进行在路检测时会相互影响,所以准确的检测应该将二极管脱开电路。 4.电路故障分析 如表9-29所示是正、负极性全波整流电路的故障分析。 分页:123456

开关变换器的单周期控制

开关变换器的单周期控制算法 Keyue M. Smedley, Member, IEEE, and Slobodan Cuk, Senior Member, IEEE 摘要:一种新型大信号非线性控制技术被提出来控制开关的占空比以致于在每个周期中开关控制器的开关参数的平均值能准确地等于或者正比于在稳态或暂态的控制参数。单周期控制在一个开关周期内可以有效抑制电源干扰。在一个开关周期内开关变量的平均值能够紧随动态参数的变化,并且在一个开关周期内控制其可以校正开关错误。控制参数与开关变量的均值之间不存在稳态误差也不存在动态误差。用一个在连续周期中运行的buck变换器中进行的实验演示了其控制算法的鲁棒性并且证实了理论猜想。这种新型的控制算法适用于脉宽调制,基于共振的或者软开关的开关控制器的所有类型在连续或者断续模式下电压或者电流的控制。而且,它可以用于物理变量的控制,也可以用于某些以开关变量形式或者可以转换为开关变量形式的抽象信号的控制。 一、介绍 开关变换器用于非线性脉冲动态系统的控制。此类系统在合理的非线性脉冲控制下可以具有更强的鲁棒性和更快的动态响应,并且在线性反馈控制下比同样的系统具有更强的电源抗干扰能力。目前,在电力电子领域已经有很多工作致力于寻找大信号非线性方法来控制开关变换器。 在传统的反馈控制中,占空比线性化为了减小误差。当电源受到干扰时,比如说有一个大的阶跃,因为误差信号必须先变化,占空比控制无法察

觉到这瞬时的变化。所以在输出电压中,可以观察到一个很明显的瞬态超调。而这瞬态过程的持续时长取决于回路带宽。在重新达到稳态前需要经过大量的开关周期。 在电流控制模式下[3]-[5],一个连续频率的时钟信号在每个开关周期的一开始将开关打开。当到达控制参考信号时,开关电流开关增长,比较器改变其状态并关断晶体管。通常会添加一个人为的斜坡信号来消除当占空比大于等于0.5时产生的震荡。所以,如果这个人为加入的斜坡信号十分精准的等价于电感电流的下降斜率sf,那么系统在一个周期内将具有抗电源干扰的能力。在buck变换器的连续控制参数下可能是可行的。总之,在一个开关变换器中电感电流的下降斜率是一些动态参数的函数。所以,要在一个瞬态过程中让人工加入的斜坡信号跟上电感电流的下降斜率是不可能的。由于这不协调,电流控制模式在一个开关周期内不可能具有抗电源干扰能力。在任何情况下,如果控制参数是可变的,无论人工信号如何选择或者选择哪种变换器,电流控制模式在一个周期内都无法跟随控制参数或具有抗电源干扰的能力。 在闭环buck变换器中,在输出电压错误发生前,电源电压直接控制占空比。如果反馈参数设计精准并且开关时理想的话使输出信号与电源干扰相隔离将成为可能。而在现实中,开关具有开/关瞬态变化和导通压降。所以,这种方法也不能十分准确的抑制电源干扰。 在参考文献[6]中介绍的SADTIC变换器具有一个电容整流器将未整流的电源电压转变为三角波,“平衡交流波形”。这种平衡电流波经整流可产生一系列单极性三角波。输出电压由三角波的重复率控制。控制电流包

无桥PFC

(PFC)电路成为人们注意的焦点。设计人员去掉了转换器输入端的常规桥式整流电路,可以减少开关损耗,进一步提高效率。在这样的电路中,不存在由于导通损耗而降低效率的问题,且设计比较简单,需要的元件数量较少。 1没有使用桥式整流电路的电路 2 OCC PFC控制电路

3 常规电路和无桥式整流的电路的效率 PFC电路有一些难点。如图所示,电路的输入端没有二极管组成的桥式整流电路,而是在交流输入边有个升压电感器。在这个电路中,输出和输入并无直接的连接,于是就存在输入电压的感测、电流的感测和电磁干扰噪音等问题。特别是,由于升压电感器放在交流输入这边,因此很难感测作为输入的电网交流电压和电感器上的电流。 1所示的没有使用桥式电路的整流器的工作原理。升压电感器分成两半,形成升压电路。输出电路由个晶体管和个二极管组成。在交流电网电压的每一个半周中,其中一个起有源开关的作用,而另一个就起二极管的简单作用。在这对晶体管中,处于工作状态的那个晶体管,与一个二极管和输入电感器一起,组成升压转换器。输入电流由升压转换器来控制,随着输入电压而变化。 (OCC)方法 PFC电路,最常用的是平均电流控制和峰值电流控制,它们都是使用模拟乘法器的技术。最近,设计人员开始探讨其他的技术,其中包括单周控制的方法,如图所示。 OCC控制方法就很有优势。使用输出电压和电感器中的电流峰值来计算前后衔接的每个周期的占空比,所以,在使用方法时,需要的所有信息是从直流母线电压和电流那里得到的,不需要感测交流电网的电压,从而最大限度地提高了功率因数。而且,占空比控制着升压电路输入和输出之间的关系,电感器中的电流峰值可以自动地跟随输入电压的波形,这样就实现了功率因数校正的功能。由于所有必要的信息都是从电感器中的电流峰值和电压输出那里得到的,因此不需要感测输入电压。 (EMI)的特性一般与功率级的结构有关。对于常规的,输出的地总是通过桥式整流器与输入电网相连,引起共模噪音的唯一寄生电容是晶体管的漏极与地之间的寄生电容。对于不使用桥式整流的电路,其输出相对于作为输入的交流电网来讲是浮动的,这样就有几个寄生参数会引起晶体管漏极和地之间的共模噪音,以及地与输出端之间的共模噪音。在这种情况下,共模噪音比常规电路的共模噪音更加严重。为了解决这个问题,可以在不使用桥式整流的电路中增加两只电容器,在输入交流电网与输出电压的地之间形成一个高频通路。

整流电路计算

桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从 图中可见,正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充 分利用,效率较高。 主要参数:

桥式整流电路电感滤波原理 电感滤波电路利用 电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用 桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰, 只适应于低电压、大电流的场合。

例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz, 直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设‘ 、 t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

5种无桥PFC

这里有六种无桥PFC, 分别是: 标准无桥PFC 这种PFC在正负半周的时候, 两个管子一个续流一个充当高频开关 这种拓扑的优点是使用功率元件比较少, 两个管子可以一起驱动, 这简化了驱动电路的设计, 同时让直接使用传统APFC的控制芯片成为可能. 但它同时存在几个问题, 电流流向复杂而且不共地, 电流采样困难, 有较大的共模干扰因此输入滤波器要仔细设计 针对头一个问题, ST公司和IR公司的一些应用文档中已经比较详细的介绍了两种比较可行的采用互感器的方法 双Boost无桥PFC 这种拓扑由标准无桥PFC改良而来, 增加了D3和D4作为低频电流的回路, S1和S2只作为高频开关而不参与低频续流 同标准无桥PFC, S1和S2能同时驱动, 而在两个低频二极管D3和D4之后插入取样电阻又可以像普通PFC简单地传感电流 同时这种拓扑具有更低的工模电流 但是这种拓扑必须使用两个电感, 电流流向有不确定性, 低频二极管和mos的体二极管可能同时导通, 增加了不稳定因素

双向开关无桥PFC S1和S2组成了双向开关, 他们可以同时驱动, 采用电流互感器可以很容易的检测电流, D1和D3为超快恢复二极管, D2和D4可以采用低频二极管 缺点在于整个电路的电势相对于大地都在剧烈变化, 会产生比标准无桥PFC更严重的EMC问题, 输出电压无法直接采样, 需要隔离采样(使用光耦, 但是会增加复杂度) 图腾柱PFC 由标准无桥PFC演化而来, 但是原理稍微改变 D1和D2为低频二极管, S1和S2的体二极管提供高频整流开关作用 这种电路具有较低的EMI, 使用元件较少, 设计可以很紧凑 但是S1和S2需要使用不同的驱动信号, 工频周期不同信号也不一样, 增加了控制的复杂性, S2不容易驱动(可以尝试IR2110等自举驱动芯片) S1和S2如果采用mos, mos的体二极管恢复较慢(通常数百ns)会产生较大的电流倒灌脉冲, 引起很大的损耗, 足以抵消无桥低损耗的优势 S1和S2如果采用IGBT, 虽然其体二极管的性能没问题, 但是其导通压降比较大, 也会产生很高的损耗, 尤其是在低电压输入的情况下 现在有一些国外公司在研制GaN和SiC高性能开关管, 开关速度极快, 没有体二极管反向恢复问题, 这些技术尚在研发中, 现在是在市场上见不到这些产品的. 如果未来这些高性能器件能大规模普及, 图腾柱PFC将有机会成为最流行最高效

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

单周期控制下交流调压源的研究

电气传动2018年第48卷第2期 单周期控制下交流调压源的研究 李文华,孟喆,胡琦,张林林 (河北工业大学电气工程学院,天津300130) 摘要:为了提高交流调压源的抗电源扰动能力和动态响应速度,设计了基于单周期控制系统的交流调压源,简化了调压源的控制电路,分析了单极性和双极性单周期控制下交流调压源的性能,提出双比较器结构解决了双极性控制下积分复位的问题。通过仿真和实验证明了单极性控制方式下的调压源抗扰动能力强且工作更为稳定,验证了单周期控制应用于交流调压源的可行性。 关键词:单周期控制;调压源;抗扰动;单极性中图分类号:TM464 文献标识码:A DOI :10.19457/j.1001-2095.20180212 Abstract:In order to improve the anti -disturbance ability and dynamic response speed of AC voltage regulator , the AC voltage regulator based on single -cycle control system was designed ,and the control circuit of voltage regulator was simplified.The performance of AC voltage regulator under the unipolar and bipolar single -cycle control was analyzed ,the dual -comparator structure was proposed to solve the problem of integral reset under bipolar control.It is proved by simulation and experiment that the voltage source of the single -polarity control mode is strong and the anti -disturbance is strong.For the sake of stability ,the feasibility of single -cycle control applied to AC voltage regulator is verified. Key words:single -cycle control ;voltage regulator ;anti -disturbance ;unipolar 基金项目:国家自然科学基金(51377044) 作者简介:李文华(1973-),男,教授,Email :503888373@https://www.wendangku.net/doc/252522217.html, Research on AC Voltage Regulator Under Single Cycle Control LI Wenhua ,MENG Zhe ,HU Qi ,ZHANG Linlin (School of Electrical Engineering ,Hebei University of Technoloy ,Tianjin 300130,China ) 交流调压源是电源产品市场中的主流产品,其应用范围十分广阔。主要应用于电子、动力、照明、电热等领域。随着各行各业对电源质量的苛刻要求,交流调压源被广泛应用,由此也见证了交流调压源在国民经济生产生活中占有举足轻重的地位。本设计主电路采用整流逆变电路,电路结构简单。整流电路将电网中的220V 交流电经过整流滤波提供给逆变电路,逆变电路是本设计的核心部分[1-4]。 单周期控制分为单极性控制和双极性控制,是由美国学者于1991年提出的一种新型大信号、非线性控制方法,克服了现有PWM 控制法存在的不足[5],可以有效地克服传统电压反馈控制中的缺陷,同时也不必考虑电流模式控制中的人为补偿。目前,单周期控制主要应用于DC/DC 变 换、功率因数校正电路中,在交流调压源中的应用很少,本文将单周期控制算法应用于交流调压源中,并分别对两种极性下调压源的性能进行了分析,通过仿真和实验验证了单周期控制应用于调压源的可行性。 1主电路构成及工作原理 本文提出的单周期控制调压源主电路拓扑如图1所示。主电路包括整流升压电路和全桥逆变电路,输入的交流电网电压经整流部分后变成脉动的直流电压,升压斩波电路通过控制开关器件IGBT 的开通频率可以实现电路的升压;全桥逆变电路通过单周期控制器实现调压目的。单周期控制下的逆变电路抗电源扰动能力强,响应速度快[6],但不能实现升压调节,在整流电路和逆 ELECTRIC DRIVE 2018Vol.48No.2 61 万方数据

整流模块电路图

MDQ25A1600V的单相整流模块。在交流极我直接接入220V电压。在没有负载的情况下,输出电压为200左右可我加了负载,电压反而高了到280左右。请问是为什,怎么解决。谢谢大家。 正常,220V 是有效值 整流之后电压是直流:220*1.41=308 滤波之后是:308*0.9=277 2220V是交流电的有效值,而有效值为220V的交流电其最大值约为311V。一般整流桥输出电路中都设有由电容和电阻组成的滤波电路,电容在滤波时将整流后的电压滤平的同时,也使自己充电,两端的电压就上升,因此。整流后的直流电压一般比交流电有效值高、比交流电的最大值低,根据有关的计算,理想的情况下(不考虑整流二极管的管压降和电阻等的降压作用),输出直流电压约为1.35倍的交流电压有效值,即约为297V。实际测量时则是考虑各种压降的实际电压,因此有约280V左右的数值。 ★★★【补充】:★★★ 要得到220左右的电压可采用“可控整流电路”,即将整流桥对应两个臂的二极管用晶闸管代替,通过对晶闸管导通角的控制就可得到所需要的直流电压。如果要保留原来的整流桥,则只好采用分压的方法实现了,此时是还需再加稳压电路的。 整流桥输入交流220v,输出直流电压测量值为280v,而实际测量值为311v的故障原因设整流桥的输入交流为Vac(有效值),则整流桥的输出直流电压Vdc理论上可近似用下式表示: Vdc=(0.9----1.4)Vac

下面来讨论二种极限情况: 1.当纯阻负载(即不接滤波器)和RL负载(即电感滤波)的情况下 这时整流桥输出端为单向脉动正弦,其中的直流分量为0.9Vac,故可取系数为0.9. 2.当只有滤波电容而负载开路时(有时称为纯容负载),这时电容上的电压将充至正弦的峰值1.4Vac.故这时的系数取1.4.这是电容滤波在负载开路下的一种特殊情况.而电容滤波在带负载的情况下,视负载的大小,输出电压在(0.9--1.4)Vac之间,一般取1.2Vac左右. 因此,你测得的311V可能是在输出开路情况下测得的.而280V又可能是在带负载的情况下测得的.以上只是分析,供你参考吧. 这不是故障,整流桥输出通过电容滤波后所测电压就是输入交流电的峰值电压,1.41倍的输入电压.在输入电压为220V时,滤波电容两端的电压为308V。加上负载就降低了。 如果不接滤波电容,应该输出220*0.9=198v,

开关电源整流桥的基础知识整理

开关电源整流桥的基础知识整理 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C 充电。50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。 最后总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007) 与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。 2)整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流 Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(霢)。整流桥的反向击穿电压URR应满足下式要求:

无桥PFC方案应用2

无桥PFC方案,99%以上效率
PFC + LLC 原理图 效率99.4% Totem-pole PFC, bridgeless PFC Totem pole PFC, Totem pole boost
1000W 无桥PFC方案 2400W 无桥PFC方案
TPH3006PS TPH3206PS TPH3002PS TPH3202PS TPH3205WS TPH3206LD TPH3202LD

PFC的演变史
1, 传统的,整流流桥+单极PFC
功率不能太大。受限于整流桥的VF及MOSFET的开关损耗。低效
AC
2,传统的大功率方案。采用交错式PFC,
AC
采用两个电感,两个MOSFET,体积加大,功率提升但效率不高。
3,采用无桥PFC,但使用的是硅MOSFET,双电感。
由于硅MOSFET体内寄生二极管太慢Trr及MOSFET的开关损耗较大Qgd 有关。同时必须采用碳化硅二极管(价高) 双电感,体积依然大,硅MOSFET工作在高频损耗太大。
4,采用氮化镓MOSFET,无桥,只需一个电感。
利用氮化镓体内无二极管但有二极管特性特点,及氮化镓低低的开关损 耗特性。很容易实现大功率的无桥PFC,只需一个电感,同时无需用碳 化硅二极管。成本/体积上大大优化。

硅无桥PFC与氮化镓无桥PFC的区别
? ? 传统用的无桥需要2MOSFET,2电感,2碳化硅 二极管(D1,D2)才能实现高效率 采用氮化镓的图腾无桥PFC只要一个电感,2个 氮化镓MOS,另D1,D2可以用二极管也可以从等 同内阻的硅MOSFET以实现更高效率 就现阶段氮化镓无桥的方案已比传统的低了 (传统的会用上两个高碳货硅二极管及多用一 个电感) 同时因氮化镓适合高频。采用氮化镓高频化的 无桥PFC后,体积大大变小,综合成本更有优 势/效率依然很高
?
传统Dual‐boost无桥PFCPFC
?
此设计是利用氮化镓体内二极管超低的 反向恢复特性来实现高效低成本。
氮化镓的图腾无桥 PFC

桥式整流电路分析

1、桥式整流 桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。 桥式整流电路如图Z0705所示,其中图(a)、(b)、(c)是它的 三种不同画法。它是由电源变压器、四只整流二极管D1~4 和负载 电阻R L组成。四只整流二极管接成电桥形式,故称桥式整流。 桥式整流电路的工作原理如图Z0706所示。在u2的正半周,D1、 D3导通,D2、D4截止, 电流由T R次级上端经 D1→R L →D3回到 TR次级下端,在负载 RL上得到一半波整流 电压。 在u2的负半周,D1、 D3截止,D2、D4导通, 电流由Tr次级的下端 经D2→R L→D4回到 Tr次级上端,在负载RL 上得到另一半波整流 电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电 流的计算与全波整流相同,即 UL = 0.9U2 GS0709 I L = 0.9U2/R L GS0710 流过每个二极管的平均电流为 I D= I L/2 = 0.45 U2/R L 每个二极管所承受的最高反向电压为 2、半波整流电路 半波整流电路,由电源变压器Tr整流二极管D和负载电阻RL组成,如下图所示。电路的工作过程是:在u2的正半周(ωt=0~π),二极管因加正向偏压而导通,有电流iL流过负载电阻RL。由于将二极管看作理想器件,故RL上的电压uL与u2的正半周电压基本相同。

市电(交流电网)变为稳定的直流电需经过变压、整流、滤波和稳压四个过程。利用二极管的单向导电性,将大小和方向都随时间变化的工频交流电变换成单方向的脉动直流电的过程称为整流。有时将变压器、整流电路和滤波电路一起统称为整流器。 (1)正半周u2瞬时极性a(+),b(-),VD正偏导通,二极管和负载上有电流流过。若向压降UF忽略不计,则uo=u2。 (2)负半周u2瞬时极性a(-),b(+),VD反偏截止,IF≈0,uD=u2。

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

单周期控制PFC

1.单周期控制原理(以BUCK为例) https://www.wendangku.net/doc/252522217.html,/link?url=Zbv-UCh7K0aOFr7QMsYNc9o5JgcESFzvHsrsBX_iwveEuST3x LQBJKcWkjoTLh6pGyk1LC-X4RTpYu5MOsNBt8WJ-LJV8EswukQOP_nxqve

2.PFC 含义:所以现代的PFC技术完全不同于过去的功率因数补偿技术,它是针对非正弦电流波形畸变而采取的,迫使交流线路电流追踪电压波形瞬时变化轨迹,并使电流和电压保持同相位,使系统呈纯电阻性技术(线路电流波形校正技术),这就是PFC(功率因数校正)。 所以现代的PFC技术完成了电流波形的校正也解决了电压、电流的同相问题。 控制方法: https://www.wendangku.net/doc/252522217.html,/link?url=4iwH0V1j4WBuIpzjyk6JInCJYge4W0D4c3DBGlfkaYZrLlc QT2R2gZk0Gzn4aEBEjYUtUFvW2UbpIWKHZyjW_AnhUZAwE6snkiPiJQRIAb7 原理: https://www.wendangku.net/doc/252522217.html,/link?url=LjHmZXNEmu3gIwDldxud7KuU1JPKxL06_pnsAlD3Tl-nfAa0A8t6l 85OlpeNmsopmLINkbrjxC0y9pTfzUBoELpdzLP94rUOUfqJwNBL6sq 平均电流型APFC设计与仿真: https://www.wendangku.net/doc/252522217.html,/link?url=VQWAuzsBCacWhLb9wnAd0e0bH-uzGZZ-QoHuY7Hd6oxCcGkC GalNi_vB8dU57zvATItdZD7oEL9d-tx6eXRFXtCmcASSRFaGRnXUlY8zabO 最常用传递函数详解: https://www.wendangku.net/doc/252522217.html,/link?url=xwUgI0vVnLhwwPBumwzw8djBTX17si-A8EnfUokVXJf6oHBD1tF yKd9UsxOdzRIcTgP1YPQ1vvFqel2DAOsCatKJ_y0WbMr04goEZtFfESy 3. 单周期控制Boost PFC变换器分析与设计 https://www.wendangku.net/doc/252522217.html,/s?wd=paperuri%3A%282937d385425e59bd0f238f44a1625d44%29&filt

大功率无桥PFC研究

PFC是一种解决传统AC整流电路引起的电网污染问题的电路.常规整流滤波电路的整流桥只有在输入正弦波电压接近峰值时才会导通,因此导致了输入电流程严重非正弦性,导致输入产生了大量谐波电流成份,降低了电网的利用率同时有潜在的干扰其他电器的可能.PFC电路通过对输入AC电流进行'整形',使输入电流为近似和输入电压同相位的正弦波,达到了输入功率接近1的可能. 常用的PFC电路均为Boost升压拓扑,根据Boost拓扑在不同工作模式(DCM\BCM\CCM)下的特性不同,控制方法可以分为3种。BCM和CCM采用的较多,BCM为变频控制,可以实现零电压开启(降低开通损耗),但是较高的开关管有效电流限制了它只能在中小功率的场合,大功率场合是CCM的天下。 对于CCM的PFC,主要问题是二极管的反向恢复问题,在反向恢复期间产生的大反向电流会产生额外的损耗还有潜在干扰电路的风险.具体可以通过增加RC电路(有损)或者ZVT技术(无损,但是比较复杂)进行解决,这里暂时不进行讨论。由于PFC通常被设计成宽电压输入模式(85-265V输入),在低输入电压时输入电流会比较大,当输出功率比较大时,各功率器件尤其是输入整流桥的电流压力和散热压力尤为明显.如下图 当开关管开通时,电流会经过2个低速整流二极管,1个mos管,当开关管关闭的时候,电流会经过2个低速整流管和1个快恢复二极管。对于110V情况下输出1500W的PFC来说,整流桥损耗可达30W左右,是一个相当可观的数字,如果能通过改进拓扑取消掉整流桥,将会极大的提高效率.改进的电路如下图,它在每个正周期内和负周期内等效为1个普通的Boost拓扑:

整流桥

整流桥-桥式整流工作原理 (2009-12-31 17:11:44) 转载 标 签: 杂谈 整流桥-桥式整流工作原理 整流桥 有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。 应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。 图一整流桥(桥式整流)工作原理

图二各类整流桥 (有些整流桥上有一个孔,是加装散热器用的) 这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同 作用就是整流,把交流电变为直流电。实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。 特点是方便小巧。不占地方。 规格型号一般直接用参数表示:50伏1安,100伏5安等等。 如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。 选择整流桥要考虑整流电路和工作电压. 整流桥堆 整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。

全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。 常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。 整流桥命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V 如:KBL410 即4A,1000V RS507 即5A,700V 整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。二极管只允许电流单向通过,所以将其接入交流电路时它能使电路中的电流只按单向流动,即所谓“整流”,用两只管是半泼整流,四只是全泼整流。

相关文档