文档库 最新最全的文档下载
当前位置:文档库 › 高斯函数1习题

高斯函数1习题

高斯函数1习题
高斯函数1习题

(完整版)常用函数积分表(增强版)

1.∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx 2.∫(f(x)?g(x))dx=∫f(x)dx?∫g(x)dx 3.∫f(x)dg(x)=f(x)g(x)?∫g(x)df(x) 4.∫a x dx=a x ln a +C,a≠1,a>0 5.∫x n dx=x n+1 n+1 +C,n≠?1 6.∫1 x dx=ln|x|+C 7.∫e x dx=e x+C 8.∫sin x dx=?cos x+C 9.∫cos x dx=sin x+C 10.∫sec2x dx=tan x+C 11.∫csc2x dx=?cot x+C 12.∫sec x tan x dx=sec x+C 13.∫csc x cot x dx=?csc x+C 14.∫(ax+b)n dx=(ax+b)n+1 a(n+1) +C,a≠0,n≠?1 15.∫dx ax+b =1 a ln|ax+b|+C,a≠0 16.∫x(ax+b)n dx=(ax+b)n+1 a2(ax+b n+2 ?b n+1 )+C,a≠0,n≠?1,?2 17.∫x ax+b dx=x a ?b a2 ln|ax+b|+C,a≠0 18.∫x (ax+b)2dx=1 a2 (ln|ax+b|+b ax+b )+C,a≠0 19.∫x2 ax+b dx=1 2a3 [(ax+b)2?4b(ax+b)+2b2ln|ax+b|]+C 20.∫x2 (ax+b)dx=1 a (ax+b?2b ln|ax+b|?b2 ax+b )+C 21.∫x2 (ax+b)dx=1 a (ln|ax+b|+2b ax+b ?b2 2(ax+b) )+C 22.∫x2 (ax+b)n dx=1 a3 (?1 (n?3)(ax+b)n?3 +2b (n?2)(ax+b)n?2 ?b2 (n?1)(ax+b)n?1 )+C,n≠

copula函数及其应用.doc

copula函数及其应用 陆伟丹2012214286 信息与计算科学12-2班Copula函数及其应用Copula函数是一种〃相依函数"或者“连接函数",它将多维变量的联合分布函数和一维变量的边际分布函数连接起来,在实际应用中有许多优点。 首先,由于不限制边缘分布的选择,可运用Copula理论构造灵活的多元分布。其次,运用Copula理论建立模型时,可将随机变量的边缘分布和它们之间的相关结构分开来研究,它们的相关结构可由一个C opu 1 a函数来描述。另外,如果对变量作非线性的单调增变换,常用的相关性测度——线性相关系数的值会发生改变,而由Cop u1 a函数导出的一致性和相关性测度的值则不会改变。此外,通过C o p u1 a函数,可以捕捉到变量间非线性、非对称的相关关系,特别是容易捕捉到分布尾部的相关关系。 正是这些性质与特点使得C opu 1 a为研究变量问的相关性提供了一种新方法,使得投资组合风险管理度量方法有了一个新的突破。 Copula函数是现代概率论研究的产物,在2 0世纪5 0年代由S k1 a r( 19 5 9 )首先提出,其特点在于能将联合分布的各边缘分布分离出来,从而简化建模过程,降低分析难度,这也是著名的S k 1 a r定理。S c hwe i z e r Sklar( 1983) 对其进行了阶段性的总结,在概率测度空间理论的框架内,介绍了C opu1 a函数的定义及Copula函数的边缘分布等内容。J oe ( 1 9 9 7 )又从相关性分析和多元建模的角度进行了论述,展示了Copula 函数的性质,并详尽介绍了Copula函数的参数族。Ne 1 s e n(1999 )在其专著中比较系统地介绍了C o pula的定义、 构建方法、Archimedean Copula及相依性,成为这一研究领域的集大成者。D a v i d s i on R A, Res nick S 1.( 1984)介绍了C o p u 1 a的极大似然估计和矩估计。而J o e , H .提出了二步极大似然估计,并说明它比极大似然估计更有效。在选择最适合我们要求的Copula 函数上,最常用的方法是拟合优度检验,W. B reymannn ,A.Dias , P ? Embrecht s ( 2 0

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

常用基本初等函数求导公式积分公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式:

【良心出品】Copula理论及MATLAB应用实例

%-------------------------------------------------------------------------- % Copula理论及应用实例 %-------------------------------------------------------------------------- %******************************读取数据************************************* % 从文件hushi.xls中读取数据 hushi = xlsread('hushi.xls'); % 提取矩阵hushi的第5列数据,即沪市的日收益率数据 X = hushi(:,5); % 从文件shenshi.xls中读取数据 shenshi = xlsread('shenshi.xls'); % 提取矩阵shenshi的第5列数据,即深市的日收益率数据 Y = shenshi(:,5); %****************************绘制频率直方图********************************* % 调用ecdf函数和ecdfhist函数绘制沪、深两市日收益率的频率直方图 [fx, xc] = ecdf(X); figure; ecdfhist(fx, xc, 30); xlabel('沪市日收益率'); % 为X轴加标签 ylabel('f(x)'); % 为Y轴加标签 [fy, yc] = ecdf(Y); figure; ecdfhist(fy, yc, 30); xlabel('深市日收益率'); % 为X轴加标签 ylabel('f(y)'); % 为Y轴加标签 %****************************计算偏度和峰度********************************* % 计算X和Y的偏度 xs = skewness(X) ys = skewness(Y) % 计算X和Y的峰度 kx = kurtosis(X) ky = kurtosis(Y) %******************************正态性检验*********************************** % 分别调用jbtest、kstest和lillietest函数对X进行正态性检验 [h,p] = jbtest(X) % Jarque-Bera检验 [h,p] = kstest(X,[X,normcdf(X,mean(X),std(X))]) % Kolmogorov-Smirnov检验 [h, p] = lillietest(X) % Lilliefors检验

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='?? ????? (3)若F (x )是f (x )的一个原函数,则 3、积分方法 ()()b ax x f +=1;设:t b ax =+ ()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv

附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与 . 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有 . 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清. 当时,有 . 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分 . 分析:该不定积分应利用幂函数的积分公式.

copula函数.docx

copula函数 1、Sklar定理 Sklar定理(二元形式):若H(x,y)是一个具有连续边缘分布的F(x)与G(y)的二元联合分布函数,那么存在唯一的copula函数C使得H(x,y)=C(F(x),G(y))。反之,如果C是一个copula函数,而F,G是两个任意的概率分布函数,那么由上式定义的H函数一定是一个联合分布函数,且对应的边缘分布函数刚好就是F和G。 Sklar定理告诉我们一件很重要的事情,一个联合分布关于相关性的性质完全由它的copula函数决定,与它的边缘分布没有关系。在已知H,F,G的情况下,能够算出它们的copula: C(u,v)=H[F-1(u),G-1(v)] 2、什么是copula函数? copula函数实际上是一个概率。假设我们有n个变量(U 1,U 2 ,…,U N ),这n 个变量都定义在[0,1],copula函数C(u 1,u 2 ,…,u n )即是P{U 1 [0,1] (2)C(u,0)=c(0,v)=0;C(u,1)=u;C(1,v)=v (3)0≤?C/?u≤1;0≤?C/?v≤1 4、copula函数的种类 (1)多元正态分布的copula(高斯copula):(边缘分布是均匀分布的多元正态分布) (2)多元t分布的copula:t-copula (3)阿基米德copula(人工构造) 令φ:[0,1]→[0,∞]是一个连续的,严格单调递减的凸函数,且φ(1)=0,其伪逆函数φ[-1] 由下式定义:那么由下式定义的函数C:[0,1]*[0,1]→[0,1]是一个copula,通过寻找合适的函 数φ利用上式所生成的copula都是阿基米德类copula,并称φ为其生成函数,且阿基米德类copula都是对称的,即C(u,v)=C(v,u)。只要找到合适的生成函数,那么就可以构造出对应的阿基米德类copula。 5、为什么金融风险管理中常用copula? 不同的两个资产会始终同时达到最糟的状况吗?因为有资产相关性的影响,可以使两个资产之间在一定程度上同向变动或反向变动,可能发生对冲,从而减少风险,因此我们需要知道资产之间的相关性,然而金融中的分布,大多都不是

常用基本初等函数求导公式积分公式.doc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函数的和、差、积、商的求导法则 设,都可导,则 ( 1)( 2)(是常数) ( 3)( 4) 反函数求导法则 若函数在某区间内可导、单调且,则它的反函数在对应区间内也可导,且 或 复合函数求导法则 设,而且及都可导,则复合函数的导数为 或 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.

可以推出下表列出的公式: 常用积分公式表·例题和点评 ⑴kdx kx c ( k 为常数) ⑵x dx( 1) 1 x 1 c 1 特别, 1 dx 1 c , x d x 2 x23 c , 1 dx 2 x c x 2 x 3 x ⑶1 dx ln | x | c x ⑷ a x d x a x c , 特别,e x d x e x c ln a

⑸ sin x dx cos x c ⑹ cos x d x sin x c ⑺ 1 d x csc 2 x dx cot x c sin 2 x ⑻ 1 d x sec 2 x dx tan x c cos 2 x ⑼ 1 dx x c ( a 0) , 特别, a 2 x 2 arcsin a ⑽ 1 dx 1 x c (a 0) , 特别, a 2 x 2 arctan a a ⑾ 1 1 a x a 2 x 2 d x 2a ln a x c ( a 0) 或 1 1 x a x 2 a 2 dx 2a ln x a c ( a 0) ⑿ tan x dx ln cos x c ⒀ cot x dx ln sin x c 1 arcsin x c 1 d x x 2 1 1 x 2 dx arctan x c 1 ln csc x cot x c ⒁ csc x d x x dx ln tan c sin x 2 1 ln sec x tan x c ⒂ secx d x x dx c cos x ln tan 4 2 1 ( a 0) x 2 a 2 ⒃ a 2 dx ln x c x 2 ⒄ a 2 x 2 dx ( a 0) a 2 x x a 2 x 2 c arcsin 2 2 a ⒅ x 2 2 (a 0) x x 2 a 2 a 2 ln x x 2 a 2 c a d x 2 2

Copula函数

一、 C o p u l a 函数理论 Copula 理论的是由Sklar 在1959年提出的,Sklar 指出,可以将任意一个n 维联合累积分布函数分解为n 个边缘累积分布和一个Copula 函数。边缘分布描述的是变量的分布,Copula 函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 Copula 函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。 Copula 函数的性质 定理1 (Sklar 定理1959) 令F 为一个n 维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i ,那么存在一个n 维Copula 函数C ,使得 111(,,)((),,())n n n F x x C F x F x ???=??? (1) 若边缘累积分布函数F i 是连续的,则Copula 函数C 是唯一的。不然,Copula 函数C 只在各边缘累 积分布函数值域内是唯一确定的。 对于有连续的边缘分布的情况,对于所有的[0,1]n ∈u ,均有 1111()((),,())n n C F F u F u --=???u (2) 在有非减的边缘变换绝大多数的 从Sklar 定理可以看出, Copula 函数能独立于随机变量的边缘分布反映随机变量的相关性结构, 从而可将联合分布分为两个独立的部分来分别处理: 变量间的相关性结构和变量的边缘分布, 其中相关性结构用Copula 函数来描述。Copula 函数的优点在于不必要求具有相同的边缘分布, 任意边缘分布经Copula 函数连接都可构造成联合分布, 由于变量的所有信息都包含在边缘分布里, 在转换过程中不会产生信息失真。 Copula 函数总体上可以划分为三类: 椭圆型、Archimedean (阿基米德) 型和二次型, 其中含一个参数的Archimedean Copula 函数应用最为广泛, 多维Archimedean Copula 函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种. 三种常用的3-维非对称型Archimedean Copula 函数: Frank Archimedean Copula 函数 , Clayton Archimedean Copula 函数, Gumbe Archimedean Copula 函数 二、 Copula 函数的应用 Copula 函数的应用具体包括以下几个步骤: ①确定各变量的边缘分布; ②确定Copula 函数的参数"; ③根据评价指标选取Copula 函数, 建立联合分布; ④根据所建分布进行相应的统计分析。: 参数估计 Copula 函数的参数估计方法大致可分为三种:

函数积分表

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=2 1(ln )ax b b ax b C a +-++ 4.2d x x ax b +?=22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2d ()x x ax b +? =2 1ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.2 2 d ()x x ax b +?=231(2ln )b ax b b ax b C a ax b +-+- ++ 9. 2d ()x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2 (3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22(23ax b C a -

14 . 2 x =2223 2(34815a x abx b C a -+ 15 . (0) (0) C b C b ?+>+< 16 . 2a b - 17 . x =b 18 . x =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -? =1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

Copula函数

一、 Copula 函数理论 Copula 理论的是由Sklar 在1959年提出的,Sklar 指出,可以将任意一个n 维联合累积分布函数分解为n 个边缘累积分布和一个Copula 函数。边缘分布描述的是变量的分布,Copula 函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 Copula 函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。 Copula 函数的性质 定理1 (Sklar 定理1959) 令F 为一个n 维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i ,那么存在一个n 维Copula 函数C ,使得 111(,,)((),,())n n n F x x C F x F x ???=??? (1) 若边缘累积分布函数F i 是连续的,则Copula 函数C 是唯一的。不然,Copula 函数C 只在各边缘累积分布函数值域内是唯一确定的。 对于有连续的边缘分布的情况,对于所有的[0,1]n ∈u ,均有 1111()((),,())n n C F F u F u --=???u (2) 在有非减的边缘变换绝大多数的 从Sklar 定理可以看出, Copula 函数能独立于随机变量的边缘分布反映随机变量的相关性结构, 从而可将联合分布分为两个独立的部分来分别处理: 变量间的相关性结构和变量的边缘分布, 其中相关性结构用Copula 函数来描述。Copula 函数的优点在于不必要求具有相同的边缘分布, 任意边缘分布经Copula 函数连接都可构造成联合分布, 由于变量的所有信息都包含在边缘分布里, 在转换过程中不会产生信息失真。 Copula 函数总体上可以划分为三类: 椭圆型、Archimedean (阿基米德) 型和二次型, 其中含一个参数的Archimedean Copula 函数应用最为广泛, 多维Archimedean Copula 函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种. 三种常用的3-维非对称型Archimedean Copula 函数: Frank Archimedean Copula 函数 , Clayton Archimedean Copula 函数, Gumbe Archimedean Copula 函数

常 用 积 分 公 式

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +?=1 1()(1)ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +?=22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=2 1ln a ax b C bx b x +-++ 7.2d ()x x ax b +?=2 1(ln )b ax b C a ax b ++++ 8.22d ()x x ax b +?=231(2ln )b ax b b ax b C a ax b +-+-++ 9.2d ()x x ax b +?=2 11ln ()ax b C b ax b b x +-++

的积分 10 .x ? C 11 .x ? =2 2 (3215ax b C a -+ 12 .x x ? =2223 2(15128105a x abx b C a -+ 13 . x =2 2(23ax b C a - 14 . 2x =22232(34815a x abx b C a -++ 15 . =(0) (0) C b C b ? +>< 16 . ? 2a b - 17 . x =b 18 . x = 2a + (三)含有22 x a ±的积分

Copula函数的估计问题

Copula函数的估计问题 摘要对Copula函数的研究是统计研究问题的一个热点,Copula函数揭示了蕴含在变量间所有的相依关系,与传统的相依度量有着紧密的联系,因而在理论和实际问题中都有着重要的意义。文章较全面总结了关于Copula函数的三类估计即参数估计,半参数估计及非参数估计的基本思路和估计方法并进行了比较。 关键词Copula;参数估计;半参数估计;非参数估计 一、引言 多个随机变量之间的相依关系的度量是统计的一个基本问题,很多的相依度量测度被提出,如Pearson相关系数,Dendall ,Pearman等,它们仅仅抓住了相依关系的某个方面,只有Copula函数揭示了蕴含在变量间所有的相依关系,所以Copula函数有着广阔的应用前景,如在生存问题,风险管理和资产投资等方面。对于Copula的理论研究,主要有两个方面,一是相依性度量研究,二是多元分布族的构造。但在实际问题中,如何由样本数据估计Copula函数尤为重要。根据对样本分布族和Copula函数分布族的结构,对Copula函数的估计,可以分为三种情况:参数估计,半参数估计,非参数估计。本文总结了这三类估计的基本思路和估计方法及各种方法的比较。 Copula函数的估计最基本的依据就是Sklar定理:设X=(X■,X■,……,X■)■是随机向量,F是X的分布函数,Fk(x1,x2,……xd)是X的边际分布函数,则存在上[0,1]d的多元分布函数C满足F(x■,x■,……,x■)=C(F■(x■),F■(x■)……,F■■(x■)),函数C就称X的Copula函数,它联接了X的边际分布和联合分布函数。进一步,如果函数C偏倒数存在,则称c(?滋■,?滋■,……,?滋■)=■为Copula密度函数。且如果X的密度函数及边际密度函数分别为F(x■,x■,……,x■)及fk(xk)(k=1,2,……d),则有F (x■,x■,……,x■)=c(?滋■,?滋■,……,?滋■)■f■(x■)由此,可以看到Copula密度函数完全包含了除了边际密度和联合密度之外所有变量相关关系的信息.而且也可以分析出基本的推断方法。 为行文的方便,下仅以d=2为例来叙述,且设样本为(x1i,x2i)(i=1,2,……n)。 二、Copula函数的参数估计 当样本边际分布族和Copula函数分布族都已知时,估计Copula函数分布族中的参数,因为所有分布仅仅是参数未知,故称此情况下的估计为Copula函数的参数估计。基本思路主要是最大似然法。当然还有矩方法,实际问题中应用很少,在此就不叙述了。根据最大似然方法的不同使用情况和不同计算方法,Copula

Copula简介

Copula 简介 Copula理论的是由Sklar在1959年提出的,Sklar指出,可以将任意一个n 维联合累积分布函数分解为n个边缘累积分布和一个Copula函数。边缘分布描述的是变量的分布,Copula函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 1 二元Copula函数 定义1 二元Copula函数(Nelsen,2006) 二元Copula函数是指具有以下性质的函数C: (1)C的定义域为I2,即[0,1]2; (2)C有零基面(grounded),且是二维递增(2-increasing)的; (3)对任意的变量u、v [0,1],满足:C(u,1) = u,C(1,v) = v。 其中: 有零基面(grounded)指的是:在二元函数H(x, y)的定义域S1×S2(S1、S2为非空的实数子集)内,如果至少存在一个a1 S1和一个a2 S2,使得H(x, a2) = 0 = H(a1, y),那么称函数有零基面(grounded)。 二维递增(2-increasing)指的是:对于二元函数H(x, y),若在任意的二维实数空间B = [x1, x2]×[y1, y2]中,均有V H(B) = H(x2, y2) - H(x2, y1) - H(x1, y2) + H(x1, y1)≥0,那么称H(x, y)是二维递增(2-increasing)。 二元Copula函数有以下几点性质: (1)对u、v [0,1]中的任一变量,C(u, v)都是非减的; (2)对任意的u、v [0,1],均有C(u,0) = C(0,v) = 0,C(u,1) = u,C(1,v) = v;(3)对任意的u1、u2、v1、v2 [0,1],若有u1 < u2、v1 < v2,则 C(u2, v2) - C(u2, v1) - C(u1, v2) + C(u1, v1)≥0 (4)对任意的u、v [0,1],均有max(u+v-1, 0)≤C(u, v)≤min(u, v); (5)对任意的u1、u2、v1、v2 [0,1],均有 |C(u2, v2) - C(u1, v1)|≤| u2 -u1| + | v2 -v1 | (6)若u、v独立,则C(u, v) = uv。 定理1二元Copula的Sklar定理:令H为具有边缘分布F、G的联合分布函数,那么存在一个Copula函数C,使得 () =(1) H x y C F x G y (,)(),() 如果F,G是连续的,则函数C是唯一的。

(整理)常用函数积分表(增强版)48790

1.∫sec2x dx=tan x+C 2.∫csc2x dx=?cot x+C 3.∫sec x tan x dx=sec x+C 4.∫csc x cot x dx=?csc x+C 5.∫x(ax+b)n dx=(ax+b)n+1 a2(ax+b n+2 ?b n+1 )+C,a≠0,n≠?1,?2 6.∫x ax+b dx=x a ?b a2 ln|ax+b|+C,a≠0 7.∫x (ax+b)dx=1 a (ln|ax+b|+b ax+b )+C,a≠0 8.∫x2 ax+b dx=1 2a3 [(ax+b)2?4b(ax+b)+2b2ln|ax+b|]+C 9.∫x2 (ax+b)2dx=1 a3 (ax+b?2b ln|ax+b|?b2 ax+b )+C 10.∫x2 (ax+b)dx=1 a (ln|ax+b|+2b ax+b ?b2 2(ax+b) )+C 11.∫x2 (ax+b)n dx=1 a3 (?1 (n?3)(ax+b)n?3 +2b (n?2)(ax+b)n?2 ?b2 (n?1)(ax+b)n?1 )+C,n≠ 1,2,3 12.∫dx x(ax+b)=1 b ln|x ax+b |+C,b≠0 13.∫dx x2(ax+b)=?1 bx +a b2 ln|ax+b x |+C 14.∫dx x2(ax+b)2=?a(1 b2(ax+b) +1 ab2x ?2 b3 ln|ax+b x |)+C 15.∫x√ax+bdx=2 15a2 (3ax?2b)(ax+b)32+C 16.∫x2√ax+bdx=2 105a (15a2x2?12abx+8b2)(ax+b)32+C 17.∫(√ax+b)n dx=2(√ax+b)n+2 a(n+2) +C,a≠0,n≠?2 18.∫x n√ax+b dx=2 a(2n+3)x n(ax+b)32?2nb a(2n+3) ∫x n?1√ax+bdx循环计算 19.∫√ax+b x dx=2√ax+b+b x√ax+b =2√ax+b?2√b arctanh√ax+b b +C 20. x ax+b = ?b √ax+b ?b +C,b<0 21. x√ax+b = √b |√ax+b?√b √ax+b+√b |+C,b>0

常用积分公式

第3章 牛顿-莱布尼茨积分和积分法 130 常用积分公式表·例题和点评 ⑴ d k x kx c =+? (k 为常数) ⑵ 1 1 d (1)1 x x x c μ μμμ+≠-=++? 特别, 2 11 d x c x x =-+? , 32 23 x x c =+ , x c =+ ⑶ 1d ln ||x x c x =+? ⑷ d ln x x a a x c a = +?, 特别,e d e x x x c =+? ⑸ sin d cos x x x c =-+? ⑹ cos d sin x x x c =+? ⑺ 2 2 1 d csc d cot sin x x x x c x ==-+?? ⑻ 2 2 1 d sec d tan cos x x x x c x ==+?? ⑼ arcsin (0)x x c a a =+>, 特别, arcsin x x c =+ ⑽ 2211d arctan (0)x x c a a x a a =+>+?,特别,2 1 d arctan 1x x c x =++? ⑾ 22 11d ln (0)2a x x c a a x a a x +=+>--? 或 22 11d ln (0)2x a x c a x a a x a -=+>-+? ⑿ tan d ln cos x x x c =-+? ⒀ cot d ln sin x x x c =+? ⒁ ln csc cot 1csc d d ln tan sin 2x x c x x x x c x ?-+?= =?+?? ?? ⒂ ln sec tan 1sec d d πln tan cos 24x x c x x x x c x ?++?= =??? ++ ?? ??? ? ? ⒃ (0) ===ln a x x c >+

常用微积分公式大全

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为, 故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分

下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

分析:将按三次方公式展开,再利用幂函数求积公式. 解: (为任意常数) 例4 求不定积分. 分析:用三角函数半角公式将二次三角函数降为一次. 解: (为任意常数) 例5 求不定积分. 分析:基本积分公式表中只有 但我们知道有三角恒等式: 解:

积分公式表,常用积分公式表

创作编号:BG7531400019813488897SX 创作者:别如克* 积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11)

2、积分定理: (1)()()x f dt t f x a ='?? ????? (2)()()() ()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='?? ????? (3)若F (x )是f (x )的一个原函数,则 ) ()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f += 1;设:t b ax =+ ()()222x a x f -= ;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时,

公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因 为,故(,)式右边的 是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解:

基于Copula函数的有效分布式算法

Estimation of Distribution Algorithms based on Copula Functions Rogelio Salinas-Gutiérrez ? Department of Computer Science Center for Research in Mathematics(CIMA T) Guanajuato,México rsalinas@cimat.mx Arturo Hernández-Aguirre ? Department of Computer Science Center for Research in Mathematics(CIMA T) Guanajuato,México artha@cimat.mx Enrique R.Villa-Diharce ? Department of Probability and Statistics Center for Research in Mathematics(CIMA T) Guanajuato,México villadi@cimat.mx ABSTRACT The main objective of this doctoral research is to study Esti-mation of Distribution Algorithms(EDAs)based on copula functions.This new class of EDAs has shown that it is pos-sible to incorporate successfully copula functions in EDAs. Categories and Subject Descriptors I.2.8[Arti?cial Intelligence]:Problem Solving,Control Methods,and Search—Heuristic methods;G.1.6[Numerical Analysis]:Optimization—Global optimization,Unconstrained optimization General Terms Algorithms,Design,Performance Keywords EDAs,copula functions,graphical models 1.INTRODUCTION Estimation of Distribution Algorithms(EDAs)are a well established paradigm in Evolutionary Computation(EC). This class of evolutionary algorithms employs probabilistic models for searching and generating promissory solutions. The goal in EDAs is to take into account the dependence structure in the best individuals and transfer them into the next population.A pseudocode for EDAs is shown in Algo-rithm1. ?Doctoral student ?Advisor ?Co-Advisor Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro?t or commercial advantage and that copies bear this notice and the full citation on the?rst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior speci?c permission and/or a fee. GECCO’11,July12–16,2011,Dublin,Ireland. Copyright2011ACM978-1-4503-0690-4/11/07...$10.00.Algorithm1Pseudocode for EDAs 1:assign t←?0 generate the initial population P0with N individuals at random 2:select a collection of M solutions S t,with M

相关文档