文档库 最新最全的文档下载
当前位置:文档库 › 独立随机变量期望和方差的性质

独立随机变量期望和方差的性质

独立随机变量期望和方差的性质
独立随机变量期望和方差的性质

第七周多维随机变量,独立性

7.4独立随机变量期望和方差的性质

独立随机变量乘积的期望的性质:

Y X ,独立,则()()()

Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列()

,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=,

()

1,2,,;

1,2,,i m j n

== ()()

11,m

n

i j i j i j E XY x y P X x Y y =====∑∑()()

11

m n

i j i j

i j x y P X x P Y y =====∑∑()()

1

1

m

n

i i j j i j x P X x y P Y y =====∑∑()()

E X E Y =***********************************************************************独立随机变量和的方差的性质:

Y X ,独立,则()()()

Y Var X Var Y X Var +=+()()()

2

2

Var X Y E X Y E X Y

??+=+-+??

()222E X XY Y =++()()()()22

2E X E X E Y E Y

??-++?

?

()()()()2

2

22E X E X E Y E Y

=-+-()()()22E XY E X E Y +-()()()()

2

2

22E X E X E Y E Y

=-+-()()

Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()()

121

n

m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差

我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

求和的性质。这里我们再回顾一下。

设12,,,n X X X 相互独立,且均服从0-1分布()1,B p ,则12n

X X X X =+++ 对所有n k ,,1 =,()()101k E X p p p =?+?-=,()()2

101k E X p p p

=?+?-=()()()2

2k k k Var X E X E X =-()21p p p p =-=-,

()()12n E X E X X X =+++ ()()()12n E X E X E X np

=+++= ()()12n Var X Var X X X =+++ ()()()12n Var X Var X Var X =+++ ()1np p =-***********************************************************************负二项分布随机变量

~(,)Y NB r p :连续不断且独立地重复进行一个参数为p 的伯努利试验,第r 次“成功”

出现时所进行的试验次数。更细致地考虑由伯努利试验构造参数为r,p 的负二项分布随机变量的过程。从伯努利试验开始到第一次成功,所进行试验的次数是随机的,记为随机变量1X ,则1X 服从参数为p 的几何分布;然后继续独立地进行伯努利试验,到第二次试验成功,我们记从第一次试验成功后开始计算的试验次数为2X ,则2X 仍然服从参数为p 的几何分布;如此进行下去,到第r 次“成功”出现时所进行的总的伯努利试验次数Y 就等于X1加X2一直加到Xr。设12,,, r X X X 相互独立,且均服从几何分布()Ge p ,则12 r Y X X X =+++;

()1k E X p =

,()21k p

Var X p

-=,1,2,, k r =()()()()121 r r r

E Y E X X X E X E X =+++=++=

()()()()()1212

1 r r r p Var Y Var X X X Var X Var X p -=+++=++=

***********************************************************************

例7.4.1设随机变量,X Y 相互独立,已知它们的期望分别为()E X 和()E Y 。令

{}max ,U X Y =,{}max ,V X Y =,求()E UV 。

解:分别考虑X Y ≥和X Y <两种情况,

当X Y ≥时,U X =,V Y =;当X Y <时,U Y =,V X =;所以UV XY =,

()()()()E UV E XY E X E Y ==。

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

随机变量独立性的判断方法探究

1 引言 概率与统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学.随着社会的不断发展,概率与统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用且强有力的思考方式.独立性[5]是随机变量非常重要的性质,其应用也很广泛.在解决很多问题时都有随机变量独立这样的前提,只有这样问题才能得以解决或解决起来比较简单.众所周知,随机变量独立性的判定无论从理论还是在实践中都有着重要意义,因此寻找独立性判断方法显得尤为重要.不少的文献对此进行了深入的研究,给出了一些很好的判断方法[3],但到目前为止人们还没找到简便有效的方法,从而对其深入研究很有必要. 2 相关定义 定义1离散型随机变量 定义在样本空间Ω上,取值于实数域R ,且只取有限个或可列个值的变量()ξξω=,称做是一维(实值)离散型随机变量,简称离散型随机变量. 定义2 n 维离散型随机变量 设12,,,n ξξξ???是样本空间Ω上的n 个离散型随机变量,则称n 维向量(12,,,n ξξξ???)是Ω上的一个n 维离散型随机变量. 定义3 联合分布型 设(,)ξη是一个二维离散型随机变量,它们一切可能取值为(,),,1,2,i j a b i j =???,令 (,),,1 ,2,ij i j P P a b i j ξη====??? 称(,1 ,2,)ij P i j =???是二维离散型随机变量(,)ξη的联合分布列. 我们容易证明()(1,2,i i P a P i ξ?===???是ξ的分布列,同理有()(1 ,2,)j j P b P j η?===???是η的分布列,称,ξη的分布列是(,ξη)的联合分布列的边际分布列. 定义 4 离散型随机变量独立性 设离散型随机变量ξ的可能取值为(1,2,)i a i =???,η的可能取值为(1,2,)j b j =???,如果对任意的,i j a b ,有

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

随机变量的数学期望教案

随机变量的数学期望教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

教 案:数学期望 试讲人 郑丽霞 教材来源:《概率论与数理统计》 袁荫棠 授课题目:数学期望 第三章第一节 教学目标:会计算数学期望;通过数学期望的学习了解数学期望的实际应用及统计意义 教学重点:数学期望的计算 教学难点:如何将实际问题转化为数学问题 教学过程: 1. 引入课题 引例:在一次射击比赛中,每个人射击10次,甲选手射了4个1分,1个2分,5个3分,问甲选手的平均得分是多少? 1.210 5 31012104110531241=?+?+?=?+?+? 则其“均值”应为11 1k k i i i i i i n n x x n n ===∑∑. 所以上面的均值是以i n n 频率为权重的加权平均。

我们前面学了随机变量,那我用随机变量ξ来表示甲射击得分情况,求ξ的分布? 平均得分=1×0.4+2×0.1+3×0.5=2.1 大体上讲,数学期望(或均值)就是随机变量的平均取值 2. 概念讲解 (一)离散型随机变量的数学期望 定义3.1 设离散型随机变量ξ的分布列为 (),1,2, ,,.i i p P x i n ξ=== 如果 1 ||.i i i x p +∞ =<+∞∑ 则称 1 ()i i i E x p ξ+∞ ==∑ 为随机变量ξ的数学期望,简称期望或均值。若级数1 ||()i i i x p x +∞=∑不收 敛,则称ξ的数学期望不存在。 例1 投掷一颗均匀的骰子,以ξ表示掷的点数,求ξ的数学期望。 解:6 1 17 ()62i E i ξ==?=∑

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

随机变量独立性的性质

议随机变量独立性及其应用 作者:张利荣 指导老师:桂春燕 摘要 随机变量的独立性是概率论中的一个重要概念.本文首先介绍了随机变量独立性的定义, 随机变量独立性的性质,然后对离散型随机变量和连续型随机变量的独立性分别给出了不同的判别方法,从而针对不同的问题运用相应的判别方法进行判定,除此还通过随机变量独立性的性质及其判别方法得出了一些相关的推论,并对其应用进行了举例说明. 关键词 离散型随机变量 连续型随机变量 独立性 联合分布 1 引言 概率统计是研究随机现象中数量规律的一门数学学科,它是近代数学的重要分支,理论严谨、应用广泛,并且与其他学科互相渗透结合.概率论是对随机现象统计规律演绎的研究,由于随机现象的普遍性,使得其具有极其广泛的应用,特别是在科学技术、工农业生产等方面.独立性是概率统计中最基本的概念之一,无论在理论研究还是在实际应用中都具有特别重要的意义.概率论和数理统计已有的成果大部分都是在某种独立性的前提下才得到的.因而随机变量独立性的研究倍受重视. 随机变量独立性的研究一直经历着缓慢的发展过程.进入二十世纪九十年代后,随机变量独立性判定的研究进入了一个新的阶段.关于这方面的著作、文献逐渐多了起来,如文献[2]中毛纲源对随机变量独立性的判定进行了分析并举例说明;文献[7]中明杰秀等对二维随机变量独立性的判定及其应用等相关内容进行了论述.本文将在此基础上对随机变量独立性做一下详细、全面的论述,重点介绍离散型随机变量和连续型随机变量独立性的判定方法,并对随机变量的独立性的应用进行举例说明. 2 随机变量独立性的定义 定义]1[ 设),(Y X 为二维随机变量,若对于任意的实数y x ,,事件{}x X ≤与{}y Y ≤相互独立,即 ()()() y Y P x X P y Y x X P ≤?≤=≤≤, , )1( 则称X 与Y 相互独立. 若()y x F ,为X 与Y 的联合分布函数,()x F X 、()y F Y 分别是X 与Y 的边缘分布函数,则 )1(式等价于 ()()()y F x F y x F Y X ?=,. 3 随机变量独立性的性质及其判别方法

随机变量的独立性判别

分类号:密级: 毕业论文 (本科生) 论文题目(中文)随机变量的独立性判别 论文题目(外文)The discrimination of the independence of random variables 学生姓名 导师姓名、职称 学生所属学院 专业 年级

诚信责任书 本人郑重声明:本人所呈交的毕业论文(设计),是在导师的指导下独立进行研究所取得的成果。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或在网上发表的论文。 本声明的法律责任由本人承担。 论文作者签名:日期: 关于毕业论文(设计)使用授权的声明本人在导师指导下所完成的论文及相关的职务作品,知识产权归属兰州大学。本人完全了解兰州大学有关保存、使用毕业论文的规定,同意学校保存或向国家有关部门或机构送交论文的纸质版和电子版,允许论文被查阅和借阅;本人授权兰州大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存和汇编本毕业论文。本人离校后发表、使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为兰州大学。 本毕业论文研究内容: √可以公开 □不易公开,已在学位办公室办理保密申请,解密后适用本授权书。 (请在以上选项内选择其中一项打“√”)

论文作者签名:导师签名:日期:日期:

随机变量的独立性判别 摘要 随机变量独立性的判别历来都是高等学校概率论与数理统计教学的一个课题, 通过研究文献资料,理解随机变量及其独立性的相关概念,对离散型和连续型随机变量综合列举的几种常见求法,讨论几种常见的随机变量独立性判别方法 并对其进行概括、总结,加深自己对随机变量及其分布的理解,争取有新的发现。 关键词:随机变量独立性连续型离散型判别方法

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

随机变量的均值与方差的计算公式的证明

随机变量的均值与方差的计算公式的证明 姜堰市励才实验学校 姜近芳 组合数有很多奇妙的性质,笔者试用这些性质证明了随机变量的均值与方差的两组计算公式。 预备知识: 1. ()()()()11!!1!1! !!--=-?--?=-??=k n k n nC k n k n n k n k n k kC 2. k k n C 2=()1111111-------+=k n k n k n C k n nC nkC =()22111-----+k n k n C n n nC 3.N 个球中有M 个红色的,其余均为白色的,从中取出n 个球,不同的取法有: n N l n M N l M n M N M n M N M n M N M C C C C C C C C C =++++------- 22110 ()()M n l ,m i n =. 公式证明: 1.X ~()p n B , ()()X E 1.np =()()X V 2().1p np -= 证明:()n n p x p x p x p x X E ++++= 332211 ()()()n n n n n n n n n p nC p p C p p C p p C ++-+-+-?=-- 222110012110 ()()[] n n n n n n n p C p p C p p C n 11221110111------++-+-= ()[] 11-+-=n p p np .np = ()()()()n n p x p x p x X V 2 222121μμμ-++-+-= n n p x p x p x p x 2323222121++++= ()n n p x p x p x p x ++++- 3322112μ ()n p p p p +++++ 3212μ ()() 2222222112121μμ+-++-+-=--n n n n n n n p C n p p C p p C ()()[]11121110111-------++-+-=n n n n n n n p C p p C p C np ()()()[] 22223122022111μ-++-+--+-------n n n n n n n p C p p C p C p n n

随机变量独立同分布的概念

1、随机变量独立同分布的概念 随机变量X1和X2独立,是指X1的取值不影响X2的取值,X2的取值也不影响X1的取值。随机变量X1和X2同分布,意味着X1和X2具有相同的分布形状和相同的分布参数,对离散型随机变量具有相同的概率函数,对连续型随机变量具有相同的概率密度函数,有着相同的分布函数,相同的均值、方差与标准差。 反之,若随机变量X1和X2是同类型分布,且分布参数全相同,则X1和X2一定同分布。 一般来说,在相同条件下,进行两次独立试验,则这两次实验结果所对应的随机变量是独立同分布的。 比如,将一枚质地均匀的硬币抛掷两次,设X1为第一次抛掷硬币的结果,X2为第二次抛掷硬币的结果。显然,第一次抛掷硬币的结果对第二次的结果没有影响,反之亦然,故X1和X2相互独立。 同时,X1和X2都只有两种试验结果:正面朝上和背面朝上,以0代表正面朝上,1代表背面朝上,则 P(X1=0)=P(X2=0)=0.5, P(X1=1)=P(X2=1)=0.5, 故X1和X2是独立同分布的随机变量。 随机变量独立同分布的特性可以推广到三个或更多个随机变量。 2、独立同正态分布(定理1) 3、独立同分布(定理2——中心极限定理) 当的分布对称时,只要n 5,那么,近似效果就比较理想;当的分布非对称时,要求n 值较大,一般n 30近似效果较理想。 这个定理表明:无论随机变量服从何种分布,可能是离散分布,也可能是连续分布,连续分布可能是正态分布,也可能是非正态分布,只要独立同分布随机变量的个数n较大,那么,随机变量之和的分布、随机变量均值X-的分布都可以近似为正态分布。这一结论意义深远。 4、标准误 统计学中把均值X-的标准差称为均值的标准误,记为,无论是正态还是非正态,均值X-的标准误都有 SEM随着n的增加而减少。 常常对一个零件的质量特性只观测一次,就用该观测结果去估计过程输出的质量特性。这里建议一种简单有效的减少测量系统误差的方法。对同一个零件的质量特性作两次或更多次重复测量,用其观测结果的平均值去估计过程输出的质量特性,就可以减少标准差。当然,这不是回避使用更精确量具的理由,而是一种提高现有量具精度的简易方法,多次测量值的平均值要比单次测量值更精确。

随机变量的均值和方差学习资料

随机变量的均值和方 差

随机变量的均值和方差 自主梳理 1.离散型随机变量的均值与方差 若离散型随机变量 (1)均值 μ=E (X )=________________________________为随机变量X 的均值或______________,它反映了离散型随机变量取值的____________. (2)方差 σ2=V (X )=_________________________________=∑n i =1 x 2i p i -μ2为随机变量X 的方差, 它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差,即σ=V (x ). 2.均值与方差的性质 (1)E (aX +b )=________. (2)V (aX +b )=________(a ,b 为实数). 3.两点分布与二项分布的均值、方差 (1)若X 服从两点分布,则E (X )=____,V (X )=

____________________________________. (2)若X ~B (n ,p ),则E (X )=____,V (X )=________. 1.若η=aξ+b ,则E (η)=aE (ξ)+b ,V (η)=a 2V (ξ). 2.若ξ~B (n ,p ),则E (ξ)=np ,V (ξ)=np (1-p ). 自我检测 1.若随机变量X 2.已知随机变量X n ,p 的值分别为________和________. 3.(2010·课标全国改编)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简 历.假定该毕业生得到甲公司面试的概率为2 3 ,得到乙、丙两公司面试的概率均为p ,且三 个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=1 12 ,则随机变量X 的数学期望E (X )=________.

北邮概率论与数理统计3.3随机变量的独立性

§3.3随机变量的独立性 随机变量的独立性 我们可利用事件间的独立性的定义给出随机变量间的独立性之概念。 随机变量X 和Y 相互独立,如果对于任意有关X 的事件和有关Y 的事件都相互独,换言之,对于任意两个实数集I 和J ,有 },{J Y I X P ∈∈}{}{J Y P I X P ∈∈= (1) 理论上可证明(其证明超出了我们的知识范围)(1)式成立当且仅当对),(,+∞-∞∈?y x ,有 },{y Y x X P ≤≤}(){y Y P x X P ≤≤=. 于是有以下定义。 定义 设二维随机变量),(Y X 的联合分布函数为),(y x F ,两个边际分布函数分别为)(x F X 和)(y F Y ,如果),(,+∞-∞∈?y x ,有 ),(y x F )()(y F x F Y X = (2) 则称Y X ,相互独立。 当),(Y X 为离散随机向量时,独立的条件(2)等价于等式 }{}{},{j i j i y Y P x X P y Y x X P ===== (3) 对所有的),(j i y x ),2,1,( =j i 成立。 当),(Y X 为连续随机向量时,独立的条件(2)等价于等式 )()(),(y f x f y x f Y X = (4) 几乎处处成立。 例3.3.1 设二维随机向量),(Y X 的联合分布函数为

???≥≥+--=λ-----其他 ,00,0,1),(y x e e e y x F xy y x y x , 则Y X ,相互独立的充要条件是0=λ。 例3.3.2 (续3.1.2)问X 与Y 是否相互独? 对于离散随机向量),(Y X ,若说明X 与Y 不相互独立,则只需找一个数对),(j i y x ,使得}{}{},{j i j i y Y P x X P y Y x X P ==≠==;若要说明X 与Y 相互独立,则需要验证,对),(Y X 所有可能取的数对),(j i y x ,都有}{}{},{j i j i y Y P x X P y Y x X P =====, 2,1,=j i 。 例3.3.3 设二维随机向量),(Y X 的联合密度函数为 ???<<<<=其他 ,010,10,4),(y x xy y x f 判断X 与Y 的独立性。 解:由联合密可得两个边缘密度分别为 ?? ?<<==?∞+∞-其他,010,2),()(x x dy y x f x f X , ???<<==?∞+∞-其他 ,010,2),()(y y dx y x f y f Y 故有)()(),(y p x p y x p Y X =,y x ,?,所以X 与Y 相互独立。 在上例子中,),(Y X 的联合密度函数可以分解成两部分,其中一部分仅与x 有关,而另一部分仅与y 有关。一般地若),(Y X 的联合密度函数可以分解为 )()(),(y g x h y x p = 则X 与Y 的相互独立。 例3.3.4 设二维随机向量),(Y X 的联合密度函数为

随机变量的数学期望与方差

限时作业62 随机变量的数学期望与方差 一、选择题 1.下列说法中,正确的是( ) A.离散型随机变量的均值E(X)反映了X取值的概率平均值 B.离散型随机变量的方差D(X)反映了X取值的平均水平 C.离散型随机变量的均值E(X)反映了X取值的平均水平 D.离散型随机变量的方差D(X)反映了X取值的概率平均值 解析:离散型随机变量X的均值反映了离散型随机变量×取值的平均水平,随机变量的方差反映了随机变量取值偏离于均值的平均程度. 答案:C 则D(X)等于( ) A.0 B.0.8 C.2 D.1 解析:根据方差的计算公式,易求V(X)=0.8. 答案:B 3.若随机变量X服从两点分布,且成功的概率p=0.5,则E(X)和D(X)分别为( ) A.0.5和0.25 B.0.5和0.75 C.1和0.25 D.1和0.75 解析:∵X服从两点分布, ∴X的概率分布为 D(X)=0.52×0.5+(1-0.5)2×0.5=0.25. 答案:A 4.离散型随机变量X的分布列为P(X=k)=p k q1-k(k=0,1,p+q=1),则EX与DX依次为( ) A.0和1 B.p和p2 C.p和1-p D.p和p(1-p) 解析:根据题意,EX=0×q+1×p=p,DX=(0-p)2q+(1-p)2p=p(1-p)或可以判断随机变量X 满足两点分布,所以EX与DX依次为p和p(1-p),选D. 答案:D 5.已知X~B(n,p),EX=8,DX=1.6,则n与p的值分别是( ) A.100,0.08 B.20,0.4 C.10,0.2 D.10,0.8 解析:由于X~B(n,p),EX=8,DX=1.6,即np=8,np(1-p)=1.6, 可解得p=0.8,n=10,应选D. 答案:D 二、填空题 6.①连续不断地射击,首次击中目标所需要的射击次数为X;②南京长江大桥一天经过的车辆数为X;③某型号彩电的寿命为X;④连续抛掷两枚骰子,所得点数之和为X;⑤某种水管的外径与内径之差X. 其中是离散型随机变量的是____________.(请将正确的序号填在横线上) 解析:②④中X的取值有限,故均为离散型随机变量;①中X的取值依次为1,2,3,…,虽然无限,但可按从小到大顺序列举,故为离散型随机变量;而③⑤中X的取值不能按次序一一列举,故均不是离散型随机变量.

相关文档
相关文档 最新文档