文档库 最新最全的文档下载
当前位置:文档库 › 高中数学第2课时线性变换的基本性质与矩阵的乘法教案

高中数学第2课时线性变换的基本性质与矩阵的乘法教案

高中数学第2课时线性变换的基本性质与矩阵的乘法教案
高中数学第2课时线性变换的基本性质与矩阵的乘法教案

第二讲 线性变换的性质·复合变换与二阶矩阵的乘法

一、数乘平面向量与平面向量的加法运算

1.数乘平面向量:设x y α→

??=????,λ是任意一个实数,则x y λλαλ→??

=????

2.平面向量的加法:设11x y α→

??=????,22x y β→??=????,则1212x x y y αβ→→+??+=??+??

性质1:设A 是一个二阶矩阵,,αβ→→

是平面上的任意两个向量,λ是任意一个实数,则①数乘结合律:()A A λαλα→

=;②分配律:()A A A αβαβ→

+=+ 【探究1】对以上的性质进行证明,并且说明其几何意义。

二、直线在线性变换下的图形

研究y kx b =+分别在以下变换下的像所形成的图形。

①伸缩变换:1002??

????

②旋转变换:12122?

-??

???

?

③切变变换:1201??

?

???

④特别地:直线x=a 关于x 轴的投影变换?

性质2:二阶矩阵对应的变换(线性变换)把平面上的直线变成 . (证明见课本P 19)

三、平面图形在线性变换下的像所形成的图形

分别研究单位正方形区域在线性变换下的像所形成的图形。

①恒等变换:

10 01??????

②旋转变换:

cos sin sin cos

αα

αα

-

??????

③切变变换:

1

01

k ??????

④反射变换:

10 01????

-??

⑤投影变换:

10 00??????

【练习:P27】【应用】

试研究函数

1

y

x

=

在旋转变换?

?

?

?

作用下得到的新曲线的方程。

四、复合变换与二阶矩阵的乘法

1.研究任意向量x y α→??

=????

先在旋转变换30o R

:1212?

-?????

作用,再经过切变变换ρ:1201????

??作用的向量''x y ??

????

2.二阶矩阵的乘积 定义:设矩阵A =1111a b c d ???

???,B =2222a b c d ??

????

,则A 与B 的乘积

AB =1111a b c d ??????2222a b c d ??

????

【应用】 1.计算???21

???11-???21 ??

?

10=

2.A =cos sin αα??? -sin cos αα???,B =cos sin ββ??? -sin cos ββ?

??

,求AB

3.求13α→

??=????在经过切变变换σ:A=1021????-??,及切变变换ρ:B=1201??

??

??

两次变换后的像β→。

4.设压缩变换σ:A =10210??

??????

,旋转变换90o R :B =0110-??

????

,将两个变换进行复合σ?90o R ,①求向量23α→

??=????在复合变换下的像;②求x y α→??

=????

在复合变换下的像;③在复合变换下单

位正方形变成什么图形?

5.试研究椭圆22

134x y +=①伸缩变换:0.5001??????

②旋转变换:

12212?

-?????;③切变变换:1201??????;④反射变换:1001????-??;⑤投影变换:1000??

????

五种变换作用下的新曲线方程。

进一步研究在④②,①④等变换下的新曲线方程。

【练习:P 35】

【第二讲.作业】A.B.C.D.

1.下列线性变换中不会使正方形变为其他图形的是( ) A.反射变换 B.投影变换 C.切变变换 D.伸缩变换

2. 在切变变换ρ:1021??

??-??

作用下,直线y=2x-1变为

3. 在A =0.5121-??

?

?

??

作用下,直线l 变为y=-2x-3,则直线l 为 4.在1010????-??

对应的线性边变换作用下,椭圆22

124x y +=变为

5.已知平面内矩形区域为12x i x j →

+(0≤x 1≤1,0≤x 2≤2),若一个线性变换将该矩形变为正方形区域,则该线性变换对应的矩阵为

6.将椭圆22

134

x y +=绕原点顺时针旋转45o后得到新的椭圆方程为 7.在1010???

???

对应的线性边变换作用下,圆(x+1)2+(y+1)2=1变为 8.计算:

①1324?? ???1104-?? ???

②2111??

???1011-??

?-??

③1011-??

?-??2111??

???

9.向量12?? ???

经过1101??

???和1011??

???

两次变换后得到的向量为 10.

向量1??

先逆时针旋转45o ,再顺时针旋转15o

得到的向量为 11.函数sin()3y x π

=-

的图像经过2001?? ???的伸缩变换,和1001-??

???

的反射变换后的函数是 12. 椭圆22

143x y +=先后经过反射变换0110?? ???

和伸缩变换1000.5?? ???后得到的曲线方程为 13.已知M=2111?? ???,且MN=1201??

???

,求矩阵N。

14.分别求出在1020????-??、0.5001??????、1000??????

对应的线性边变换作用下,椭圆22

14x y +=变换后的方程,并作出图形。

15.函数1

y x =先后经过怎样的变换可以得到

22144

x y -=?写出相应的矩阵。

答案:1.A 2.y=-1 3.3x-y+3=0 4.y=-x 5. 01102?? ? ???

6.22772240x y xy ++-=

7.y=x (-2≤x ≤0)

8. 113218-?? ?-??、1101--?? ?-?? 、2101--?? ???

9.35??

???

10. 1??

11.sin()2

3

x y π

=-+

12.2

213x y += 13. 1110?? ?-??

14.y=-2x(-2≤x ≤2)、y=0(-2≤x ≤2)、221x y +=

15. 00

??

? ?=1111-?? ?-??

_矩阵的Kronecker乘积的性质与应用

矩阵Kronecker乘积的性质与应用 摘要 按照矩阵乘法的定义,我们知道要计算矩阵的乘积AB,就要求矩阵A的列数和矩阵B的行数相等,否则乘积AB是没有意义的。那是不是两个矩阵不满足这个条件就不能计算它们的乘积呢?本文将介绍矩阵的一种特殊乘积B A ,它对矩阵的行数和列数的并没有具体的要求,它叫做矩阵的Kronecker积(也叫直积或张量积)。 本文将从矩阵的Kronecker积的定义出发,对矩阵的Kronecker 积进行介绍和必要的说明。之后,对Kronecker积的运算规律,可逆性,秩,特征值,特征向量等性质进行了具体的探究,得出结论并加以证明。此外,还对矩阵的拉直以及矩阵的拉直的性质进行了说明和必要的证明。 矩阵的Kronecker积是一种非常重要的矩阵乘积,它应用很广,理论方面在诸如矩阵方程的求解,矩阵微分方程的求解等矩阵理论的研究中有着广泛的应用,实际应用方面在诸如图像处理,信息处理等方面也起到重要的作用。本文讨论矩阵的Kronecker积的性质之后还会具体介绍它在矩阵方程中的一些应用。 关键词: 矩阵;Kronecker积;矩阵的拉直;矩阵方程;矩阵微分方程Properties and Applications of matrix Kronecker

product Abstract According to the definition of matrix multiplication, we know that to calculate the matrix product AB, requires the number of columns of the matrix A and matrix B is equal to the number of rows, otherwise the product AB makes no sense.That is not two matrices not satisfy this condition will not be able to calculate their product do?This article will describe a special matrix product B A , the number of rows and columns of a matrix and its no specific requirements, it is called the matrix Kronecker product (also called direct product or tensor product). This paper will define the matrix Kronecker product of view, the Kronecker product matrix are introduced and the necessary instructions. Thereafter, the operation rules Kronecker product, the nature of reversibility, rank, eigenvalues, eigenvectors, etc. specific inquiry, draw conclusions and to prove it. In addition, the properties of the stretch of matrix and its nature have been described and the necessary proof. Kronecker product matrix is a very important matrix product, its use is very broad, theoretical research, and other matrix solving differential equations, such as solving the matrix equation matrix theory has been widely applied in practical applications such as image processing aspects of information processing, also play an important role. After the article discusses the nature of the matrix Kronecker product it will introduce a number of specific applications in the matrix equation. Keywords: Matrix; Kronecker product; Stretch of matrix; Matrix equation; Matrix Differential Equations 目录

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

矩阵算法经典题目

经典题目 这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1: 右面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵: 矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?因为交换后两个矩阵有可能不能相乘。为什么它又满足结合律呢?假设你有三个矩阵A、B、C,那么(AB)C和 A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n 为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

GPU上的矩阵乘法的设计与实现

计 算 机 系 统 应 用 https://www.wendangku.net/doc/272727742.html, 2011 年 第20卷 第 1期 178 经验交流 Experiences Exchange GPU 上的矩阵乘法的设计与实现① 梁娟娟,任开新,郭利财,刘燕君 (中国科学技术大学 计算机科学与技术学院,合肥 230027) 摘 要: 矩阵乘法是科学计算中最基本的操作,高效实现矩阵乘法可以加速许多应用。本文使用NVIDIA 的CUDA 在GPU 上实现了一个高效的矩阵乘法。测试结果表明,在Geforce GTX 260上,本文提出的矩阵乘法的速度是理论峰值的97%,跟CUBLAS 库中的矩阵乘法相当。 关键词: 矩阵乘法;GPU ;CUDA Design and Implementation of Matrix Multiplication on GPU LIANG Juan-Juan, REN Kai-Xin, GUO Li-Cai, LIU Yan-Jun (School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China) Abstract: Matrix multiplication is a basic operation in scientific computing. Efficient implementation of matrix multiplication can speed up many applications. In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA’s CUDA. The experiment shows that our implementation is as fast as the implementation in CUBLAS, and the speed of our implementation can reach the peak speed’s 97%, on Geforce GTX260. Keywords: matrix multiplication; GPU; CUDA GPU 是一种高性能的众核处理器,可以用来加速许多应用。CUDA 是NVIDIA 公司为NVIDIA 的GPU 开发的一个并行计算架构和一门基于C 的编程语言。在CUDA 中程序可以直接操作数据而无需借助于图形系统的API 。现在已经有许多应用和典型算法使用CUDA 在GPU 上实现出来。 1 引言 矩阵乘法是科学计算中的最基本的操作,在许多领域中有广泛的应用。对于矩阵乘法的研究有几个方向。一个是研究矩阵乘法的计算复杂度,研究矩阵乘法的时间复杂度的下界,这方面的工作有strassen 算法[1]等。另外一个方向是根据不同的处理器体系结构,将经典的矩阵乘法高效的实现出来,这方面的结果体现在许多高效的BLAS 库。许多高效的BLAS 库都根据体系结构的特点高效的实现了矩阵乘法,比如GotoBLAS [2], ATLAS [3]等。Fatahalian [4]等人使 用着色语言设计了在GPU 上的矩阵乘法。CUBLAS 库是使用CUDA 实现的BLAS 库,里面包含了高性能的矩阵乘法。 本文剩下的部分组织如下,第2节介绍了CUDA 的编程模型,简单描述了CUDA 上编程的特点。第3节讨论了数据已经拷贝到显存上的矩阵乘法,首先根据矩阵分块的公式给出了一个朴素的矩阵乘法实现,分析朴素的矩阵乘法的资源利用情况,然后提出了一种新的高效的矩阵乘法。第4节讨论了大规模的矩阵乘法的设计和实现,着重讨论了数据在显存中的调度。第5节是实验结果。第6节是总结和展望。 2 CUDA 编程模型和矩阵乘法回顾 2.1 CUDA 编程模型 NVIDIA 的GPU 是由N 个多核处理器和一块显存构成的。每个多核处理器由M 个处理器核,1个指令部件,一个非常大的寄存器堆,一小块片上的共享内 ① 基金项目:国家自然科学基金(60833004);国家高技术研究发展计划(863)(2008AA010902) 收稿时间:2010-04-26;收到修改稿时间:2010-05-21

人教版新课标高中数学必修四 全册教案

按住Ctrl 键单击鼠标打开教学视频动画全册播放 1.1.1 任意角 教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角? 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 始边 终边 顶点 A O B

例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面 终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'. 答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类: ③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P .9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2 α 各是第几象限角? 解:α 角属于第三象限, 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

高中数学选修4-4全套教案

高中数学选修4-4全套教案 第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

分块矩阵乘法的例子

分块矩阵乘法的例子 例 1 用分块法计算,AB 其中 00 51 2414 21,5 31001200 2 0-???? ? ?== ? ? ? ?-? ?? ? A B . 解 B A,如上分块, ???? ??=2221 1211 A A A A A , ??? ? ??=2322 21 131211 B B B B B B B , 其中 111221224 21(0,0),(5), ,,0 12????==== ? ?-?? ?? A A A A ()()()0,20,0,01,1342,51232221131211===??? ? ??-=???? ??=???? ??=B B B B B B ; 令==C AB ??? ? ??232221 131211 C C C C C C ,其中 =+=2112111111B A B A C )0()0)(5(51)00(=+??? ? ??, =+=2212121112B A B A C )00(()()()1002051342=+???? ??, =+=2312131113B A B A C )0()0)(5(01)00(=+???? ??-, =+=2122112121B A B A C ??? ? ??-=???? ??+???? ?????? ??-514)0(21511024, =+=2222122122B A B A C ???? ??-=???? ??+???? ?????? ??-332014)20(2113421024, =+=2322132123B A B A C ??? ? ??-=???? ??+???? ??-???? ??-04)0(21011024.

高中数学教案全套word

高中数学教案全套word 1.1集合的概念 ................................................ ...... 1 1.2集合的运算 ................................................ ...... 3 1.3含绝对值的不等式的解法 ........................................ 6 1.4一元二次不等式的解法.......................................... 91.5简易逻辑 ................................................ ...... 12 1.6充要条件 ................................................ ...... 15 1.7数学巩固练习.............................................. 18.1函数的概念 ................................................ .... 21.2函数的解析式及定义域 ........................................ 24.3函数的值域 ................................................ .... 28.4函数的奇偶

性................................................. ...2.5函数的单调性.................................................. 37.6反函数 ................................................ ..........1.7二次函数 ................................................ ........2.8指数式与对数式 ................................................ .2.9指数函数与对数函数 .............................................0.1 0函数的图象 ................................................ .....2.11函数的最值 ................................................ .....2.12函数的应用 ................................................ .....1.13数学巩固练习 .. (4) .1数列的有关概念 ................................. 错误!未定义书签。.2等差数列与等比数列的基本运算 ................. 错误!未定义书签。.3等差数列、

矩阵乘法题目

十个利用矩阵乘法解决的经典题目 By Matrix67 好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时 O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

并行计算-实验二-矩阵乘法的OpenMP实现及性能分析

深圳大学 实验报告 课程名称:并行计算 实验名称:矩阵乘法的OpenMP实现及性能分析姓名: 学号: 班级: 实验日期:2011年10月21日、11月4日

一. 实验目的 1) 用OpenMP 实现最基本的数值算法“矩阵乘法” 2) 掌握for 编译制导语句 3) 对并行程序进行简单的性能 二. 实验环境 1) 硬件环境:32核CPU 、32G 存计算机; 2) 软件环境:Linux 、Win2003、GCC 、MPICH 、VS2008; 4) Windows 登录方式:通过远程桌面连接192.168.150.197,用户名和初始密码都是自己的学号。 三. 实验容 1. 用OpenMP 编写两个n 阶的方阵a 和b 的相乘程序,结果存放在方阵c 中,其中乘法用for 编译制导语句实现并行化操作,并调节for 编译制导中schedule 的参数,使得执行时间最短,写出代码。 方阵a 和b 的初始值如下: ????????? ? ??????????-++++=12,...,2,1,..2,...,5,4,31,...,4,3,2,...,3,2,1n n n n n n n a ???????? ? ???????????= 1,...,1,1,1..1,...,1,1,11,...,1,1,11,..., 1,1,1b 输入: 方阵的阶n 、并行域的线程数 输出: c 中所有元素之和、程序的执行时间 提示: a,b,c 的元素定义为int 型,c 中所有元素之各定义为long long 型。 Windows 计时: 用中的clock_t clock( void )函数得到当前程序执行的时间 Linux 计时: #include

人教版高中数学_全册教案

第一章空间几何体 第一章课文目录 1.空间几何体的结构 1.空间几何体的三视图和直观图 1.3空间几何体的表面积与体积 知识结构: 一、空间几何体的结构、三视图和直观图 1.柱、锥、台、球的结构特征 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 棱柱与圆柱统称为柱体; (2)锥 棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。 底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥…… 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。 棱锥与圆锥统称为锥体。 (3)台 棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。 圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。 圆台和棱台统称为台体。 (4)球 以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;

半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。 (5)组合体 由柱、锥、台、球等几何体组成的复杂的几何体叫组合体。 几种常凸多面体间的关系 名称棱柱直棱柱正棱柱 图形 定义有两个面互相平 行,而其余每相 邻两个面的交线 都互相平行的多 面体 侧棱垂直于底面 的棱柱 底面是正多边形的 直棱柱 侧棱平行且相等平行且相等平行且相等侧面的形状平行四边形矩形全等的矩形对角面的形状平行四边形矩形矩形 平行于底面的截面 的形状与底面全等的多 边形 与底面全等的多 边形 与底面全等的正多 边形 名称棱锥正棱锥棱台正棱台图形 定义有一个面是多 边形,其余各面 底面是正多边 形,且顶点在底 用一个平行于 棱锥底面的平 由正棱锥截得 的棱台

矩阵乘法的性质优秀教学设计

矩阵乘法的性质 【教学目标】 一、知识与技能:理解矩阵乘法不满足交换吕和消去律,会验证矩阵乘法满足结合律 二、过程与方法:比较演算法 三、情感态度和价值观:体会类比推理中结论全真的含义 【教学重难点】 结合律验证 【教学过程】 一、复习二阶矩阵的乘法运算规律与实数乘法性质 实数乘法运算性质:交换律ab=ba 结合律 (ab)c=a(bc) 消去律:ab=ac ,a ≠0则b=c 零律:0a=a0=0 1律:1a=a1=a 分配律 a(b+c)=ab+ac 问题:对于矩阵乘法,这些结论是否还成立? 二、矩阵的简单性质 1.由上节知识知:消去律未必成立,即AB=AC ,A ≠0,则未必有B=C 2.交换律呢? 例1.(1)已知P=??????1001k ,Q=?? ????1002k ,求PQ 及QP ,说明二者的几何意义及是否相等 (2)A=??????2001,B=?? ????-3241,求AB .BA ,说明二者是否相等 解:(1)PQ=??????120 0k k ,QP=??????1200k k ,二者相等, PQ :(x ,y)倍横坐标变为原来的2:k T Q (k 2x 2,y)倍纵坐标变为原来的1k (k 2x ,k 1y) QP : ??????????????????y k x k k T y k x k T y x Q P 12211::倍横坐标变为原来的倍纵坐标变为原来的 (2)AB=??????-6441,BA=?? ????-6281,AB ≠BA

说明:对于矩阵乘法,交换律未必成立 3.结合律是否成立? A=??????1111d c b a ,B=??????2222d c b a ,C=??????3333d c b a , 则AB=?? ????++++2121212121212121d d b c c d a c d b b a c b a a , BC=??????++++32323 23232323232d d b c c d a c d b b a c b a a (AB)C=??????++++2121212121212 121d d b c c d a c d b b a c b a a ?? ????3333d c b a =??????++++++++++++3213213213213 21321321321321321321321321321321321d d d d b c b c d b a c c d d c b c a c d a a c d d b d b a b c b b a a c d b c b a a c b a a a A(BC)=??????1111d c b a ?? ????++++3232323232323232d d b c c d a c d b b a c b a a =??????++++++++++++3213213213213 21321321321321321321321321321321321d d d d b c b c d b a c c d d c b c a c d a a c d d b d b a b c b b a a c d b c b a a c b a a a 说明:矩阵乘法满足结合律 4.自己验证:矩阵乘法满足结合律,即:A(B+C)=AB+AC 5.零律是否满足,证明你的结论,即AO=OA=O 是否成立?(成立) 6.一律是否满足?证明你的结论,即EA=AE=A 是否成立?(成立) 三、备用练习与例题 1.计算(1)????????????-??????011010210110 (2)32301?? ????- (解答(1)??????-1101 (2)?? ????-8901) 2.求使式子成立的a .b .c .d ,?? ????=????????????34120032d c b a (解答:a=1,b=4,c=1,d=1) 3.a .b 为实数,矩阵A=?? ????b a 10将直线L :2x+y-7=0变为自身,求a ,b (解答a=1/2,b=1) 四、习题: [补充习题] 1.对于三个非零二阶矩阵。下列式子中正确的序号是____________

第二章 矩阵及其运算测试题

第二章 矩阵及其运算测试题 一、选择题 1.下列关于矩阵乘法交换性的结论中错误的是( )。 (A)若A 是可逆阵,则1A -与1A -可交换; (B)可逆矩阵必与初等矩阵可交换; (C)任一n 阶矩阵与n cE 的乘法可交换,这里c 是常数; (D)初等矩阵与初等矩阵的乘法未必可交换。 2.设n (2n ≥)阶矩阵A 与B 等价,则必有( ) (A) 当A a =(0a ≠)时,B a =; (B)当A a =(0a ≠)时,B a =-; (C) 当0A ≠时,0B =; (D)当0A =时,0B =。 3.设A 、B 为方阵,分块对角阵00A C B ??= ??? ,则* C =( )。 (A) **00 A B ?? ??? (B) **||00 ||A A B B ?? ??? (C) **||00||B A A B ?? ??? (D) **||||0 0||||A B A A B B ?? ??? 4.设A 、B 是n (2n ≥)阶方阵,则必有( )。 (A)A B A B +=+ (B)kA k A = (C) A A B B =-g (D) AB A B = 5.设4阶方阵 44(),()||,ij A a f x xE A ?==-其中E 是4阶单位矩阵,则()f x 中3 x 的系数为( )。 (A)11223344()a a a a -+++ (B)112233112244223344113344a a a a a a a a a a a a +++ (C) 11223344a a a a (D)11223344a a a a +++ 6.设A 、B 、A B +、11A B --+均为n 阶可逆矩阵,则1()A B -+为( )。 (A) 11A B --+ (B) A B + (C) 111()A B ---+ (D)11111 ()B A B A -----+

相关文档