文档库 最新最全的文档下载
当前位置:文档库 › 结构优化设计的现状与进展_续_

结构优化设计的现状与进展_续_

结构优化设计的现状与进展_续_
结构优化设计的现状与进展_续_

文章编号:1000-7717(1999)05-0003-07

结构优化设计的现状与进展(续)

汪树玉,刘国华,包志仁

(浙江大学土木系,杭州 310027)

5 形状优化与拓扑优化

结构优化按照不同要求与求解难度,通常可划分为四个不同层次:截面尺寸优化、形状优化、拓扑与布局优化、结构类型与材料的优化。目前结构构件截面优化已比较成熟,不论用力学准则法、数学规划法、或两者结合,一般能成功地解决,这方面的文章很多,不再详述。下面介绍一下形状优化与拓扑优化的进展情况。5.1 结构形状优化

形状优化是通过调整结构内外边界形状来改善结构性能和达到节省材料的目的。结构形状优化从对象上区分,主要有桁架框架类的杆系结构和块体、板、壳类的连续体结构。

杆系结构的形状优化,一般选择结点坐标(位置)作为设计变量,但通常要同时考虑截面尺寸与结构形状优化,此时出现构件尺寸与结构几何形状二类设计变量,因此优化方法与策略总体上亦分为两类。

一类方法是将两类变量统一同时处理,采用无量纲化,构造近似问题求解,例如Peder2 son的线性近似法[78]、L i p son和A graw al的复形法[79]、I m ai等人的拉格朗日乘子法[80]、MM A[81]、CONL I N凸近似[82]、周明和夏人伟的变量可分离凸近似问题的序列求解[84]法、许素强和夏人伟的广义变量近似法[85]等。这类方法的优点是可以同时考虑两类变量的耦合效应,缺点是设计变量数较多、计算工作量较大。另外形状优化的设计空间可能是非连通的,构造同时优化两类变量的近似问题,求解时有可能无法找寻到全局最优解[86]。

另一类方法是把尺寸变量与几何变量分成二个设计空间,分别对两类变量交替优化,即每步固定一类变量只对另一类变量进行优化,两步间通过迭代协调,又称分步优化方法。优点是避免二类不同性质的变量可能产生的数值病态,每步的优化规模较小,容易求解。这方面的代表性工作如V anderp latts和M o ses的分层法,他们在截面层优化时采用应力比法,结点坐标优化时采用最速下降法[87];L i p son和Gw in 的复形法[88]和K irsch的近似法[89];王希诚基于K2S函数(又称为最大熵解法或评价函数解法)包络出整体约束的分层优化方法[90];隋允康等的构造线性规划子问题分步算法[91]等。从工程应用角度看,分步优化方法能提高求解效率,但目前有的方法对两类变量的耦合关系考虑似还不足,影响了优化结果。

对于连续体结构,结构物的边界形状常采用适当的曲线 曲面方程、或一组基函数再附加可以自由变化的参数来描述,此时形状优化就可以选择这些自由参数作设计变量[92]。例如水利工程中的拱坝,为了能有良好的受力性能,常根据地形地质条件作成变曲率、变厚度的双曲壳体,坝体上下游面形状是用坐标的多项式函数或其他特殊函数来描述,优化时选用这些函数中的参数(项数,系数,指数)作为设计变量。刘国华等[93,94]是通过曲率半径方程来表示上游面形状,它不但能包含常用的圆、抛物线、椭圆、双曲线、对数螺旋线等拱圈线型,而且用改变方程中的参数,可以给出介乎其间的各种线型。采用这种混合线型的模型进行拱坝体形优

基 建 优 化

第20卷 第5期 O PT I M IZ A T I ON O F CA P ITAL CON STRU CT I ON V o l.20,N o.5 1999

化设计,可以在坝体不同部位上选择不同的线型,并能保证其间的平滑过渡,从而使拱坝形状更趋合理,布局更灵活,更切合两岸不同高程上地形地质特点。朱伯芳等则采用统一二次曲线来描述拱坝坝面形状[95]。他们都将拱坝截面厚度,坝体形状和布局位置(拱冠坝顶坐标)这三种变量有机地组合在一起进行优化。应该指出,我国在拱坝体形优化上作了深入研究,成果已处于国际先进与部分领先水平,应用亦较广泛,目前大中型拱坝设计中,基本上都进行了体形优化工作。

连续体结构形状优化方法大体可归纳为二类:解析法和数值法。解析法[96-99]通过泛函分析列出问题的变分形式,导出各种状态函数对设计变量敏度的解析式,和最优设计应满足的最优性条件。对于简单情况可以求得解析解,对于复杂情况可以根据最优性条件,启发人们构造出设计变量的有效迭代格式进行求解,但对复杂的工程问题常无法处理。数值法由于能利用较成熟的约束非线性规划法和相应的软件,如GR G、SQ P等,能处理实际工程优化问题。亦有二者结合,先用解析法将优化问题公式化,再用数值法对简化了的问题寻优。当前连续体结构形状优化的主要研究大致集中在以下方面:(1)设计模型、分析模型和优化模型的构造及其间相互转化,以达到减少设计变量、保证分析精度、满足工程设计要求;(2)分析模型如有限元网格的自动生成与自适应精化;(3)敏度分析与高效优化算法的研制;(4)近似重分析方法(如线性化、冻结内力、冻结分载)的研究;(5)多目标或多准则的优化等。

5.2 离散结构拓扑优化

与形状优化和截面尺寸优化相比较,拓扑优化的难度最大,亦最具挑战性,它探讨结构构件的相互联接方式,结构内有无空洞、孔洞的数量、位置等拓扑形式,使结构能在满足有关平衡、应力、位移等约束条件下,将外荷载传递到支座,同时使结构的某种性态指标达到最优。拓扑优化的主要困难在于满足一定功能要求的结构拓扑具有很多种甚至无穷多的形式,而且结构的这种拓扑形式难以定量描述或参数化,同时由于需要设计的区域预先是未知的,更增添了问题求解难度。

结构拓扑优化研究是从桁架结构开始的,研究拓扑、布局优化的解析方法可追溯到1904年提出的M ichell桁架,但这一理论只能用于单工况并依赖于选择适当的应变场,不能应用于工程实际。1964年Do rn、Gom o ry、Green2 berg[100]等人提出基结构法(ground structu re app roach),将数值方法引入该领域,此后拓扑优化的研究重新活跃起来,陆续有一些解析和数值方面的理论被提出来。所谓基结构就是一个由众多构件连结而成的、包括所有的荷载作用点、支承点在内的结构。该方法的基本思路是:从基结构的模型出发,应用优化算法(数学规划法或准则法),按照某种规则或约束,将一些不必要的杆件从基结构中删除,例如截面积达到零或下限的杆件将被删掉,并认为最终剩下的杆件决定了结构的最优拓扑。因此应用基结构,可以将桁架拓扑优化当作杆件截面优化来处理。

从基结构出发的拓扑优化方法。由于单工况、应力约束下使桁架结构重量最轻的最优拓扑,必定是一个静定结构,因此早期研究者常忽略变形协调条件,以杆件内力作为设计变量、结点平衡方程作为约束条件构造成线性规则问题来处理[100]。这种方法虽然计算效率高,但却无法推广到多工况和考虑位移约束的情况,因为此时结构的最优拓扑往往是超静定的,必须计及变形协调条件,并采用非线性规划法来求解。Dobb s和Fetton[101]使用最速下降法求解多工况应力约束下桁架结构的拓扑优化,Shen和Schm idt[102]采用分枝定界法求解在应力和位移两类约束条件下桁架结构在多工况作用下的最优拓扑。R ingertz将桁架的截面积和结点位移同时作为设计变量参与拓扑优化设计,采用非线性规划算法和分枝定界法求解了同样的问题[103],王光远等提出了结构拓扑优化的两相

?

4

?基 建 优 化第20卷

法[104]。K irsch针对离散结构的拓扑优化问题,提出了一种两阶段算法[105],即首先以赘余内力和杆件截面积作为设计变量,不考虑变形协调条件和位移约束,把问题化为易于求解的线性规划,求出最优解的下界,然后进入第二阶段,考虑所有约束,在先前得到的最优拓扑下作尺寸优化,以得到各杆的截面积。针对大型结构的拓扑优化问题,Zhou和Rozvany[106]发展了一种优化准则类算法,即DCOC算法,认为采用这种算法可使准则法求解拓扑优化的能力大为提高。

B endsoe等人[107]对于桁架结构重量约束下的最小柔顺性(或最大刚度)设计及其对偶问题进行了较深入的研究,他们改造了传统的优化问题列式,将它表达为仅含结构状态变量(位移、内力)的极大极小问题,设计了高效的处理非光滑优化问题的精致算法,大大提高了这类优化问题的求解效率。算例表明,它的解题规模已可达近千根杆件。此外段宝岩、叶尚辉[108]、谭中富[109]等亦作了不少工作,提出采用内力作为设计变量构造非线性规划求解拓扑优化问题。

近年来,一些适合于并行计算且对函数性态要求较低的全局搜索算法,如前面提到的基因遗传算法、神经元网络算法和模拟退火算法等[110-112]开始被应用于拓扑优化上,但目前这些方法仅能解决较小规模的问题。国内许素强和夏人伟[113]采用遗传算法、蔡文学[114]使用模拟退火法分别求解了桁架结构的拓扑优化问题。亦有不少学者从离散变量优化设计角度来研究拓扑优化,美国A ro ra、国内孙焕纯等的研究均很有特色[115-116]。

应该指出,在采用基于截面积为拓扑变量的模型时,由于将拓扑优化实际上转化为尺寸优化来处理,会出现所谓奇异最优解现象,这是Sved和Gino s最早发现的[86],他们在采用上述广义截面优化模型求解多工况应力约束下三杆桁架的拓扑优化算例时,始终无法求出全局最优解,只能得到局部最优解,从而猜测在某种情况下,拓扑优化的全局最优解可能是设计空间中的一个孤立可行点,称为奇异最优解[118]。程耿东和蒋铮[120,12]从另一角度研究此问题产生的原因,提出了零截面积和杆件极限应力的概念,指出杆件的应力函数在零截面处的不连续性是造成奇异解存在的根本原因。他们还认为奇异最优解所对应的设计点并非是孤立点,而是位于设计空间中某个低维退化子域的端点,如果截面积的限值足够大,这些退化子域与全空间实际上是连通的。隋允康、杨德庆[26,126]认为拓扑优化一方面应从“广义截面优化”和“广义形状优化”的策略中吸取其连续性、可微性的特点,另一方面应该从所依附的低层次变量中升华出来,使之成为独立的设计变量层次。他们采用独立的连续拓扑变量及映射变换的拓扑优化模型,通过引入过滤函数辅助增删单元的识别,并建立自适应算法完成拓扑变量由连续向离散的回归。利用上述方法成功地求解了若干杆系结构在多工况应力位移约束下的拓扑优化问题。

5.3 连续体结构拓扑优化

由于其优化模型描述的困难和数值算法的巨大计算量,因而发展较慢。目前的方法都是在基结构基础上的描述方法,包括几何(尺寸)描述方式和材料(物理)描述方式,而基结构定义了拓扑优化的设计区域,至于拓扑优化的本质描述方法,还未见有人提出。

均匀化方法(hom ogen izati on m ethod)是连续体结构拓扑优化中应用最广的方法,属材料描述方式[127],其基本思想是在拓扑结构的材料中引入微结构(单胞),微结构的形式和尺寸参数,决定了宏观材料在此点处的弹性性质和密度,优化过程中以微结构的单胞尺寸为拓扑设计变量,以单胞尺寸的消长实现微结构的增删,并产生由中间尺寸单胞构成的复合材料,以拓展设计空间,实现结构拓扑优化模型与尺寸优化模型的统一和连续化。利用B en sou s2 san[128]等人发展的一套基于摄动理论的关于周期性结构分析方法,来建立材料微结构尺寸与材料宏观弹性性质之间的关系,具有较严格的

?

5

?

第5期 结构优化设计的现状与进展

数学基础,成为连续体结构拓扑优化研究中的主要方法。目前这一方法已用于处理多工况的二维、三维连续体结构拓扑优化,热弹性结构拓扑优化,考虑结构振动、屈曲问题的拓扑优化,并被用于复合材料的设计中。

变厚度法亦是较早采用的拓扑优化方法,属几何描述方式,其基本思想是以基结构中单元厚度为拓扑设计变量,以结果中的厚度分布确定最优拓扑,是尺寸优化方法的直接推广。优点是方法简单,但不能用于三维连续体结构拓扑优化,一般用于处理平面弹性体、受弯薄板、

[130]。

结构拓朴优化中另一常用方法是变密度法[131],属材料(物理)描述方式,其基本思想是人为地引入一种假想的密度可变的材料,材料物理参数(如许用应力,弹性模量)与材料密度间的关系也是人为假定的。优化时以材料密度为拓扑设计变量,这样结构拓扑优化问题被转换为材料的最优分布问题。该方法在多工况应力约束下平面体结构[132]、三维连续体结构、结构碰撞、汽车车架设计[133]等问题上得到成功应用。但问题是对中间密度材料无法解释,另外受均匀化方法的影响,目前变密度法模型中普遍采用结构柔顺度作为目标函数影响了实际工程的应用[134,135]。

除上述三种常用拓扑优化方法外,还有其他一些有前途的求解策略,如Jog和H aber提出的“等周方法”(Peri m eter m ethod)[136,137], F leu rg和B ecker发展了该方法,提出基于离散的拓扑变量的模型,利用原问题的对偶问题求解该拓扑优化问题获得成功。Rozvany和Zhou 的S I M P(So lid Iso trop ic M icro structu res w ith Penalty)法,基本思想与变密度法类似,但它通过对处于0和1之间的密度值加以惩罚,以获得具有尽量多的0和1两种密度值的优化结果,数值算例表明在多数情形下采用这一方法能得到结构清晰的拓扑形式。此外泡泡法[138]和进化算法[114]亦有一定的参考价值。当然连续体结构拓扑优化过程中还存在一些特殊问题,如“棋盘效应”[141],最优拓扑对有限元网格敏感性、高效的单元删除策略、图象处理技术等,有待进一步研究与完善。

连续体结构拓扑优化的一些基本思想与方法,已被用来进行材料设计研究,这将是一个很有前途的领域。

6 结语

作为设计概念的一种革命,优化设计是用系统的、目的定向和良好标准的设计过程来取代传统的试验纠错方式。优化设计通过对问题的识别、定义、模型化、寻优求解和对解的评价等形成一种概念框架和程式。目前已有巨大的效益,或凭经验、直觉无法获得合适的设计方案的问题,如航空航天、核工业、近海工程、水利土木、机械等方面得到广泛应用。优化设计与技术亦是一种运作手段和决策工具可应用于各种不同领域上。随着全球资源日益短缺,环境污染日趋严重,以及对生活质量要求的提高,人们在社会经济活动、工程建设、企业生产等方面,既要求安全可靠、效益显著,又要求降低能源材料等消耗和保护环境,优化设计与技术成为人们改进工作、提高效率的必不可少的手段,必将会得到更多关注,与广泛的应用。

当前工作的重点首先应放在推广与应用上。要鼓励工程技术人员在各自的专业问题上开展优化设计与优化技术的应用,最好能有奖励基金等激励机制。为使人们便于了解与熟悉,有关的学术团体、刊物应协调努力,编辑出每年中有代表性的书刊、论文目录、优化软件清单以及成功的实际应用例子或报告。要进一步普及这方面的知识,特别要对青年与未来工程师们开展早期教育,使他们能了解优化的基本概念和方法。

实际问题应用优化的成败,很大程度上取决于模型塑造是否合适,是否能反映问题的本质特征而又适当简化,根据现有的技术与计算能力,应该可以考虑离散型设计变量或混合型设计变量,并从单目标优化向多目标或多准则过渡,当然这要根据问题的性质与要求来定。此

?

6

?基 建 优 化第20卷

外为了有更大的适应性与灵活性,应该考虑柔性建模方式等。

在寻优方法上,不强调寻求严格意义的最优解,而应偏重获取满意解,研制启发式算法和近优化技术。随着计算机运算速度的提高和存贮空间的扩大,目前趋向于发展比较通用、简单的算法,而迭代次数与运行机时可允许多一些长一些。对于大规模、大系统的实际问题,应考虑进行分解与平行算法的研究。

应研制开发一批面向实际问题的专用的结构优化软件。软件应具有友好的用户界面,合宜,实现优化过程与成果的可视化,且能与有关专业的CAD 软件连接或在它的框架内成为它的一个子系统。

结构优化方面,目前构件截面(尺寸)优化

的理论已较成熟,应用亦很广泛;形状优化有很大进展,在有些领域内应用亦较普遍并取得显著成绩;拓扑优化已成为当前结构优化的研究热点,理论上较多进展,不论在离散结构和连续结构方面都有一些较好的方法,但实际应用还不多,而这一优化层次是很有吸引力的,不仅能提供新的结构形式,还对新材料的研制有作用。此外在结构类型优化与材料选择等方面亦有一些研究报导。总之,结构优化的研究与应用仍很有活力,有着广阔的发展前景。

优化设计和技术涉及多种专业知识,它的实际应用非常广泛,由于笔者的水平和掌握的资料有限,文中肯定有不少疏忽、偏见、遗漏和不正确之处,希望读者批评指正。(本文参考文

献,篇幅过长、省略,请读者、作者予以谅解。

)中国企业需留神八大陷阱

近年来,我国一连串的知名企业纷纷陷入困境。这些企业受困的具体原因千差万别,但重大决策失误,则是它

们受困的共同原因。近日,经济学家钟朋荣指出:中国企业正面临着八大陷阱,企业发展如何,很大程度上取决于是否能较好地处理以下这些关系。

陷阱之一:造名。企业要防止掉入造名陷阱,但也不是完全不要造名。在造名与造实的关系上,应把握既要造实,也要造名;造实先于造名;造实重于造名;造名不能急于求成。

陷阱之二:多元化。80年代,我国确实有不少企业是靠多元化起家的,之所以如此,是由于那时我国经济具有短缺经济,技术和服务水平都比较低,消费者的要求也很低,外国好的东西进来很少等特点。先行一步的企业,正是利用了上述条件,四面出击,不是自己熟悉什么、擅长什么就做什么,而是市场上什么最短缺、什么赚头最大,就生产和经营什么。

然而,90年代中国经济大背景发生了很大变化。企业首要的竞争策略,应当是把拳头握紧,缩回到自己最具优势的产业上去。不求样样有,但求一样精,在这一强项上以优取胜。

在中国这样一个人口众多的大市场里办企业,更应当选择专业化战略。

陷阱之三:资本运营。近两年有一种比较时髦的提法:业务经营是企业经营的低级形态,资本运营是企业经营的高级形态,企业应当由业务经营转向资本运营。许多企业正是在这种口号的鼓动下,盲目从事资本运营,结果走入误区。

陷阱之四:募股与负债。企业在发展过程中,补充资金的办法有两种:一是募股,二是负债。我国国有企业面临着负债陷阱,而民营企业则面临着募股陷阱。

陷阱之五:两权分离。实现两权分离是我国企业发展的方向。摆脱两权分离的陷阱,并不是让企业重新回到两权合一老路上,而是需要有一批德才兼备的优秀人才担当企业经营者。键全的约束机制,是优秀企业家队伍成长的重要条件。我国企业两权分离后,之所以大量出现经营者严重坑害所有者的现象,重要原因就在于所有者对经营者的约束明显不利。

陷阱之六:投机。正因为我国转轨时期存在的特点,企业的投机活动具有更广泛的空间,企业投机的确有了一些赢家。不费吹灰之力、一夜暴富,给许多企业产生了极强的示范效益。但我们应当看到,在投资活动中,赢家毕竟是少数,少数赢家的暴富,正是以众多输家的暴亏为条件的。即使是少数赢家,也不是常胜将军,而是各领风骚三五年。任何企业,不可能没有一点点投机,但我国企业当前存在着过度投机心理和行为,这种过度投机心理和行为已经将一大批企业引向灾难。

陷阱之七:异地化发展。企业的经营者往往要拿出60%、70%的精力沟通人际关系。同量的费用开支和时间消耗,分散在许多地方,企业的外部环境都不是很好,例如仟村百货。

陷阱之八:民主与独断。如果说一大批企业失败的原因在于决策过程中缺乏约束,那么,许多企业成功的原因也在于决策过程没有约束。一个人说了算要把企业引向成功,决策者至少必须具有以下素质:第一,必须要有强烈的事业心和为企业奉献的精神;第二,有较强的决策能力;第三,善于听取各方面的意见,并能及时发现错误和迅速

改正错误。 (摘自《中国冶金建设协会简讯》1999第17期)

?7?第5期 结构优化设计的现状与进展

西安交大结构优化设计实验报告

结构优化设计实验报告 1.实验背景 结构优化能在保证安全使用的前提下保证工程结构减重,提高工程的经济效益,这也是课程练习的有效补充。 2.实验课题 问题1:考察最速下降法、拟牛顿法(DFP,BFGS)、单纯形法的性能,使用matlab中的fminunc 和fminsearch 函数。 ●目标函数1: 目标函数,多元二次函数 其中,,,, 初值 ●目标函数2 1.3 结果分析:从上述结果可以看出牛顿法具有较好的稳定性,最速下降法和单纯形法在求解超越函数时稳定性不佳,最速下降法迭代次数最少,单纯形法

迭代次数最多。 问题2:使用matlab中的linprog和quadprog函数验证作业的正确性。 用单纯形法求解线性规划问题的最优解 ●目标函数1 6 , 运行结果: 单纯形法的解析解 用两相法求解线性规划问题的最优解 ●目标函数2 , 运行结果: 单纯形法的解析解 求解二次规划问题的最优解 ●目标函数2 , , 运行结果:

问题3:用Matlab命令函数fmincon求解非线性约束规划问题 ●目标函数1 运行结果: 迭代次数:8 ●目标函数2 运行结果: 迭代次数:16 问题4:用Matlab命令函数fmincon求解人字形钢管架优化问题。已知:2F = 600kN,2B = 6 m,T=5 mm,钢管材料E = 210 GPa,密度=, 许用应力[ ]=160MPa,根据工艺要求2m ≤ h≤6m ,20mm ≤ D≤300mm 。求h , D 使总重量W为最小。

求 目标函数1 运行结果:

迭代次数:8 问题5:修改满应力程序opt4_1.m 和齿形法程序opt4_2.m ,自行设计一个超静定桁架结构,并对其进行优化。要求: (1)设计变量数目不小于2; (2)给出应力的解析表达式; (3)建立以重量最小为目标函数、应力为约束的优化模型。 分别用满应立法和齿轮法求解图2超静定结构,已知材料完全相同, , , 2000,1500==σσ , 满应力法和齿轮法运行结果:

建筑结构优化设计建议-侯善民

建筑结构优化设计建议 侯善民 201305 2013.05

第一章 第章基础 1、基础类型: ? 天然地基基础 ?复合地基→天然地基+增加体(柔性桩、刚性桩)? 桩基:常规桩基 后处理加强的后注浆钻孔灌注桩 先处理加强的劲性复合予制静压桩

第一章第章基础 ? 天然地基承载力不宜低于预期复合地基承载力的百分之四 十软土地基上采用复合地基要慎重组成复合地基的增采用复合地基应注意: 十,软土地基上采用复合地基要慎重。组成复合地基的增强体桩基,应具备一定刚度,并且不能是端承桩;随着复合地基承载力需求增大增强体桩基的支承刚度与 ? 随着复合地基承载力需求增大,增强体桩基的支承刚度与桩身强度,要求也需相应提高,对于20层~30层的高层建筑不宜采用单纯摩阻桩桩端进入较好的持力层但持筑,不宜采用单纯摩阻桩,桩端进入较好的持力层。但持力层不宜是强风化以上的岩层,桩身强度承载力要满足计算底板与桩基持力层选择需慎重 算,底板与桩基持力层选择需慎重。

第一章南京某小区复合地基事故第章基础 南京某小区复合地基事故: 该小区位于河西,七层砖混住宅,场地内有深厚的淤泥质软土层,增强体刚性桩未穿过软土层,施工也存在质量问题,建造过程中一直到结构封顶,沉降持续发展,最后采用锚杆静桩较好的才控制住降静压桩,压入深层较好的土层,才控制住沉降。最近几年,我们做了一批20层~30层100米以内的高层剪力墙住宅,采用刚性桩复合地基都取得成功。例如:淮安恒大、淮安中南、合肥融侨等都是20万~30万㎡的高层住宅小区,天然地基承载力约在200k 左右采用予应力管桩作为增加体然地基承载力约在200kpa左右,采用予应力管桩作为增加体, 复合地基承载力可达到500Kpa左右

优化设计在材料中的应用

复合材料结构稳定性约束优化设计 纤维增强复合材料结构, 以高的比强度和比刚度, 在航空航天领 域得到了广泛的应用。许多空天结构的设计, 均利用复合材料结构特殊的屈曲特性, 以达到提高稳定性和降低结构重量的目的, 如机身、航天器的承力筒、直升机地板等。复合材料具有较强的可设计性, 可通过优化铺层参数, 如层数和纤维铺设角, 提高结构的临界屈曲载荷, 在满足稳定性要求的前提下减轻结构重量。有关复合材料结构稳定性优化以及稳定性约束优化的研究不断发展, 如文献[ 1] 研究了层合板临界屈曲载荷的优化方法及灵敏度分析方法, 文献[ 2] 通过引入层合板刚度矩阵求解过程的中间变量,对屈曲载荷进行了优化; 近年来遗传算法也逐渐被应用于该问题, 扩大了研究对象的结构形式范围,提高了优化设计的效率。但是, 多数复合材料稳定性方面的优化工作采用的是确定性的优化设计方法, 即不考虑材料及载荷的不确定性, 得到的优化结果濒临失效边界, 难以满足结构的可靠性要求。纤维增强复合材料, 材料性能离散度大, 工作环境复杂, 各向异性的特点使其对载荷相当敏感。20 世纪90 年代, 设计者们逐渐意识到不确定性因素给复合材料结构带来的影响[ 3], 因此复合材料结构的可靠性优化设计越来越多地受到工程界的重视, 并开展了相关研究。文献[ 4, 5] 基于层合板临界屈曲载荷的解析表达式, 构建极限状态方程, 计算结构的失效概率。但是, 工程实际中的结构通常需要使用有限元等方法进行结构分析, 缺少显式的极限状态函数, 造成可靠度计算困难。对此, 一些学者提出了结构可靠性分析的响应面 法, 使 可靠度计算得以简化,并且一般能够满足工程精度

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

浅谈结构优化设计

浅谈结构优化设计 【摘要】在建筑结构领域开展优化设计,符合我国可持续发展的综合国策。结构优化设计应是在保证建筑安全、抗震性能较好、合理可行同时满足建筑设计的前提下进行,在这里 我结合自己做过的一些工程简单谈谈在结构设计中的一些优化体会,以供工程设计参考。 【关键词】结构设计;优化 结构优化设计是个系统的工程,它涉及的方面很多,不能片面的从某一方面来进行优化,要综合考虑各种不同因素的影响,本文主要从基础及上部设计两个方面来简单谈谈一些优化 的小技巧。 一、地基基础优化设计 当上部结构荷载不大,且地基土承载力较高时,优先选用天然地基。当土层的地基承载 力不是很大且压缩性很大而不能满足设计承载力或变形等要求时,在基础设计时选用深基础(桩基础)。在满足地基稳定和变形要求的前提下,基础尽量浅埋,以节省挖土工程量且便 于施工,特别是对于上海的地基土,一般二层为粘性土,这一层都相对比较薄,且在其下面 一般就是淤泥质土,承载力很小且压缩性较大,基础就更应该浅埋。基础设计中桩基常常是 比较常采用的方案,它对工程造价和施工工期会产生较大的影响,因此需要进行深入的优化 分析,针对不同地方项目对各种桩型受力机理的特点进行分析研究。从另一方面来说地基基 础设计也一直是建筑结构设计的难点,因为建筑的基础形式可以是相同的,但完全相同的地 基条件是很少碰到的,所以对岩土工程勘察报告内容的理解分析就很重要,同时了解各种地 基的变形特性,结合当地工程经验,选择合理的地基基础方案也是十分重要的。对于特定地 区的场地,我们应该结合地勘考虑最合理的工程方案,不要因为当地使用的较少就退。一般 来说不同地区都有常用的桩基类型,像河南郑州的项目那里比较常选用CFG桩地基处理,有 些32层接近100m的高层住宅也常常采用CFG桩,对于双甲(基础设计甲级、勘察设计甲级)还要经过省里专家进行CFG桩复合地基专项论证审查等。但从另一方面讲业主往往对新工艺、新桩基形式等在当地的可行性、经济性没有信心,施工单位有时也会因为采用不熟悉的工艺 而加以抵触和阻挠,所以作为工程设计人员,就要详细周密的进行考虑,同时一个合理的试 桩方案也是不可缺少的,一方面,试桩可以验证桩基施工工艺是否可行,使我们得到承载力、沉降等情况,一方面我们也可以初步估计出该种桩基的造价等,从而来比较此方案是否合理。如工程确需采用桩基时,需进行桩型、桩径、桩长多方案经济分析与比较,不同单体、不同 地质可选用不同桩型,地基土对桩的支承能力尽量接近桩身结构强度,另外应尽可能采取设 计前试桩,为施工图设计提供依据,提高单桩竖向承载力,以减少桩根数。若条件允许,优 先采用预制桩,如需采用灌注桩,可采用后注浆技术提高单桩竖向承载力。对于设置地下室 的建筑,可考虑场地较低水位时水浮力的有利作用,以减少抗压桩根数。布桩时,应优先考 虑沿轴线墙下或柱下布桩,以减少筏板厚度及配筋,筏板局部配筋较大时,也可另附加短钢筋。 二、上部结构优化设计 结构体系选择上应综合考虑各方面因素,结合当地实际情况,进行全方位技术经济分析 与比较,选择功能完善、技术先进、经济合理的结构体系。在结构设计中尽量遵循以下优化 设计原则: 1.按照几个高度分界点控制建筑物高度设计。建筑高度、风荷载大小、地震设防烈度对 结构成本会有较大影响。当建筑物高度超过且接近分界点时,应尽量通过优化层高和楼层数 等使建筑物高度控制在分界点内,对于高层建筑60米是50年一遇和100年一遇基本风压的 分界点;24米是框架结构抗震等级的分界点;60米是框架-剪力墙结构抗震等级的分界点; 80米是剪力墙结构、部分框支剪力墙结构抗震等级的分界点。抗震等级每提高一级,内力放 大系数、抗震构造措施均会提高一级;

机械结构优化设计

机械结构优化设计 ——周江琛2013301390008 摘要:机械优化设计是一门综合性的学科,非常有发展潜力的研究方向,是解决复杂设计问题的一种有效工具。本文重点介绍机械优化设计方法的同时,对其原理、优缺点及适用范围进行了总结,并分析了优化方法的最新研究进展。关键词:优化方法约束特点函数 优化设计是一门新兴学科,它建立在数学规划理论和计算机程序设计基础上,通过计算机的数值计算,能从众多的设计方案中寻到尽可能完善的或最适宜的设计方案,使期望的经济指标达到最优,它可以成功地解决解析等其它方法难以解决的复杂问题,优化设计为工程设计提供了一种重要的科学设计方法,因而采用这种设计方法能大大提高设计效率和设计质量。优化设计主要包括两个方面:一是如何将设计问题转化为确切反映问题实质并适合于优化计算的数学模型,建立数学模型包括:选取适当的设计变量,建立优化问题的目标函数和约束条件。目标函数是设计问题所要求的最优指标与设计变量之间的函数关系式,约束条件反映的是设计变量取得范围和相互之间的关系;二是如何求得该数学模型的最优解:可归结为在给定的条件下求目标函数的极值或最优值的问题。机械优化设计就是在给定的载荷或环境条件下,在机械产品的形态、几何尺寸关系或其它因素的限制范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立

目标函数和约束条件,并使目标函数获得最优值一种现代设计方法,目前机械优化设计已广泛应用于航天、航空和国防等各部门。优化设计是20世纪60年代初发展起来的,它是将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。利用这种新方法,就可以寻找出最佳设计方案,从而大大提高设计效率和质量。因此优化设计是现代设计理论和方法的一个重要领域,它已广泛应用于各个工业部门。优化方法的发展经历了数值法、数值分析法和非数值分析法三个阶段。20世纪50年代发展起来的数学规划理论形成了应用数学的一个分支,为优化设计奠定了理论基础。20世纪60年代电子计算机和计算机技术的发展为优化设计提供了强有力的手段,使工程技术人员把主要精力转到优化方案的选择上。最优化技术成功地运用于机械设计还是在20世纪60年代后期开始,近年来发展起来的计算机辅助设计(CAD),在引入优化设计方法后,使得在设计工程中既能够不断选择设计参数并评选出最优设计方案,又可加快设计速度,缩短设计周期。在科学技术发展要求机械产品更新日益所以今天,把优化设计方法与计算机辅助设计结合起来,使设计工程完全自动化,已成为设计方法的一个重要发展趋势。 优化设计方法多种多样,主要有以下几种:1无约束优化设计法;无约束优化设计是没有约束函数的优化设计,无约束可以分为两类,一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法、共轭梯度法、牛顿法及变尺度法等。另一类是只利用目标函数值的无约束优化方法,如坐标轮换法、单形替换法及鲍威尔法等。此法具有计算

工业设计史

工业设计史 装饰艺术运动的概况和特点: ①20世纪初以机械化为特征的新时代是历史发展的必然趋势 ②新的材料的运用比如钢铁、玻璃 ③“装饰艺术”运动是基于对矫饰的“新艺术”运动的反对 ④主张机械的美,但在很大程度上,依然是传统的设计运动 ⑤服务对象是富足的上层阶级,是少数的资产阶级的权贵 学习装饰艺术运动的意义 ①装饰艺术运动在20世纪30年代兴起,到30年代成为一个国际性的流行风格,影响到几乎设计的各个方面,是本世纪非常重要的一次设计运 ②它本身的折衷立场为大批量生产提供了可能性 ③装饰艺术运动是装饰运动在20世纪初的最后一次尝试,它采用手工艺和工业化的双重特点 ④装饰艺术运动在装饰和设计手法上为我们提供了大量可参考的重要资料。 ⑤关于东方和西方的结合、人情化和机械化的结合的尝试,成为80年代后现代主义时期重要的 研究中心 现代主义设计产生的背景 1、生产力的发展,工业技术的极大发展导致社会结构、社会生活的改变 2、在设计上存在的问题:在功能外形、安全性和方便性等方面存在的问题 3、传统的设计运动都不是解决问题的方法 4、设计界面临的两个问题:①社会需求和商业需求②改变设计的服务对象 认识现代主义设计的意义 1有助于对20世纪设计的认识和了解②现代主义设计是20世纪设计的核心,不但深刻的影响到整个世纪的人类物质文明和生活方式,同时,对本世纪的各种艺术、设计活动都有决定性的冲击作用。 ③现代主义建筑设计是20世纪初在欧美同时产生的最重要的运动之一,建筑师们积极从设计观念、设计风格和形式,建筑材料和建筑方式各个方面进行探索,目的是为了引入民主主义的精神或者是奠定了一种新的政治制度的基础 ④从对现代主义建筑的认识和了解着手,可以从一个方面了解到现代主义的精神和意义,同时也将有助于我们对现代主义以后的种种思想潮流和设计风格有一个正确的把握和认识。 现代主义建筑和设计的观念定义 ①社会目标的反映,其几何规则性肯定,人类对于理解和控制自己环境的希望②民主、精英、理想、乌托邦主义③接收技术上的进步,强调新材料的应用④创造新的形式,简单的几何形状,具有功能意义的倾向 俄国构成主义设计运动 ①颂扬机器的特征,提倡用工业精神来改造社会生活②认为艺术应该取决于现代材料(玻璃、钢材)③艺术的形式应该是抽象的几何形式④把结构当成是建筑设计的起点⑤热衷于科学技术⑥为阶级国家服务代表人物:塔特林、李西斯基、康定斯基 荷兰风格派杜斯伯格风格派和包豪斯的相似之处:①努力把设计、艺术、建筑、雕塑联合和统一为一个有机的总体②它强调艺术家、设计师、建筑家的合作③他们强调联合基础上的个人发展,强调集体和个人之间的平衡 ●包豪斯 设计教育特点:①在设计中提倡自由创造,反对模仿、因袭、墨守成规②将手工艺与机器生产结合起来,提倡在掌握手工艺的同时,了解现代工业的特点,用手工艺的技巧,创作高质量的产

结构优化设计在房屋结构设计中的运用

结构优化设计在房屋结构设计中的运用 发表时间:2019-04-04T09:06:49.333Z 来源:《建筑学研究前沿》2018年第34期作者:严明煜 [导读] 建筑行业的发展机遇与挑战共存,并且随着越来越多的建筑企业参与到市场竞争中,使得建筑行业的竞争也越发激烈。因此,如果建筑企业想要在暗流涌动的市场格局中争得一席之地,就必须要改进原有的建筑结构设计,优化设计技术水平。因此,当前对建筑结构设计中优化技术的研究是必不可少的。 严明煜 浙江东南建筑设计有限公司浙江杭州 310000 摘要:建筑行业的发展机遇与挑战共存,并且随着越来越多的建筑企业参与到市场竞争中,使得建筑行业的竞争也越发激烈。因此,如果建筑企业想要在暗流涌动的市场格局中争得一席之地,就必须要改进原有的建筑结构设计,优化设计技术水平。因此,当前对建筑结构设计中优化技术的研究是必不可少的。 关键词:建筑结构设计;优化技术;应用探讨 1建筑结构设计优化的概念、特点以及重要意义 所谓建筑结构设计优化,主要是指建筑在最初的设计之时,除了要保障房屋建筑等的施工安全性以及实用性,还要能够在基本满足人们最基本生活要求的同时,尽量保证房屋结构不仅美观,还要合理、舒适,使得房屋建筑具有安全性、适用性、经济性、科学性、美观等的综合性设计方案。一般建筑结构设计优化方法普遍具有以下几个特点:(1)建筑结构优化设计方法具有多样性和综合性的特点。(2)建筑结构优化设计方法是与艺术等审美标准相融合的设计,直观效果比较强。(3)建筑结构优化設计的安全系数得到了整体的提高。(4)建筑结构优化设计的适用性增强。(5)建筑结构优化设计能够体现当今时代的低碳要素,具有节能性和环保性。(6)建筑结构优化设计的经济化趋向愈来愈明显。(7)建筑结构优化设计在管理中更加简易、方便、快捷。(8)建筑结构优化设计具有科学性(9)建筑结构优化设计具有明显的创新意识、突破了传统的设计形式。建筑结构设计优化方法在房屋结构设计中的应用具有以下重要意义:建筑结构优化设计方法在房屋结构设计的应用中,是以优化房屋的结构、保障房屋建筑的质量及其安全为目的的。根据近年来我国城市建筑的发展趋势以及科学技术的发展情况来看,与传统的房屋设计相比,经过优化设计的建筑所采取的设计理念以及设计技术更为先进和科学,能够充分发挥房屋建筑建材的性能以及其设备的性能的优势,成本支出也更为低廉,从而实现企业利益的最大化。除此之外,建筑结构优化设计方法应用于房屋结构设计中,能够实现房屋建筑内部结构的协调和整合,有效提高房屋建筑的质量以及安全性。现代的建设结构优化设计方案和传统的建设房屋比较,运用设计方法后的建筑可以降低工程的建设投入成本和投资,提高建筑结构的优化方法,可以节省建设材料的使用,充分利用建设材料。 2结构设计优化技术在建筑结构设计中的步骤 2.1结构优化模型 房屋结构整体优化设计方法分以按3个步骤进行。首先,选择设计变量。一般把对设计要求起主要影响作用的参数作为设计变量,如目标控制参数(结构造价C1和损失期望C2)和约束控制参数(结构的可靠度PS);而将那些对设计要求来讲,变化范围不大或是根据结构要求或局部性的设计考虑就能满足设计要求的参数等作为预定参数,这可以大大减少设计、计算和编制程序的工作量;其次,确定目标函数。寻求一组满足预定条件的截面几何尺寸和钢筋截面积以及失效概率,从而使总费用最小;第三,确定约束条件。房屋结构基于可靠度优化设计的约束条件,则包括尺寸约束、结构强度约束、应力约束、变形约束、裂缝宽度约束、构件单元约束、结构体系约束、从正常使用极限状态下的弹性约束到最终极限状态的弹塑性约束、从可靠指标约束到确定性约束条件等。在设计中,要使结构优化设计应用于实际房屋结构工程,则是路房屋结构设计中实际的约束条件与目标约束条件相比较,保证各约束条件都符合现行规范的要求,以实现最优设计。 2.2设定优化设计计算方案 房屋结构基于可靠度的优化设计问题属于比较复杂的多变量、多约束非线性优化问题,一般情况下,在计算过程中,应转化问题求解,即将有约束优化问题转化为无约束问题。可以利用起来的优化设计计算方法有复合形法、拉氏乘子法、Powell法等。 2.3进行程序设计 根据基于可靠度的结构优化模型和选择的优化设计计算方法,编制功能齐全、运算速度快的综合程序。 2.4结果分析 对计算结果进行分析,确定最优设计方案。 在上述步骤的执行过程中,涉及的问题包括多个方面,所以要全方位、多角度地考虑。这主要是因为建设投资这项工程的耗资非常大,涉及到的情况非常多,所以,总法则和考虑必须综合进行,不能片面地追求资金的节约而不顾设计的优化作用。技术与经济之间存在一对矛盾,要能够正确处理,因为它是控制投资中至关重要的环节。因此,在设计中片面强调经济节约是不正确的,应满足技术上的相应要求,使项目达到相应的功能倾向,与此同时,要反对重视技术,轻经济、设计保守浪费的现象。 3建筑结构设计优化在房屋设计中的具体运用 3.1整体和布局的统一性 以湖南省某处建筑设计为例,建筑平面图如图1所示,在建筑设计过程当中,经常会运用到艺术建筑设计理念,在项目的整体性工程设计方面,需要对建筑设计和艺术性设计实施完美的结合。因此,在建设过程中需要充分地考虑到整体建筑项目风格以及对建筑环境的和谐统一。从另外一个角度上来进行分析,建筑的局部美和整体性设计上都需要进行和谐统一,不管是在走线的方式还是建筑给排水管道的铺设上,都需要以整体性和安全性为主要的设计原则,在充分的保证建筑安全性的前提下来进行美观性设计。 3.2建筑结构的优化设计 在建筑结构设计优化工作当中,需要充分考虑到建筑剪力墙的优化设计,在建筑优化设计过程中主要表现在对建筑的安全性能的保障方面。充分结合建筑设计的中心位置以及剪力墙的整体受力形式,尽可能降低剪力墙的设计指标,在降低建筑受力方面,需要重点考虑建

桁架结构优化设计

桁架结构优化设计 一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。 对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。 图1-1 桁架结构 设计变量与目标函数(质量最小)

预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ] 设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小) 解:1. 应力分析 0sin sin 02112=--=∑θθN N F x 0cos cos 02112=---=∑P N N F y θθ 由此得: )sin(sin 2111θθθ+= p N ) sin(sin 212 2θθθ+- =p N 由正弦定理得: l y l x p N B B 2 1) (2 -+=

l y x p N B B 2 22 += 由此得杆1和2横截面上的正应力 1 2 1) (2 lA y l x p B B -+= σ 2 2 22 lA y x p B B += σ 2.最轻质量设计 目标函数(桁架的质量) ))((2 2 2 1 2 2 B B y x A y l x A W B B ++-+=γ (1-1) 约束条件 [][]? ? ? ?? ????? ????≤+≤-+c B t B lA y x p lA y l x p B B σσ2 2 1 2 22 ) ( (1-2) 0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。) 3.最优解搜索 采用直接实验法搜索。首先在条件(1-3)所述范围内选取一系列y b 值,由强度条件(1-2)确定A 1与A 2,最后根据式(1-2)计算相应W ,在y b -W 曲线中选取使W 最小的y b 与相应的A 1与A 2,即为本问题的最优解。 4.利用MA TLAB 编程 (1)分析目标函数和约束条件

建筑结构优化设计

第一章 第章基础 1、基础类型: ? 天然地基基础 ?复合地基→天然地基+增加体(柔性桩、刚性桩)? 桩基:常规桩基 后处理加强的后注浆钻孔灌注桩 先处理加强的劲性复合予制静压桩

第一章第章基础 ? 天然地基承载力不宜低于预期复合地基承载力的百分之四 十软土地基上采用复合地基要慎重组成复合地基的增采用复合地基应注意: 十,软土地基上采用复合地基要慎重。组成复合地基的增强体桩基,应具备一定刚度,并且不能是端承桩;随着复合地基承载力需求增大增强体桩基的支承刚度与 ? 随着复合地基承载力需求增大,增强体桩基的支承刚度与桩身强度,要求也需相应提高,对于20层~30层的高层建筑不宜采用单纯摩阻桩桩端进入较好的持力层但持筑,不宜采用单纯摩阻桩,桩端进入较好的持力层。但持力层不宜是强风化以上的岩层,桩身强度承载力要满足计算底板与桩基持力层选择需慎重 算,底板与桩基持力层选择需慎重。

第一章南京某小区复合地基事故第章基础 南京某小区复合地基事故: 该小区位于河西,七层砖混住宅,场地内有深厚的淤泥质软土层,增强体刚性桩未穿过软土层,施工也存在质量问题,建造过程中一直到结构封顶,沉降持续发展,最后采用锚杆静桩较好的才控制住降静压桩,压入深层较好的土层,才控制住沉降。最近几年,我们做了一批20层~30层100米以内的高层剪力墙住宅,采用刚性桩复合地基都取得成功。例如:淮安恒大、淮安中南、合肥融侨等都是20万~30万㎡的高层住宅小区,天然地基承载力约在200k 左右采用予应力管桩作为增加体然地基承载力约在200kpa左右,采用予应力管桩作为增加体, 复合地基承载力可达到500Kpa左右

结构优化设计的几点应用

结构优化设计的几点应用 摘要:提出结构优化设计的概念,重点分析和推导了钢筋混凝土受弯构件造价最省的条件,可以为设计人员判断受弯构件的截面是否优化提供参考。 关键词:结构优化设计;钢筋混凝土受弯构件;造价 1. 引言 一般结构设计的流程按图一进行,结构选型、布置和截面等是设计师根据设计要求和实践经验,参考类似的工程设计确定的。设计中大量的工作都是对初步选定的设计方案进行校核,现行设计规范的表述模式一般是不等式,如,因此满足不等式的结构方案必定是无限多种的。在满足设计规范和使用要求的前提下,另外确定一个特定指标使其达到极大或极小(如造价最省、工期最短、自重最轻、梁高最小等),就是结构优化设计。

优化设计用数学的方法描述就是目标函数的极值问题。一个结构的设计方案是由若干个变量来描述的,这些变量可以是构件的截面尺寸,也可以是结构的形状布置,还可以是材料的力学或物理参数。结构设计的所有变量计为[X],结构设计必须满足建筑功能和设计规范的要求,也就

是所有的变量必须满足一定的约束条件: H(X)=0 G(X)≥0 设定的优化目标必定是[X]的函数F(X),F(X)→min(或max)所求的一组解[X0]就是最优化设计的解。 [X]的维数决定了优化设计的过程离开计算机是无法实现的,遗憾的是现阶段的结构设计软件除少数钢结构软件有构件截面的自动优选外,一般都没有引入优化设计的概念。因此现阶段可以操作的优化设计依然是电脑与人脑的结合,即所谓的概念设计,根据一定的经验指标判断计算结果是否已达优化,也就是如图二所示,在一般设计的流程中加入最优化的判断。 2. 结构优化设计的分类: 根据结构设计的流程,优化设计可以分为宏观优化和微观优化,宏观优化包括结构选型和结构布置的优化,微观优化主要是指杆件截面的优化。 结构选型的优化包括基础方案和上部结构的优化,结构选型的优劣直接决定了结构设计的质量,更多的依靠设计人的经验和能力,当复杂的问题超出经验的范围时,对不同的结构方案进行试算不失为一种可行的方法,这时忽略一些微观的因素,相当于大大降低了自变量[X]的维数,少量的计算比较就可以找到比较优化的结构选型。比如框架-筒体的超高层建筑,外框架可采用钢筋混凝土、钢管混凝土、型钢混凝土,可以加斜撑,也可以做加强层,在不能准确判断采用哪种方案的时候,逐一试算,比较钢材和混凝土的用量或其他目标函数,可以在较短的时间内

结构优化设计是在满足规范要求

结构优化设计是在满足规范要求、保证结构安全和建筑产品品质的前提下,通过合理的结构布置、科学的计算论证、适度的构造措施,充分发挥材料性能、合理节约造价的设计方法。结构优化设计在当前竞争日益激烈的建筑设计市场成为大势所趋。如何在满足建筑功能的前提下,保证结构安全并控制含钢量成为摆在结构设计工程师面前的现实课题。本文总结了以往的设计经验,参考了相关文献,给出了结构优化设计的步骤和一些具体措施,供设计人员参考。 1结构优化设计的步骤 笔者认为,结构优化设计的合理步骤应该是:①在方案阶段,通过与建筑专业的充分沟通,对建筑的平面布置、立面造型、柱网布置等提出合理的建议和要求,使结构的高度、复杂程度、不规则程度均控制在合理范围内,避免抗震审查,为降低含钢量争取主动权;②在初步设计阶段,通过对结构体系、结构布置、建筑材料、设计参数、基础型式等内容的多方案技术经济性比较,选出最优方案,整体控制含钢量;③在具体计算过程中,通过精确的荷载计算、细致的模型调整,使结构达到最优受力状态,进一步降低用钢量;④在施工图阶段通过精细的配筋设计抠出多余钢筋,彻底降低含钢量。 在进行多方案的技术经济性比较时,应综合考虑材料费、模板费、基坑开挖降水支护费用、措施费、施工难易、工期长短等因素,与甲方协商后择优选用。 2结构体系与布置优化 结构体系和布置对造价影响很大,应予重视。 1)应根据建筑布置、高度和使用功能要求选择经济合理的结构体系。比如,异形柱框架比普通框架用钢量大,在可能的情况下尽量采用前者;短肢剪力墙比普通剪力墙含钢量高,在可能的情况下尽量采用后者。 2)应选择比较规则的平面方案和立面方案。尽量避免平面凸凹不规则或楼板开大洞,控制平面长宽比,合理设缝,使结构刚度中心与质量中心尽量靠近。竖向应避免有过大的外挑或内收,同时注意限制薄弱层、跃层、转换层等不利因素,使侧向刚度和水平承载力沿高度尽量均匀平缓变化。 3)应选择合理、均匀的柱网尺寸,使板、梁、柱、墙的受力合理,从而降低构件的用钢量。柱网大则楼盖用钢量大,柱网小则柱子用钢量增大,应根据建筑实际情况和经验合理布置。例如,住宅中小开间结构中墙柱的作用不能得到充分发挥,过多的墙柱还会导致较大的地震作用,可考虑采用大开间结构体系,既节约造价,又便于建筑灵活布置。 4)应选择经济合理的楼盖体系。楼盖质量大,层数多,占整体造价比重高,对楼盖的类型、构件的尺寸、数量、间距等应进行对比分析,选择最优的方案。一般住宅宜采用现浇梁板楼盖,预应力楼盖的预应力钢筋容易被二次装修破坏,井字梁楼盖影响室内美观,均不推荐。办公楼等大空间结构宜采用十字梁、井字梁、预应力梁板方案。双向板比单向板经济,应多做双向板。板的厚度,双向板宜控制在短跨的1/35,单向板宜控制在短跨的1/30,此时板易满足强度和变形要求,经济性好。 5)剪力墙结构的优化空间很大,应下大力气优化。剪力墙的布置宜规则、均匀、对称,以控制结构扭转变形。在满足规范和计算的前提下应尽量减少墙的数量,限制墙肢长度,控制连梁刚度,剪力墙能落地的就全部落地不做框支转换层,平面能布置成大开问的尽量布置成大开间,墙体的厚度满足构造要求和轴压比的要求即可。连梁刚度太大时可通过梁中开水平缝变成双梁、增大跨高比等措施降低连梁刚度。尽量少用短肢剪力墙,限制“一”字墙,少做转换。 6)降低含钢量的小技巧:①楼电梯间不宣布置在房屋端部或转角处。因其空间刚度较小,设在端部对抗扭不利,设在转角处应力集中。②框架结构层刚度较弱时,加大柱尺寸或梁高都可显著增大层刚度,而提高混凝土强度效果不明显。③柱的截面尺寸,多层宜2层~3层

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

建筑结构优化设计

建筑结构优化设计 摘要:建筑项目投资大,建设周期长,对其进行结构优化设计能够有效的减少投资金额。建筑结构优化设计,是实现建筑本体功能与建筑投资成本的关键手段。因此,结构工程师必须在每一个工程项目的设计中都能做到不断地探求自然法则,不懈地追求相对的最佳最优,要通过反思比较,在经验积累中不断提高自己的判断力和创新力。 一、建筑结构优化设计 1、建筑结构优化设计的基本理论 结构优化设计不应仅仅在结构本身,而应包括建筑的各方面,科学地确定建筑结构优化设计几项基本原则并有效地按照这些基本原则去进行建筑结构设计,是非常重要的。建筑结构的优化设计主要体现在建筑工程的决策阶段、设计阶段、建设阶段。在建筑工程的决策阶段,确定结构优化设计所要达到的总体目标,满足本体功能,最大程度保障安全性,缩减投资成本:在建筑工程的设计阶段,确定每一个子系统及整体结构的优化布局;在建筑工程的建设阶段,以结构优化设计为建设原则,组织建设好每一个子系统从而实现整体结构优化布局。决策阶段结构优化选择是关键,设计阶段结构优化设计是核心,建设阶段结构优化建设是基础,3个阶段互相验证、互为补充、缺一不可。 2、建筑结构优化设计的基本要求 (1)功能性 建筑是人类的基础物质生存环境,建筑结构优化的终极目标就是

为了满足人类对物质生存环境的最大化需求。对功能性的满足也不再局限于传统的实用性功能,而是增添了舒适性、美观性、协调性等多种新元素,满足人类对基础物质生存环境的更高要求。 (2)安全性 建筑作为人类生存的基础生存环境,与人类的生产、生活紧密相关,安全性成为建筑结构优化设计的必然考虑因素。一味追求建筑结构的优化设计,忽略决策阶段、设计阶段、建设阶段的安全性,其作为建筑不但没有任何实际意义,反而会给人类正常生产和生活带来致命的危害。因此,安全性是结构优化设计中的必然考虑因素。 (3)经济性 建筑结构优化设计的经济性是市场经济条件下对资源配置提出的新要求。经济性是指通过建筑结构的优化设计,最大化的节约各种材料资源,达到减少建设成本的目标。另外,各种材料资源都存在一定的稀缺特性,建筑结构的优化设计能科学合理的减少材料的使用量,节省建设材料使用成本。 二、建筑结构优化设计基本原则 1、提高建筑舒适度原则 所谓好的建筑,应是从建筑、结构、装饰装修到给排水、暖通、空调、燃气、电气安装等各专业的优化设计组合,是整体优化设计,如果仅仅是某个专业设计得好,是不可能被称作是一个好建筑的,结构设计也不能例外的;建筑结构设计要能最大程度地满足建筑平面布置、内部空间高度和建筑立面等使用功能和外形观感的要求,投入使

结构优化设计的考虑

结构优化设计的考虑 发表时间:2018-10-19T19:46:28.440Z 来源:《防护工程》2018年第16期作者:宋三星 [导读] 本文主要就我们在建筑结构的设计中常见的问题进行了分析,在分析的基础上提出了的一些对策,希望能为建筑业的可持续发展有所贡献。 甘肃省城乡规划设计研究院有限公司 摘要:本文主要就我们在建筑结构的设计中常见的问题进行了分析,在分析的基础上提出了的一些对策,希望能为建筑业的可持续发展有所贡献。 关键词:建筑结构设计;问题;优化对策 0引言 近年来,随着我国经济的发展,我国建筑工程规模以及建筑工程速度也得到了迅猛的发展。人们对建筑物功能要求也开始日益增高。对于建筑行业来说,建筑结构设计是一项复杂系统的工作。不仅如此,建筑结构设计还关系到建筑工程质量的好坏,锁好建筑工程的建筑结构设计是建筑行业发展的重要工作。因此,我国的建筑结构设计人员应该主动的探索建筑工程的建筑结构的创新设计以及主动的总结以往的设计经验而能够做到确保建筑结构的设计质量,要把提高设计质量作为建筑工作的重点,为我国的建筑行业的发展做出贡献。 1建筑结构设计常见的问题 根据近几年我国的建筑的发展以及我国建筑结构设计所暴露出来的问题,总的来说是可以将我国的建筑结构的设计常见的问题大致可以从框架结构设计问题,楼板变形程度计算不准确的问题以及屋面梁配筋少问题进行分析探讨: 一是框架结构设计的问题。我们首先来说框架结构的稳定性,这时我们应该从整个框架结构的稳定程度出发,并且要对其进行分析,我们所知道的稳定方法只是先对框架柱的稳定性进行控制,利用这样来间接控制整个框架结构的稳定性,而这种方法对框架结构的强度和稳定性是要分别进行计算的,在对框架内部的稳定性进行计算时,要看柱的有效长度是不是合格,就要根据框架的失稳类型来决定,这里对柱的计算是根据弹性的稳定理论来的,还有这里的计算只是单根的框架柱的稳定性计算,用这种方法代替了整个框架的稳定性。其次是对弹性工作状态下的框架结构的变形程度的分析,大多数的框架结构在弹性状态下都有进行工作,自然在计算弹性方面就简单了,又有比较成熟的理论计算方法,所以在进行框架设计时就很自然的想到了此计算方法,但是这种计算方法却忽略了变形这一问题的发生,变形会影响整个框架结构的内力。在有些建筑中,由于变形严重而导致框架结构大部分形成塑性屈服,正是这样也失去了承载力,这样也不能很好的发挥结构的实效。这时只要运用非线性的方法就能很好的解决变形的影响,可以利用它对框架结构的实际的效率模式进行全面综合的评价,这样就可以知道整个框架结构的最大承载能力。 二是楼板变形程度计算不准确问题。这个主要的问题就是在建筑结构的的设计之时,一些设计不考虑建筑的基本结构观念和结构布置的措施就采用了楼板变形的建筑结构计算程序。虽然,这样的计算程序的编程在建筑的力学模型以及数学模型上市准确无误的,但是建筑的计算不应该这是准确而应该还要做到正确的计算,而不考虑实际情况的结构设计计算也肯定是会导致建筑结构不安全以及建筑结构的某些部位或构件安全储备过大等现象; 三是屋面梁配筋少。这个问题主要出现在建筑结构设计的结构建模时,这主要是因为建筑结构的设计人员为了方便而直接将屋面梁直接依据下层梁的尺寸进行计算。但是实际来看建筑的屋面梁荷载较小,使得这样的设计计算造成配筋少,这样导致的问题那就是建筑的屋面梁在温度变化、混凝土收缩以及受力等作用下因配筋率过低而会导致建筑面得裂缝。 2关于解决建筑结构设计问题的有效对策 根据上述常见问题,我们基本是可以知道问题的出现主要来说是由于在设计的考虑上不周全、结构的设计上为求简单以及建筑设计人员对建筑的估计性错误,下面就从以下的三个方面系统阐述如何解决存在建筑结构设计的问题。 2.1 箱、筏基础底板的挑板的设计 对于箱、筏基础底板的挑板设计,主要可以从以下三个个方面进行:一是从建筑的结构设计的角度来说,如果在建筑的结构之中能出挑板的设计,这也就是能达到调匀边跨建筑物得底板钢筋。二是出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基。必要时可加较大跨度的周圈窗井。三是出挑板还能够做到降低建筑物得整体沉降,这也就是说当荷载偏心时,可以在建筑物得特定部位设挑板,这能够使得调整建筑物得沉降差以及整体倾斜。此外,在建筑物的窗井部位可以认为是挑板上砌墙,但是是不宜再出长挑板,这回可能导致建筑物的承受过大,而不安全。 2.2建筑工程的建筑结构的设计计算 建筑物的建筑结构设计的计算也就是主要可以从建筑物的梁板跨度的计算以及建筑整体的沉降计算来分析。 对于建筑的梁板跨度的计算。这具体来说也就是要做到假设梁的中心线上有一刚性的支座,而在对其计算之时将梁板作为截面板进行分析计算。而在建筑的扁梁的结构计算中也就是要将计算长度取至梁中心,这也就是说在计算时应该做到选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋,这就是要求梁配筋时应该要取柱边弯距并且考虑是否削峰。 箭镞整体的沉降计算。这种计算也就是说在沉降的计算时要考虑到建筑的基坑的摩擦角范围以及基底土的约束还有就是建筑地基土的反弹因素。而从具体来说即是当建筑的基础小,坑底约束大,那么就是地基土的反弹可以忽略,这样而在计算沉降时,以基底附加应力作为计算标准。反之,那就是在计算沉降时应按基底压力作为计算标准。另外要注意的是那就是建筑基坑边土约束的部分是一般是可以作为建筑安全储备的,这也就是说计算的沉降是应该大于实际沉降的。 2.3建筑结构的主梁以及楼面的设计 对于建筑的结构设计来说,主梁以及楼面的设计也是甚为重要的。首先对于主梁来说,主梁是建筑物的构架以及支撑骨架,其设计一般不会出现问题和争执,主要还是出现在主梁处有次梁的设计上,最基本的要求那就是在有次梁处加箍筋。这种设计可理解为主梁箍筋在次梁截面范围无法加箍筋或箍筋短缺而是在次梁的两侧补上一就像板上洞口附加筋,这样就做到主梁以及次梁的抗剪抗震以及抗压,加强

相关文档
相关文档 最新文档