文档库 最新最全的文档下载
当前位置:文档库 › VOCs处理法

VOCs处理法

VOCs处理法
VOCs处理法

RCO蓄热式催化燃烧装置

一、RCO净化设备适用范围

RCO设备可直接应用于中高浓度(1000mg/m3-10000 mg/m3)的有机废气

净化;RCO设备也可应用于活性炭吸附浓缩催化燃烧系统,用于替代催化燃烧和加热器部分。 RCO处理技术特别适用于热回收率需求高的场合,也适用于同一生产线上,因产品不同,废气成分经常发生变化或废气浓度波动较大的场合。应用行业包括汽车、造船、摩托车、自行车、家用电器、集装箱等生产厂的涂装生产线。石油、化工、橡胶、油漆,涂料、制鞋粘胶、塑胶制品、印铁制罐、印刷油墨、电缆及漆包线等生产线的废气处理,尤其适用于需要热能回收的企业或烘干线废气处理,可将能源回收用于烘干线,从而达到节约能源的目的。可处理的有机物质种类包括苯类、酮类、酯类、酚类、醛类、醇类、醚类和烃类等等。

二、RCO净化原理

在工业生产过程中,排放的有机尾气通过引风机进入设备的旋转阀,通过选转阀将进口气体和出口气体完全分开。气体首先通过陶瓷材料填充层

(底层)预热后发生热量的储备和热交换,其温度几乎达到催化层(中层)进行催化氧化所设定的温度,这时其中部分污染物氧化分解;废气继续通过加热区(上层,可采用电加热方式或天然气加热方式)升温,并维持在设定温度;其再进入催化层完成催化氧化反应,即反应生成CO2和H2O,并释放大量的热量,以达到预期的处理效果。经催化氧化后的气体进入其它的陶瓷填充层,回收热能后通过旋转阀排放到大气中,净化后排气温度仅略高于废气处理前的温度。系统连续运转、自动切换。通过旋转阀工作,所有的陶瓷填充层均完成加热、冷却、净化的循环步骤,热量得以回收。

RCO蓄热式催化燃烧装置使用旋转阀替代了传统设备中众多的阀门以及

复杂的液压设备。有机物去除率可以达到98%以上,热回收率达到95-97%。

三、设备特点

1.操作费用低,RCO一般在有机废气达到一定浓度(1000mg/m3以上)时,

净化装置中的加热室不需进行辅助加热,节省了费用; 2.不产生氮氧化

物(NOX)等二次污染物;

3.全自动控制、操作管理方便;

4.安全性高、净化效率高达99%以上;

5.

高效的热量回收率,热回收效率≥95%。

RTO

生产运营成本。

1、RTO的简介

国内主要做RTO的有:艾瑟尔涂装、ACRspraytech 、等著名公司,其原理是把有机废气加热到760摄氏度以上,使废气中的VOC在氧化分解成二氧化碳和水。氧化产生的高温气体流经特制的陶瓷蓄热体,使陶瓷体升温而“蓄热”,此“蓄热”用于预热后续进入的有机废气。从而节省废气升温的燃料消耗。陶瓷蓄热体应分成两个(含两个)以上的区或室,每个蓄热室依次经历蓄热-放热-清扫等程序,周而复始,连续工作。蓄热室“放热”后应立即引入部分已处理合格的洁净排气对该蓄热室进行清扫(以保证VOC去除率在95%以上),只有待清扫完成后才能进入“蓄热”程序。

2、试用的废气

● 低浓度(低于30%LFL)、大风量

● 废气中含有多种有机成分、或有机成分经常发生变化

● 含有容易使催化剂中毒或活性衰退成分的废气

● 不适用于含有较多硅树脂废气

3性能特点

● 很高的VOC去除率。两床设备达98%以上,三床设备超过99%。

● 超低运行成本。当VOC浓度达到450ppm时,不需要额外的燃料消耗,如VOC浓度更高,还可进行二次余热回收而大大降低生产成本。

●热效率高达95%

● 不产生NOx等二次污染

● 处理风量范围极大 5,000—200,000立方米/小时

● 全自动控制,操作简易,维护方便

vocs处理设计方案

有限公司VOC废气治理项目 技 术 方 案 有限公司 二O—七年一月

技术方案及说明 1设计基础资料 1.1 臭气处理指标 1.1.1废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量9.6万/台,废气的 主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF 丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。 1.1.2 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554 —96)《恶 臭污染物排放标准》(GB14554 —93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未 经处理未达到《大气污染物综合排放标准》(GB 16297-1996 )、 《恶臭污染物排放标准》(GB14554-1993的二级标准执行。

根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》(GB 16297-1996)表2新污染源大气污染物排放限值所示: 1)感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依Weber, Fechner 为:I=K log C+a Steve ns 为匸KCN 式中,I为臭气强度,C为成分浓度 2)臭气防治法所谓的臭气强度,以快、慢表示。(如表-1,表-2,表-3所示)

VOCs处理法

RCO蓄热式催化燃烧装置 一、RCO净化设备适用范围 RCO设备可直接应用于中高浓度(1000mg/m3-10000 mg/m3)的有机废气 净化;RCO设备也可应用于活性炭吸附浓缩催化燃烧系统,用于替代催化燃烧和加热器部分。 RCO处理技术特别适用于热回收率需求高的场合,也适用于同一生产线上,因产品不同,废气成分经常发生变化或废气浓度波动较大的场合。应用行业包括汽车、造船、摩托车、自行车、家用电器、集装箱等生产厂的涂装生产线。石油、化工、橡胶、油漆,涂料、制鞋粘胶、塑胶制品、印铁制罐、印刷油墨、电缆及漆包线等生产线的废气处理,尤其适用于需要热能回收的企业或烘干线废气处理,可将能源回收用于烘干线,从而达到节约能源的目的。可处理的有机物质种类包括苯类、酮类、酯类、酚类、醛类、醇类、醚类和烃类等等。 二、RCO净化原理 在工业生产过程中,排放的有机尾气通过引风机进入设备的旋转阀,通过选转阀将进口气体和出口气体完全分开。气体首先通过陶瓷材料填充层 (底层)预热后发生热量的储备和热交换,其温度几乎达到催化层(中层)进行催化氧化所设定的温度,这时其中部分污染物氧化分解;废气继续通过加热区(上层,可采用电加热方式或天然气加热方式)升温,并维持在设定温度;其再进入催化层完成催化氧化反应,即反应生成CO2和H2O,并释放大量的热量,以达到预期的处理效果。经催化氧化后的气体进入其它的陶瓷填充层,回收热能后通过旋转阀排放到大气中,净化后排气温度仅略高于废气处理前的温度。系统连续运转、自动切换。通过旋转阀工作,所有的陶瓷填充层均完成加热、冷却、净化的循环步骤,热量得以回收。 RCO蓄热式催化燃烧装置使用旋转阀替代了传统设备中众多的阀门以及 复杂的液压设备。有机物去除率可以达到98%以上,热回收率达到95-97%。 三、设备特点 1.操作费用低,RCO一般在有机废气达到一定浓度(1000mg/m3以上)时, 净化装置中的加热室不需进行辅助加热,节省了费用; 2.不产生氮氧化 物(NOX)等二次污染物; 3.全自动控制、操作管理方便; 4.安全性高、净化效率高达99%以上; 5. 高效的热量回收率,热回收效率≥95%。

VOCs常见废气处理工艺方案

1.生物除臭工艺 BCE系列生物除臭设备适用行业 海德利尔HB系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)。 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S、SO32—、SO42—。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成NH4+、NO2—、NO3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H2S时,专性的自养型硫氧化菌会在一定的条件下将H2S氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H2S,然后H2S再由自养型微生物氧化成硫酸根。H2S+O2+自养硫化细菌+CO2→合成细胞物质+SO42—+H2O CH3SH→CH4+H2S→CO2+H2O+SO42— 当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细

菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。 硝化:NH3+O2→HNO2+H2O HNO2+O2→HNO3+H2O 反硝化:HNO3→HNO2→HNO→N2O→N2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等) BCE系列生物净化装置性能特点 微生物活性强生物填料寿命长 表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小及良好的布气布水等特性,使用寿命可达8-10年。 设备操作简单实现自动控制 工艺运行按PLC设置实现完全自动、运行稳定、无人管理,可24小时连续运行,也适合于间断运行。 运行能耗少 由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。填料本身耐生物腐蚀,填料本身没有损耗,可长期稳定运行。 除臭工艺先进、合理无二次污染 有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95%以上,任何季节、气候条件下都能满足各地最严格的除臭环保要求。排放产物人畜无害,属环境友好性技术,无二次污染。 2.低温等离子体技术 低温等离子体除臭设备适用行业

vocs处理设计方案

v o c s处理设计方案集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

有限公司 VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月 技术方案及说明 1 设计基础资料 臭气处理指标 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味;

3) 严重危害了工厂内部及周边生活环境。 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示:

七大VOCs废气处理技术工艺详细讲解

七大VOCs废气处理技术工艺详解 当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。 一、VOC废气处理技术——热破坏法 热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。 热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。这种方法主要分为两种,即直接火焰燃烧和催化燃烧。直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。这种方法比直接燃烧用时

更少,是高浓度、小流量有机废气净化的首选技术。 二、VOC废气处理技术——吸附法 有机废气中的吸附法主要适用于低浓度、高通量有机废气。现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。实践证明,这种处理方法值得推广应用。 但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。所以,使用此方法处理废气的关键在于吸附剂。当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。 此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。 三、VOC废气处理技术——生物处理法 从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O和其它简单无机物等。这是一种无害的有机废气处理方式。 一般情况下,一个完整的生物处理有机废气过程包括3个基本步骤:a) 有机废气中的有机污染物首先与水接触,在水中可以迅速溶解;b) 在液膜中溶解的有机物,在液态浓度低的情况下,可以逐步扩散到生物膜中,进而被附着在生物膜上的微生物吸收;c) 被微生物

vocs处理设计方案

有限公司 VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月 技术方案及说明 1 设计基础资料 1.1 臭气处理指标 1.1.1 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量9.6万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。

1.1.2 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示:

1) 感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依 Weber , Fechner 为: I=K log C+a Stevens 为 I=KCN 式中,I 为臭气强度,C 为成分浓度 2) 臭气防治法所谓的臭气强度,以快、慢表示。(如表-1,表-2,表-3 所示)。 表1 9阶段快、慢表示法 表2 6 阶段臭气强度表示法

vocs处理设计方案

v o c s处理设计方案内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

有限公司 VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月 技术方案及说明 1 设计基础资料 臭气处理指标 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。 臭气处理标准

臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示: 1) 感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依

vocs处理设计方案

v o c s处理设计方案公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

有限公司VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月

技术方案及说明 1 设计基础资料 臭气处理指标 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 目前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。

本工程主要目标为改善排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》( GB 16297-1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示: 1) 感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依Weber, Fechner 为: I=K log C+a Stevens 为 I=KCN 式中,I 为臭气强度,C 为成分浓度

UV光解处理VOCs存在的问题及解决方案

广州和风环境技术有限公司 https://www.wendangku.net/doc/202801442.html,/ UV光解处理VOCs存在的问题及解决方案更多有关废气处理核心技术,请百度:和风环境技术。 挥发性有机物(VOCs)是形成臭氧和二次气溶胶污染的重要前体物,严重影响着大气质量,影响着动植物生长和人类的健康。某些有毒VOCs废气有致残、致畸、致癌作用,对长期暴露其中的人体造成严重伤害。为此,我国于1997年颁布并实施的《大气污染综合排放标准》,限定33种污染物的排放限值,其中包括苯、甲苯、二甲苯等挥发性有机物;与此同时,不同行业的国家标准和地方标准不断制定和颁布,同时颁布《重点行业VOCs污染控制技术指南》、《中华人民共和国大气污染防治法(修订草案)》,特别强调的是在“十三五”期间,严格控制VOCs在重点区域、重点行业推进挥发性有机物排放总量。UV光解因具有操作简单、应用范围广、运行成本低、设计成本少等特点,已经被众多中小企业应用到中。现在把UV光解技术降解原理、存在的问题及改进措施介绍如下。 一、UV光解原理 VU光解是利用紫外灯对VOCs进行近距离照射,破坏化学键,氧化一部分的VOCs 为二氧化碳、水和氯化氢;同时将部分的大分子VOCs裂解为小分子化合物,其中小分子化合物大多数均为含C-O、C﹦O的小分子化合物。紫外灯是UV光解的核心组成部分,比如采用185nm紫外灯照射VOCs或恶臭气体,能将键能小于647KJ/mol的化合物破坏,同时185nm紫外灯中波长更短的紫外线也可将部分VOCs进行氧化分解。常见化合物分子的键能如下:

广州和风环境技术有限公司 https://www.wendangku.net/doc/202801442.html,/ UV光解能去除挥发性有机物(VOCs)、硫化氢、氨气、硫醇类、苯系物等污染物,为此很多企业在大力推广UV光解技术。但不得不说,单一的UV光解技术在使用上有很大的局限性,突破其技术瓶颈真正服务于VOCs治理是亟待解决的问题。 二、UV光解存在的问题 UV光解存在的一个问题是:产生了不完全氧化的副产物,这些副产物可能比原始VOCs有着更大的毒性,比如说三氯乙烯在光解过程中生成碳酰氯。碳酰氯被称为光气,是剧烈窒息性毒气,高浓度吸入可致肺水肿,其毒性比氯气约大10倍。 UV光解存在的另一个问题是:产生了大量的臭氧。为了更好地氧化、分解或破环VOCs,通常会使用过量的紫外灯,紫外线产生的臭氧直接排放到大气中,将会对人体,尤其是对眼睛、呼吸道、肺等有侵蚀和损害作用,也对人类生活的自然环境造成一定的伤害。 三、UV光解降解VOCs的改进措施 1、UV光解与光催化联用 UV光解阶段生成部分氧化的副产物很容易在光催化部分氧化,比如UV光解阶段可以将碳氢化合物氧化成醛、酮,而醛和酮比初始的碳氢化合物在光催化阶段具有更好的反应活性;另外,光解阶段产生的副产物在光催化阶段不仅有利于转变成二氧化碳和水,同时也促进最初的工业废气的氧化、分解与破坏。光解阶段产生的副产物进入光催化阶段促进光催化剂的表面反应,比如链反应,也影响催化剂表面的界面反应,能够快速氧化其它污染物。因此,UV光解光催化是一个协同反应过程。 UV光解光催化技术应用在具体工业VOCs废气治理时,有一些关键因素必须加以重视和控制,真正掌握UV光解光催化的核心内涵。 光解阶段影响VOCs转化的关键因素在于温度、停留时间和紫外灯的强度等。通常光解部分的温度控制在20-65℃之间,太低或太高的温度均不利于光解有效功率和光强的发挥;气体的停留时间在0.1-50s之间,太长的停留时间不利于实用化和工业应用;紫外灯的波长控制在185-375nm之间;提高光解的途径

挥发性有机物VOC处理进展概述

挥发性有机物VOC处理进展概述 一、有机废气的各种净化方法 1.1吸附法 吸附法是一种从有机废气中去除可吸附的VOC组分或回收溶剂的一种传统方法。吸附操作的原理是在气相中需要分离的气体组分(吸附质)可以选择性的与固体表面(吸附剂)相结合,然后再经解吸又回到气相中,通常吸附分为物理吸附和化学吸附两种。VOC的净化主要采用物理吸附的方法,与其他方法相比,吸附法可以吸附浓度很低的(甚至痕量)组分,经解吸后可大大增浓,因而可以从废气中出去溶剂蒸气和最后经分离来回收溶剂。它有很多优点:不需要水,不需要辅助燃料,而且能适应废气浓度的变化和吸附卤代烃类和含无机物的挥发组分。 典型的吸附等温曲线如图3所示,工业上吸附等温曲线方程常用经验公式表示,其中与最事实最吻合的是由布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在兰米尔方程基础上提出的描述多分子层吸附理论的方程(BET方程)。 在实际应用过程中,当气体混合物通过填装固体吸附剂的床层时,要分离组分被吸附在固体表面上;当吸附剂达到饱和时,被吸附的物质通过加热或减压而解吸,在这个过程中吸附剂得到再生。由于吸附剂的吸附容量较低,因此至少需要两套吸附器来完成吸附、解吸的连续操作过程。若用热空气或过热蒸汽来解吸,则不仅可以使床层温度升高,而且可使要吸附的气体组分的分压降低;分离出的气体组分就处于热空气或水蒸气中,经冷却、冷凝分离。在用水蒸气解吸的情况下,由于大部分的VOC在水中的溶解度极低,经冷凝而成为两相,因此很容易分离。 有机废气净化常用的吸附剂是活性炭或活性焦炭,因为它们不仅具有较大的比表面积,而且对非极性物质具有优异的吸附性能,而对极性物质如水的吸附性能很差,因而就有可能方便的用水蒸气再生。

废气(VOCs)处理技术

微波催化技术 技术作用原理 频率从300MHz~300GMHz的电磁波,其方向和大小随时间作周期性变化;微波与废气物分子直接作用,将超高频电磁波能量对废气进行微波辐射,使细胞中极性物质随高频微波场的摆动受到干扰和阻碍,引起微生物细胞的蛋白质,核酸等生物大分子受凝固或变性失活,从而导致其突变或死亡,同时对磁共振使之产生强磁辐射对废气分子进行切割、破坏、断裂,如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子键,破坏细菌的核酸(DNA),再通过臭氧进行氧化反应,彻底达到脱臭及杀灭细菌的目的。最后采用特制合成催化剂对废气进行光合还原反应。可有效地破坏废气中分子链,将有毒有害物质改变成为低分子无害物质,如水和二氧化碳等。 ■适用领域 氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯、甲醛等多种复杂性废气。运用于化工、造纸、医药、食品、橡胶、轮胎、汽车、喷涂等多个领域。

■技术特点 1、处理能力比传统技术强,可根据不同工况特制。 2、设备占地小、质量轻,如:处理10万风量的废气,设备占地只需3个平方,总质量仅为200多千克 3、免维护:设备无需添加任何易耗材料,整体设使用寿命在5年以上,无需人工看管维护。 4、节能:设备运行过程中单台设备运行只需1-6度电,6度电可以处理10万风量的废气,真正意义上做到节能环保。 5、稳定性:整机所有配件均属于持续性材料,适用于24小时不间断运行。 6、安全性:主体设备无电路,真正实现远程智能操作,无安全隐患。 UV光氧化技术 技术原理 一、利用特制的高能UV紫外线光束照射恶臭气体,裂解恶臭气体如:氨、三甲胺、硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,苯、甲苯、二甲苯的分子键。 二、利用高臭氧分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧,使呈游离状态的污染物分子与臭氧氧化结合成小分子无害或低害的化合物。如CO2、H2O等。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧)。 三、利用特制的催化剂进行氧化还原反应;运用高能UV紫外线光束、臭氧及催化剂对恶臭气体进行协同分解氧化反应,使恶臭气体物质其降解转化成低分子化合物、水和二氧化碳,彻底达到脱臭及杀灭细菌的目的。

有机废气(VOCs)处理技术综述

有机废气(VOCs)处理技术综述 来源:内蒙古环境科学更新时间:09-8-21 13:47 作者: 马生柏汪斌 近年来随着经济的发展 ,化工企业的大量新起 ,在加上环保投资力度的不够 ,导致了大量工业有机废气的排放 ,使得大气环境质量下降 ,给人体健康来严重危害 ,给国民经济造成巨大损失 ,因此 ,需要加大对有机废气的处理。对有机废气的治理 ,人们早就有研究 ,而且已经开发出一些卓有成效的控制技术 ,如广泛采用并且研究较多的有热破坏法、冷凝法、吸收法等 ,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对上述方法作较为详细的介绍。 1 有机废气处理技术 1 . 1 热破坏法 热破坏是目前应用比较广泛也是研究较多的有机废气治理方法 ,特别是对低浓度有机废气 ,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低 ,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下 ,可以达到 99%的热处理效率。 催化燃烧是有机物在气流中被加热 ,在催化床层作用下 ,加快有机物化学反应 (或破坏效率的方法 ) ,催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐 ,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是 Pt、 Pd,技术成熟 ,而且催化活性高 ,但价格比较昂贵而且在处理卤素有机物 ,含 N、 S、 P等元素时 ,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多 ,而且多集中于非贵金属催化剂并取能得了很多成果。例如 V2O5 +MOX (M:过渡族金属 ) +贵金属制成的催化剂用于治理甲硫醇废气 , Pt + Pd + Cu催人剂用于治理含氮有机醇废气。 由于有机废气中常出现杂质 ,很容易引起催化剂中毒 ,导致催化剂中毒的毒物 (抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂 ,增大催化剂有效面积 ,使催化剂具有一定机械强度 ,减少烧结 ,提高催化活性和稳定性的作用。能作为载体的材料主要有 AL2O3、铁钒、石棉、陶土、活性炭、金属等 ,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝

vocs处理设计方案

vocs处理设计方案 1 2020年4月19日

有限公司 VOC废气治理项目 技 术 方 案 有限公司 二○一七年一月 技术方案及说明 1 设计基础资料 2 2020年4月19日

1.1臭气处理指标 1.1.1 废气来源与废气成份 共有三个主要生产车间,每个车间3根30m高排气筒,引风机风量9.6万/台,废气的主要来源为生产车间主要废气成分为苯乙烯、二甲苯、苯酚、醋酸乙酯,DMF,丁酮,甲醇,三乙胺,乙酸乙酯,叔丁醇,对甲苯磺酸,异丙醇等。 现场存在问题: 1) 当前气体排放未做净化处理; 2) 未按环保要求做到无毒无异味排放,车间内外仍有很大异味; 3) 严重危害了工厂内部及周边生活环境。 1.1.2 臭气处理标准 臭气处理后尾气达到国家《大气污染物排放标准》(GB14554-96)《恶臭污染物排放标准》(GB14554-93)的15米排气筒的排放标准值。具体见下表,排气筒留有气体检测口。臭气处理后恶臭污染物排放标准值。 针对该项目排放的废气特性,对废气处理工艺、设备选型等进行多方面比较,采用技术先进、处理效果好、运行稳定、投资省、运行成本相对低的工艺,同时使工程获得最佳的环境效益、社会效益和经济效益,力求满足项目业主的要求。 本工程主要目标为改进排风空气净化,控制排放气体的浓度,排放废气未经处理未达到《大气污染物综合排放标准》(GB 16297- 3 2020年4月19日

1996 )、《恶臭污染物排放标准》(GB14554-1993)的二级标准执行。 根据我方完成同类工程的监测内容,主要监测指标《大气污染物综合排放标准》( GB 16297-1996 )表2 新污染源大气污染物排放限值所示: 1) 感知臭味的强度(感觉量)与臭味的成分浓度(刺激量)的关系如下:依 Weber, Fechner 为: I=K log C+a Stevens 为 I=KCN 式中,I 为臭气强度,C 为成分浓度 2) 臭气防治法所谓的臭气强度,以快、慢表示。(如表-1,表-2,表-3 所示)。 4 2020年4月19日

最新VOCs常见废气处理工艺方案

最新VOCs常见废气处理工艺方案

1.生物除臭工艺BCE系列生物除臭设备适用行业 海德利尔HB系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)。生物净化工艺介绍各臭气源点的臭气经集气系统负压收集后,经过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,经过气液、液固传质由多种微生物将致臭物质降解。含硫系列臭气被氧化分解成S、SO32—、SO42—。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列

臭气被氧化分解成NH4+、NO2—、NO3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H2S时,专性的自养型硫氧化菌会在一定的条件下将H2S氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H2S,然后H2S再由自养型微生物氧化成硫酸根。H2S+O2+自养硫化细菌+CO2→合成细胞物质+SO42—+H2O CH3SH→CH4+H2S→CO2+H2O+SO42—当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。硝化:NH3+O2→HNO2+H2O HNO2+O2→HNO3+H2O 反硝化:HNO3→HNO2→HNO→N2O→N2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)BCE系列生物净化装置性能特点微生物活性强生物填料寿命长表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小及良好的布气布水等特性,使用寿命可达8- 。设备操作简单实现自动控制工艺运行按PLC设置实现完全自动、运行稳定、无人管理,可24小时连续运行,也适合于间断运行。

相关文档