文档库 最新最全的文档下载
当前位置:文档库 › 利用MAXWELL计算三相变压器电感参数

利用MAXWELL计算三相变压器电感参数

利用MAXWELL计算三相变压器电感参数
利用MAXWELL计算三相变压器电感参数

目录

1 建模 (1)

1.1 创建变压器铁芯框架 (1)

1.2创建气隙 (1)

1.3 创建线圈 (2)

1.4 创建激励电流加载面 (3)

1.5创建计算区域 (3)

2 设置激励 (4)

3设置自适应计算参数 (5)

4设置计算参数 (5)

4.1设置参数Matrix1 (5)

4.2设置参数Matrix2 (6)

5 Check & Run (6)

6 查看结果 (7)

1 建模

打开maxwell 14.0 创建一个新的3D设计项目并将求解器设定为Transient 类型,然后将几何尺寸单位设定为in。

1.1 创建变压器铁芯框架

先创建一个长方体,然后在其内部创建两个大小相等的,关于Z轴对称的长方体,然后使用Subtract构造出铁芯的基本框架,如图1-1所示。

图1-1

1.2创建气隙

先在铁芯下部创建一个扁平的长方体,同样使用Subtract功能在铁芯下部创建气隙,如图1-2、1-3所示。

图1-2

图1-3

1.3 创建线圈

先在最左边铁心柱上创建一个线圈,如图1-4所示。然后使用Duplicate功能复制得到9个相同的线圈,如图1-5图1-6所示。

图1-4

图1-5

图1-6

1.4 创建激励电流加载面

选中所有线圈后,选中YZ平面,使用Separate Bodies得到截面,然后在Edit 中选择Delete以删除多余的面。如图1-7所示。

图1-7

1.5创建计算区域

在Draw中选择Region,X的参数设定为+400,-400;Y的参数设定为+100,-100;Z的参数设定为+150,-150。

2 设置激励

选中左边柱上线圈截面,如图2-1所示,然后在Excitations中选择Assign > Current,参数设置如图2-2所示。在弹出的弹出Add Variable窗口中设置Variable:Mag > Value: 30A。

图2-1

图2-2

按照同样的方法分别选中中间柱和最右边柱上线圈截面,将激励参数分别设置为如图2-3、2-4所示。

图2-4

3设置自适应计算参数

在Maxwell 3D 中选择Analysis Setup > Add Solution Setup。将最大迭代次数(Maximum number of passes)设置为10;误差要求(Percent Error)设置为1%;每次迭代加密剖分单元比例(Refinement per Pass): 30%;设置非线性残差(nonlinear residual): 0.001。

4设置计算参数

4.1设置参数Matrix1

选择Parameters > Assign > Matrix,并在弹出的Matrix窗口中选Setup子菜单,include栏中确认打钩,在Post Processing子菜单下,Turns栏中全部改为30。然后将绕组分为三组,如图4-1所示。

图4-1

4.2设置参数Matrix2

参考4.1并如图4-2设置参数。每个线圈有15匝,在同一个柱上的3个线圈是串联连接。

图4-2

5 Check & Run

6 查看结果

在Project Manager中选择Parameters > Matrix,点击右键,选择View Solution。结果如图6-1所示。

图6-1

最新大量程电感表

大量程电感表

超大量程电感表 许剑伟莆田第十中学 一、引言: 无线电爱好者,经常要测量电感量,他们常常测量小到零点几uH或大到上千H的电感。除了商品数字电桥可以测量,其它仪表很难测出来。后来,在网上看到捷克人的作品,基于LM311制作了一个小电感测量仪,国内也有很多爱好者仿制。出于好奇,也动手仿制并做了改进,重新分析、设计电路,使得本表可以极宽范围测量,而且精度良好。最先使用洞洞板调试,后来打样PCB 板安装了数台,效果良好。 二、电路原理 本表利用LM393做为放大器,在正反馈回路加放LC选频回路,得到稳定的振荡,并由单片机测量出振荡频率F。当F和C已知,就可以计算出L的值。虽然LM393频响比LM311差5倍,但本表通过合理的补偿,可以消除 LM393速度上的不足,大幅减小了小电感测量误差。此外,由于采用了高阻耦合,使得本电路可以测量1000H以上的电感。 电路原理如下图。 Ca是基准电容,La是辅助谐振电感。Rf*C1应大于Rb*C2,以免低频自激或间歇振荡。C1、C2是隔直流电容。C4、C5是表笔高频干扰信号吸收电容(不是工频吸收电容)。C6是相位补偿电容(LM393无内置相位补偿)。 R1、R2、R3是1/3衰减器兼直流编置电压发生器。Rf是高阻同相耦合器。R4、R5是上拉电阻。Rf1、Rf2是负反馈电阻,7.2倍放大。R6是偏置电阻并产生数毫伏正偏压。R7、R8是给二极管施加测试电流的电阻

那个Rf耦合电阻,在超声波范围内并不是存阻的。当频率较高时,电阻两端的分布电容及LM393内的信号耦合是不可以忽略的。虽然是电容耦合量很小,但在密勒效应的作用下,等效到输入端的电容会被成百倍放大,有效谐振电容变小。当频率比较高时,谐振器的阻抗很小,所以反馈系数非常弱,这就造成密勒效应的影响严重,可影响2%以上,为此,高频率下有效谐振电容需要适当修正。此外,LM393的延迟也会造成振荡频率变小,引起测值变大。以上因素,结合起来,有效谐振电容还要修正 k=5e-8 * Rf * f,式中Rf是指反馈总电阻(单位M欧),f指频率(单位Hz)。 电感的计算公式变为: ?Skip Record If...? 实际上,可以理解为a就是考虑密勒效应及LM393延时后对频率修正的结果。

变压器匝数计算怎么算

变压器初、次线匝数,与其输入输出电压及输出功率有关,功率大小又与硅钢片截面积有关。 第一种: 常用小型变压器每伏匝数计算公式为:N=10000/ 这里:N—每伏匝数,F—交流电频率(我国为50HZ),B—磁通密度,S——铁芯截面积 磁通密度一般因材料而异,常见的硅钢片取左右. 根据此公式,你量一下变压器磁芯尺寸,计算出截面积,就可推算出每伏匝数。知道每伏匝数后,即可方便计算出初、次线匝数了。 例如:量得一小型变器中间舌宽为2CM,叠厚为3CM,则基截面为:2*3=6(CM^2) 如用H23片,取B值为。则计算每伏匝数为: N=10000/*50**6=(匝/伏) 如果初线接220V电源,则初线匝数=220*=(匝)取1179即可。设次级输出电源为12V,则12*=,取64匝即可,你如果是自己维修绕制,还需根据功率和电压再计算出线经大小。 第二种: 只要知道铁芯中柱的截面积、导磁率即可以计算匝数,知道功率就能计算线径。

例题: 变压器初级电压220V,次级电压12V,功率为100W,求初、次级匝数及线径。 选择变压器铁芯横截面积: S=×根号P=×根号100=×10≈13(平方CM), EI形铁芯中间柱宽为3CM,叠厚为,即3× 求每伏匝数:N=×100000/B×S B=硅钢片导磁率,中小型变压器导磁率在6000~12000高斯间选取,现今的硅钢片的导磁率一般在10000高斯付近,取10000高斯。 公式简化:N=×100000/10000×S=45/S N=45/13≈(匝) 初、次级匝数: N1=220×=770(匝) N2=12×=42(匝) 在计算次级线圈时,考虑到变压器的漏感及线圈的铜阻,故须增加5%的余量。 N2=42×≈44(匝) 求初、次级电流: I1=P/U=100/220≈(A) I2=P/U=100/12≈(A) 求导线直径:(δ是电流密度,一般标准线规为每M

变压器计算表

由变换器预定技术指标可知变压器初级侧电压 Vin(min)=200V,Vin(max)=380V, 预设效率85%η=,工作频率65kHz 电源输出功率P(out)=24V*1A=24W 变压器的输入功率P(in)=P(out)/0.8=30W. 根据面积乘积法来确定磁芯型号,为了留有一定裕量,选用锰锌铁氧体磁芯EFD30,有效截面积269e A mm = 因为所选的MOS 管的最大耐压值max 600mos V V =。在100 V 裕量条件下所允许的最大反射电压 V f =V mosmax -V dcmac -100=600-380-100=120V 最大占空比 D max =V f /(V dcmin +V f )=120/(200+120)=0.375 初级电流 Ip=2*Pin/D (max)*V dcmin =2*30/(0.375*200)=0.8A 初级最大电感量 Lp=(D (max)*V dcmin )/f*Ip=0.375*200/65*0.8=1.4mH 初次级匝数比 N 1=V f /V o =120/24=5 初级匝数

5832 .191120106928.018.04.11033==????=?=e w P P P A B k I L N 其中,磁感应强度B =0.28 T ;由于此变换器设计在断续工作模式k=1(连续模式k=0.5) 磁芯气隙 ()270.4100.015p e g p N A l cm L π-= ?≈ 5V--次级匝数 6.11==n N N P S 辅助绕组匝数 6.8158.512s a a o N V N V ?==≈=8.2

变压器的计算公式

一、按变压器的效率最高时的负荷率βM来计算变压器容量 当建筑物的计算负荷确定后,配电变压器的总装机容量为: S=Pjs/βb×cosφ2(KVA) (1) 式中Pjs ——建筑物的有功计算负荷KW; cosφ2——补偿后的平均功率因数,不小于0.9; βb——变压器的负荷率。 因此,变压器容量的最终确定就在于选定变压器的负荷率βb。 我们知道,当变压器的负荷率为: βb=βM=Po/PKH (2) 时效率最高 式中Po——变压器的空载损耗; PKH ——变压器的短路损耗。 然而高层建筑中设备用房多设于地下层,为满足消防的要求,配电变压器一般选 用干式或环氧树脂浇注变压器,表一为国产SGL型电力变压器最佳负荷率。 表国产SGL型电力变压器最佳负荷率βm 容量(千伏安) 500 630 800 1000 1250 1600 空载损耗(瓦) 1850 2100 2400 2800 3350 3950 负载损耗(瓦) 4850 5650 7500 9200 11000 13300 损失比α2:2.62 2.69 3.13 3.20 3.28 3.37 最佳负荷率βm% 61.8 61.0 56.6 55.2 55.2 54.5 技术文章选择变压器容量的简便方法: 我们在平时选用配电变压器时,如果把变压器容量选择过大,就会形成“大马拉小车”的现象。这不仅增加了设备投资,而且还会使变压器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与过负荷状态,易烧毁变压器。因此,正确选择变压器容量是电网降损节能的重要措施之一,在实际应用中,我们可以根据以下的简便方法来选择变压器容量。高频变压器 变压器容量本着“小容量,密布点”的原则,配电变压器应尽量位于负荷中心,供电半径不超过0.5千米。

变压器损耗的计算公式及方法

变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗, 实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗,1 、变压器损耗计算公式 ⑴有功损耗:△ P=PO+KT B 2PK --------- ⑴ ⑵无功损耗:△ Q=QO+K"T 2QK——(2) ⑶综合功率损耗:△ PZ=A P+KQX Q ----(3) QO IO%SN Q? UK%SN 式中:Q0 ----- 空载无功损耗(kvar) P0――空载损耗(kW) PK额定负载损耗(kW) SN变压器额定容量(kVA) 10%――变压器空载电流百分比。 UK%短路电压百分比 3 ――平均负载系数 KT――负载波动损耗系数 QK额定负载漏磁功率(kvar) KQ无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; ⑵对城市电网和工业企业电网的6kV?10kV降压变压器取系统最小负荷时,其无功当量 KQ=0.1kW/kvar; (3)变压器平均负载系数,对于农用变压器可取3 =20%;对于工业企业,实行三班制,可取 3 =75%; ⑷变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK 10%、UK%见产品资料所示。 2、变压器损耗的特征 P0――空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;

磁滞损耗与频率成正比; 与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 P 负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而 变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组 外的金属部分产生杂散损耗。 变压器的全损耗△ P=PO+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ △ P),以百分比表示;其中PZ为变压器二次侧输出功率。一、变损电量的计 算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)x供电时间(小时) 配变的空载损耗(铁损),由附表查得,供电时间为变压器的实际运行时间,按以下原则确定: (1)对连续供电的用户,全月按720 小时计算。 (2)由于电网原因间断供电或限电拉路,按变电站向用户实际供电小时数计算,不得以难计算为由,仍按全月运行计算,变压器停电后,自坠熔丝管交供电站的时间,在计算铁损时应予扣除。 (3)变压器低压侧装有积时钟的用户,按积时钟累计的供电时间计算。 2、铜损电量的计算:当负载率为40%及以下时,按全月用电量(以电能表读数)的2%计收,计算公式:铜损电量(千瓦时)=月用电量(千瓦时)X 2% 因为铜损与负荷电流(电量)大小有关,当配变的月平均负载率超过40%时,铜损电量应按月用电量的3%计收。负载率为40%时的月用电量,由附表查的。负载率的计算公式为:负载率=抄见电量/ 式中:S――配变的额定容量(千伏安);T ――全月日历时间、取720小时; COSZ――功率因数,取0.80。 电力变压器的变损可分为铜损和铁损。铜损一般在0.5%。铁损一般在5~7%。干式变压器的变损比油侵式要小。合计变损:0.5+6=6.5 计算方法:1000KVA X 6.5%=65KVA 65KV/X 24 小时X 365 天=568400KWT度) 变压器上的标牌都有具体的数据。 变压器空载损耗空载损耗指变压器二次侧开路,一次侧加额率与额定电压的正弦波电压时变压器所吸取的功率。一般

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

变压器参数含义

变压器参数含义 1 额定容量Se:指变压器在出厂时铭牌标定的额定电压、额定电流下连续运行时能输送的容量,单位kVA。其计算公式为: 三相变压器Se= 单相变压器量Se=UeIe 。 2、额定电压Ue:指变压器长时间运行时所能承受的工作电压(铭牌上的Ue值,是指调压分接开关在中间分头时的额定电压);单位为kV。 3、额定电流Ie:在额定容量Se和允许温升条件下,允许长期通过的工作电流,单位为A。 4、短路电压Ud%:也称阻抗电压(UK%),将变压器的二次绕组短路,一次侧施加电压,至额定电流值时,原边的电压和额定电压Ue之比的百分数。即:Ud%=Ud/Ue:100% 变压器的并列运行要求Ud%值相同,当变压器二次侧短咱时,Ud%值将决定短路电流大小,所以是考虑短路电流热稳定和动稳定及继电保护整定的重要依据。 5、空载电流I。当变压器在一次侧额定电压下,二次侧绕组空载时,在一次绕组中通过的电流,称空载电流。它起变压器的激磁作用,故又称激磁电流;一般以其占额定电流的百分数表示。空载电流的大小决定于变压器容量、磁路结构和硅钢片质量等。 6、空载损耗(铁损)ΔP0:指变压器二次侧开路,一次侧加额定电压时,变压器的损耗。它等于变压器铁芯的涡流损耗和激磁损耗,是变压器的重要性能指标。 7、短路损耗(铜损)ΔPd:变压器的铁损包括两个方面。一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时。铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗。 8、铜损是指变压器线圈电阻所引起的损耗。当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。 9、电压比:变压器两组线圈圈数分别为N1 和N2 ,N1 为初级,N2 为次级。在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势。当N2>N1 时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器。

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在省供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

单级PFC高频变压器设计及参数计算详解

单级PFC高频变压器设计及参数计算详解 由于LED照明电源要求:民用照明PF值必需大于0.7,商业照明必需大于0.9。对于10~70W的LED驱动电源,一般采用单级PFC来设计。即节省空间又节约成本。接下来我们来探讨一下单级PFC高频变压器设计。 以一个60W的实例来进行讲解: 输入条件: 电压范围:176~265Vac 50/60Hz PF>0.95 THD<25% 效率ef〉0.87 输出条件: 输出电压:48V 输出电流:1.28A 第一步:选择ic 和磁芯: Ic用士兰的SA7527,输出带准谐振,效率做到0.87应该没有问题。 按功率来选择磁芯,根据以下公式: Po=100*Fs*Ve Po:输出功率;100:常数;Fs:开关频率;Ve:磁芯体积。 在这里,Po=Vo*Io=48*1.28=61.44;工作频率选择:50000Hz;则: Ve=Po/(100*50000) =61.4/(100*50000)=12280 mmm PQ3230的Ve值为:11970.00mmm,这里由于是调频方式工作。完全可以满足需求。可以代入公式去看看实际 需要的工作频率为:51295Hz。 第二步:计算初级电感量。 最小直流输入电压:VDmin=176*1.414=249V。 最大直流输入电压:VDmax=265*1.414=375V。 最大输入功率:Pinmax=Po/ef=61.4/0.9=68.3W(设计变压器时稍微取得比总效率高一点)。 最大占空比的选择: 宽电压一般选择小于0.5,窄电压一般选择在0.3左右。考虑到MOS管的耐压,一般不要 选择大于0.5 ,220V供电时选择0.3比较合适。在这里选择:Dmax=0.327。 最大输入电流: Iinmax=Pin/Vinmin=68.3/176=0.39 A 最大输入峰值电流:Iinmaxp=Iin*1.414=0.39*1.414=0.55A MOS管最大峰值电流:Imosmax=2*Iinmaxp/Dmax=2*0.55/0.327=3.36A 初级电感量:Lp= Dmax^2*Vin_min/(2*Iin_max*fs_min)*10^3 =0.327*0.327*176/(2*0.39*50000)*1000 =482.55 uH 取500uH。 第三步:计算初级匝数NP: 查磁芯资料,PQ3230的AL值为:5140nH/N^2,在设计反激变压器时,要留一定的气息。选择0.6倍的AL值比较合适。在这里AL我们取:

小型单相变压器设计与相关计算

小型单相变压器设计 1、小型单相变压器简介 变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。 小型变压器指的是容量1000V.A以下的变压器。最简单的小型单相变压器由一个闭合的铁心(构成磁路)和绕在铁心上的两个匝数不同、彼此绝缘的绕组(构成电路)构成。这类变压器在生活中的应用非常广泛。 1.1 变压器的基本结构 1、1、1主要组成 (1) 铁心 为了减少铁损耗,变压器的贴心是用彼此绝缘的硅钢片叠成或非晶体片制成。其中套有绕组的部分称为铁心柱,连接铁心柱的部分称为铁轭,为了减少磁路中不必要的气隙,乡邻两层硅钢片的接缝要相互错开。 (2)绕组 变压器的绕组用绝缘导线或扁导线绕成,实际变压器的高,低压绕组并不是分装在两个铁心柱上,而是同心地套在同一个铁心柱上的。为了绝缘的方便,通常低压绕组在里面,靠近铁心柱,高压绕组套在低压绕组外面。(3)其他 除铁心和绕组外,因容量和冷却方式的不同,还需要增加一些其他部件,例如外油绝缘套等等。

1、1、2主要类型 按相数的不同,变压器可分为单向相变压器和三相变压器等。 按每相绕组数量的不同,变压器可分为双绕组变压器、三绕组变压器、多绕组变压器和自耦变压器等。 按结构形式的不同,变压器可分为心式和壳式两种。心式变压器的特点是绕组包围着铁心。脆变压器用铁量较少,构造简单,绕组的安装和绝缘比较容易,多用于容量较大的变压器中。壳式变压器的特点是铁心包围绕组。脆变压器用铜量少,多用于小容量变压器中。 2、变压器的工作原理 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。 变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。 变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1N,副绕组匝数为2N。

变压器功率计算方法

变压器功率计算方法 0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明:

(1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV 电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,

用万用表测量电感

用万用表怎么样测量电感 作者:佚名日期:2010年06月28日来源:不详【字体:大中小】我要评论(0) 核心提示: 用万用表怎么样测量电感电感器、变压器检测方法与经验1色码电感器的的检 测将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向 右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别:A 被测色码 电感器电阻值为零,其内部有短路性故障。B被测色码电感器直流电阻值的大小与绕 制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被 测色码电感器是正常的。2中周变压器的检测A 将万用表拨至R 用万用表怎么样测量电感 电感器、变压器检测方法与经验 1色码电感器的的检测 将万用表置于R×1挡,红、黑表笔各接色码电感器的任一引出端,此时指针应向右摆动。根据测出的电阻值大小,可具体分下述三种情况进行鉴别: A被测色码电感器电阻值为零,其内部有短路性故障。B被测色码电感器直流电阻值的大小与绕制电感器线圈所用的漆包线径、绕制圈数有直接关系,只要能测出电阻值,则可认为被测色码电感器是正常的。 2中周变压器的检测 A 将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。B检测绝缘性能 将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 3电源变压器的检测 A通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 B绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 C线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 D判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些

变压器的主要计算公式

初中生就会的变压器的主要计算公式: 第一步:变压器的功率= 输出电压* 输出电流(如果有多组就每组功率相加) 得到的结果要除以变压器的效率,否则输出功率不 足。100W以下除0.75,100W-300W除0.9,300W 以上除0.95.事实上变压器的骨架不一定很合适计 算结果,所以这只是要设计变压器的功率,比如一 个变压器它的输入220V,输出是12V 8A,那么它的 需要的功率是12*8/0.75=128W,后面的例子以此参 数为例(市售的产品一般不会取理论上的值,因为 它们考虑的更多是成本,所以它们选的功率不会大 这么多) 第二步:决定需要的铁芯面积;需要的铁芯面积=1.25变压器的功率.单位为平方厘米。上例的铁芯面 积是1.25*128=14.142=14.2平方厘米 第三步:选择骨架,铁芯面积就是铁芯的长除以3(得到的数就是舌宽,就是中间那片的宽度),再乘以铁芯要 叠的厚度,如上例它应该选择86*50或86*53的骨 架,从成本考虑选86*50,它的面积是 8.6/3*5=14.333,由于五金件的误差,真实的面积大 约是14.0。这个才是真实的铁芯面积 第四步:计算每V电压需要的匝数,公式:

100000000÷4.44*电源频率*铁芯面积*铁芯最大磁感应强度 当电源电压为50Hz时(中国大陆),代入以上公式,得到以下公式; 450000÷铁芯面积*铁芯最大磁感应强度 铁芯最大磁感应强度一般取10000—14000(高斯)之 间,质量好的取14000-12000,一般的取 10000-12000,个人一般取中间12000,这个取值直 接影响到匝数,取值大了变压器损耗也大,小了线 又要多,就要在成本和损耗中折中选择 以上例: 450000÷14.0*12000=2.678=2.7 初极220V即220*2.7=594匝,次级12V即 12*2.7=32.4匝。由于次级需有损耗,所以需要增 加损耗1.05—1.03(线小补多些,线大补少些)。 即32.4*1.04=33.7=34匝。这样空载电压会稍高, 但是负载会降到正常电压。 第五步;选择线径,线径很多电工书里都会有一个表注明是 4.5A或2.5A的电流密度时电线可以通过的电流,

业余绕制输出变压器参数和公式计算

一般业余绕制输出变压器不必过多注重理论参数和公式计算,但有三项指标必须重视:1.输出变压器阻抗。2.尽量大的电感量。3尽量小的分布电容。 对于输出变压器阻抗,理论上讲即变压器阻抗必须和功放管阻一致,这样才能达到该功放管的最大设计功率,但实际制作胆机时,往往为了最佳音质而舍弃最佳功率,因而一般都取变压器阻抗远大于胆管阻。以805管为例,本人一般设计变压器时都取其胆阻的3-5倍,因为有如此大的余量,所以只要按原设计者提供的数据绕制,一般都不会有什么问题。 尽量大的电感量和尽量小的分布电容,电感量大则低频好,分布电容小则高频好,但这本身就是一对矛盾,因为要电感量大则分布电容必然也大,要分布电容小则电感量也必然会小,如何解决这一对矛盾,既要电感量大,以保持低频好,又要分布电容小以保持好的高频,这就是我们绕制输出变压器以保证音质的关键所在。如何解决好这一对矛盾呢?下面详细谈谈个人的制作体会,不对之处请大家讨论。 1.为保证有尽量大的电感量,一定要选择大规格的铁芯,只有大规格铁芯才是大电感量的重要保证,市售成品机往往低频下潜不深、缺乏弹性、没有冲击力,速度慢的重要因素都在其为节约成本选用铁芯太小所致,尤其是单端机,因为要流气缝,铁芯规格小了肯定是不行的,本人用于10-20W的小功率单端机的输出牛铁芯决不会小于舌宽35mm,叠厚不得小于65mm,即35×65以上。而大功率单端机的输出牛一般都用舌宽41mm,叠厚75mm,也就是41×75以上,以保证该输出牛有足够的电感量,从而保证低频有很好的下潜,弹性和速度。 2.为保证有尽量小的分布电容:a.各绕组尽量分多层绕制,一般来讲初级绕组不得小于5-7层,次级绕组也必须分5-7层,夹在初级绕组当中,因为这样即有很好的藕合,且各绕组的分布电容呈串联结构,而电容是越串联越小的。b.注意绕制工艺,手法也是减少分布电容的重要措施。第一,绕制时线圈一定要拉紧,越紧越好,这也是高级输出牛只能手工绕制,不能机器绕制的原因所在,但不一定要排列十分整齐,有少量乱层对分布电容相反有好处。第二,线间绝缘层越薄越好,如有绕制经验,有耐心,用绕一层刷一层快干漆更好,但刚开始绕制本人推荐用普通封装纸箱的不干胶胶带,但必须用不透明的那种,透明的反而不好用。每绕一层就用不干胶带封一层,初级与次级间封两层,因其薄膜很薄且有很好的固定作用。第三,次级绕组尽量均匀稀绕,尽量不要象初级那样排的过密,但一定要拉紧。 3.线材选用:因我们选用的铁芯较大,相应的窗口也就较大,对我们选用线材带来了好处,一般初级可选用直径0.31-0.45mm的高强度漆包线,次级选用直径1.2-1.45mm的高强度漆包线,视铁芯窗口大小而定。用这种规格线材既可以拉紧,又可减小变压器的直流电阻,从而减小了变压器的铜损和铁损,对改善音质非常有利。 4.关于铁芯质量选择:对于一个装机高手来讲,有了一副好铁芯就等于成功了一半。铁芯除规格大小外,还有一个重要参数,就是必须选用0.35片厚的,片厚

小型变压器的简易计算

小型变压器的简易计算: 1,求每伏匝数 每伏匝数=55/铁心截面 例如,铁心截面=3.5╳1.6=5.6平方厘米 故,每伏匝数=55/5.6=9.8匝 2,求线圈匝数 初级线圈n1=220╳9.8=2156匝 次级线圈n2=8╳9.8╳1.05=82.32 可取为82匝 次级线圈匝数计算中的1.05是考虑有负荷时的压降 3,求导线直径 要求输出8伏的电流是多少安?这里我假定为2安。 变压器的输出容量=8╳2=16伏安 变压器的输入容量=变压器的输出容量/0.8=20伏安 初级线圈电流I1=20/220=0.09安 导线直径d=0.8√I 初级线圈导线直径d1=0.8√I1=0.8√0.09=0.24毫米 次级线圈导线直径d2=0.8√I2=0.8√2=1.13毫米 经桥式整流电容滤波后的电压是原变压器次级电压的1.4倍。 小型变压器的设计原则与技巧 小型变压器是指2kva以下的电源变压器及音频变压器。下面谈谈小型变压器设计原则与技巧。 1.变压器截面积的确定铁芯截面积a是根据变压器总功率p确定的。设计时,若按负载基本恒定不变,铁芯截面积相应可取通常计算的理论值即a=1.25 。如果负载变化较大,例如一些设备、某些音频、功放电源等,此时变压器的截面积应适当大于普通理论计算值,这样才能保证有足够的功率输出能力。 2.每伏匝数的确定变压器的匝数主要是根据铁芯截面积和硅钢片的质量而定的。实验证明每伏匝数的取值应比书本给出的计数公式取值降低10%~15%。例如一只35w电源变压器,通常计算(中夕片取8500高斯)每伏应绕7.2匝,而实际只需每伏6匝就可以了,这样绕制后的变压器空载电流在25ma左右。通常适当减少匝数后,绕制出来的变压器不但可以降低内阻,而且避免因普通规格的硅钢片经常发生绕不下的麻烦,还节省了成本,从而提高了性价比。 3.漆包线的线径确定线径应根据负载电流确定,由于漆包线在不同环境下电流差距较大,因此确定线径的幅度也较大。一般散热条件不太理想、环境温度比较高时,其漆包线的电流密度应取2a/mm2(线径)。如果变压器连续工作负载电流基本不变,但本身散热条件较好,再加上环境温度又不高,这样的漆包线取电流密度2 5a/mm2(线径),若变压器工作电流只有最大工作电流的1/2,这样

变压器参数计算公式

高频变压jlm器参数计算1.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S (A) ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高 斯 S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:

Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特) 2.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: 输入直流电压: 200--- 340 V 输出直流电压: 23.5V 输出电流: 2.5A * 2 输出总功率: 117.5W 2.确定初次级匝数比: 次级整流管选用V RRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = V IN(max) / (V RRM * k / 2) ⑾ N1 ----- 初级匝数 V IN(max) ------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.6 3. 计算功率场效应管的最高反峰电压: Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿ V in(max) ----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌525.36(V) 4.计算PWM占空比: 由⑽式变形可得:

相关文档