文档库 最新最全的文档下载
当前位置:文档库 › 动力学2-A

动力学2-A

动力学2-A
动力学2-A

一、选择题

1. (A)

2. (D)

3. (B)

4. (C)

5. (C)

6. (A)

7. (A)

8. (C)

9. (C) 10. (C)

二、填空题

12.一级 13. 103L (L 为阿佛加德罗常数) 14. 1975 k (I -)/k (uncat) =exp{[E (uncat)-E (I -)]/RT }

15. 2.96×10-18 5.97×10-6 计算公式为 exp(E c /RT ) 因为 E a >>RT ,所以E c ≈E a

16. (1) 与初始浓度无关 (2) 等于 33.3%

17. k (表) = k 2k 1/k -1 E (表) = E 2+ E 1- E -1

18. t 1/2 =0.693/ k =2310 s

19. 4.87×10-3 s -1

20. k 1 = k

21. 52.9 kJ ·mol -1

三、计算题

22. [答] ln k ∝ 1/T 作图,或用代入法求平均值得到:

E a = 103.1 kJ ·mol -1

A = 2.03×1013 s -1

当 T = 323 K 时,k = A exp(-E a /RT ) = 4.304×10-4 s -1 ?≠H m = E a - RT = 101 kJ ·mol -1

1111111ln ()k a t k k k a k k x

--=+-+

A =(k

B T /h )eexp(?≠S ?/R ) ─→ ?≠S m $

= 3 J ·K -1·mol -1

?≠G m $= ?≠H m $- T ?≠S m

$= 100 kJ ·mol -1

23. [答] (甲) 当 p A 0

=26.664 kPa , p B 0=106.66 kPa 时, B 是过量的,

故 -d p A /d t =A B a b kp p ≈k 'A a

p

d ln p A /d t =-k 'p A a /p A , d ln p A /d t 与p A 无关, 则 a = 1

2A /r p = 2A A /b B kp p p , p A =p A 0- p , p B =p B 0- 2p

2A /r p =k 2 b (53.328 kPa - p )b / (53.328 kPa - p )

2A /r p = 常数, 则 b=1 500 K 时, 2A /r p = k p A p B / p A 2= 2 k =1.974×10-3 (kPa ·min)-1

k =9.87×10-4 (kPa ·min)-1

同理 k (510 K)=1.974×10-3 (kPa ·min)-1

(乙) ln(k 2/k 1)=E a /R ·(1/T 1-1/T 2) E a =147 kJ ·mol -1

24. [答] (1) k = 0.224 dm 3·mol -1·s -1

(2) E a = RT 2× dln k /d T = 147.7 kJ ·mol -1

(3) 应用稳态近似得 r = k 3[C] = k 1k 2[A]2/(k -1+ k 2[A]) 当k -1 >> k 2[A] 时, r = k 1k 2/k -1× [A]2 为二级反应

25. [答]根据准级数反应求α r 1/r 2=([A]01/[A]02)α [B]0, [C]0一定

14.1/5.0=(0.020/0.010)α

α =1.49≈32 同理求得 β=-1 , γ=0 k =r /([A]03/2[B]0-1[C]00) 求得 k =2.5×10-4 (mol ·dm -3)-1/2·s -1

26. [答] k =1t ln A A 0 , 求不同时刻t 下的k ,若为常数,则为一级反应。k =5.07×10-3 min -1

四、问答题

27.

[答] 22

d()d ln d ln 1{}d d d 1 i a i i i i i i i i i i i i i k E k k k RT t

k T k T k E RT k ====∑∑∑∑∑∑ E a = i i i

i i k E

k ∑∑

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

第三章药效动力学

第三章药物代谢动力学 主要研究药物的体内过程及体内药物浓度随时间变化的规律(运用数学原理和方法研究药物在体内的量变)。药物要产生特有的效应,必须在作用部位达到适当浓度。要达到适当浓度,与药物剂量及药动学有密切相关,它对药物的起效时间、效应强度、持续时间有很大影响。 本章主要掌握药物吸收、分布、代谢和排泄的基本规律,熟悉常用药动学参数的意义。 第一节药物分子的跨膜转运 药物的药动学,首先必须跨越多层生物膜,进行多次转运。 转运:药物吸收、分布、排泄的过程。 生物膜是由蛋白质和液态的脂质双分子层(主要是磷脂)所组成。由于生物膜的脂质性的特点,故只有脂溶性大、极性小的药物较易通过。 药物的跨膜转运方式,按其性质不同可分为两大类: 一、被动转运(下山转运) 特点:(1)药物顺浓度差转运(2)不耗能(3)不需要载(4)无饱和限速及竞争性抑制 分为简单扩散和滤过扩散两种。 1、脂溶扩散(lipid diffusion)(简单扩散):大多数药物是通过该方式转运。 影响因素:①膜两侧浓度差:药物在脂质膜的一侧浓度越高,扩散速度越快,当膜两侧浓度相同时,扩散即停止。②药物的脂溶性:药物的脂溶性用油/水分配系数表示,分配系数越大,药物扩散就越快。③药物的解离度:非解离型药物因其脂溶性大,才能溶入脂质膜中,易于通过生物膜。④药物的pKa及所在环境的pH。决定药物的解离度。 pH 对弱酸或弱碱类药物的影响,可用数学公式进行定量计算。 对弱酸性药物: 10pH-pKa =[解离型]/[非解离型] ① 10pH-pKa =[A-]/[HA] 对弱碱性药物: 10pKa-pH =[解离型药]/[非解离型] ② 10pKa-pH =[BH+]/[B]

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

催化反应动力学数据测定

实验三气固相苯加氢催化反应实验 一.实验目的 1.了解苯加氢的实验原理和方法。 2.了解气固相加氢设备的使用方法和结构。 3.掌握加压的操作方法。 4.通过实验进一步考察流量、温度对苯加氢整套反应的影响。 二.实验原理 环己烷是生产聚酰胺类纤维的主要中间体之一,高纯度的环己烷可由苯加氢制得。 苯加氢是典型的有机催化反应,无论在理论研究还是在工业生产上,都具有十分重要的意义。工业上常采用的苯加氢生产环己烷的方法主要有气相法和液相法两种。气相法的优点是催化剂与产品分离容易,所需反应压力也较低,但设备多而大,费用比液相大。液相法的优点是反应温度易于控制,不足之处是所需压力比较高,转化率较低。 反应主要方程式如下: 苯加氢制环己烷的反应是一个放热的、体积减小的可逆反应,因此,低温和高压对该反应是有利的。所以,苯加氢制环己烷的反应温度不宜过高,但也不能太低,否则反应分子不能很好地活化,进而导致反应速率缓慢。如果催化剂活性较好,选择性可达95%以上。

本实验选择在加压固定床中进行催化反应,催化剂采用r-Al 2O 3 载Ni 或Cu 。 原料:苯,氢气,氮气(吹扫用),环己烷 三、流程示意图与面板布置图 1、流程示意图 V -截止阀,S -三通转换阀,T C I -控温,T I -测温,P I -测压 气体钢瓶, 过滤器, 稳压阀 , 干燥器, 质量流量计,止逆阀缓冲器, 预热器, 预热炉, 反应炉, 反应器 , 冷却 器 气 液分离器背压阀, 取样器,湿式流量计, 加料泵

2、面板布置图

四.实验步骤 1、装填20ml催化剂 打开反应加热炉,卸下反应器的上下盖法兰的连接口接头,从炉内取出反应器(拆卸时先将热电偶插件拔出)。在设备外部将上下法兰压紧螺栓松开,旋转推出,若反应器内上部有玻璃棉,用带有倒钩的不锈钢丝将它取出,并倒出催化剂,再取出反应器下部的玻璃棉,最后用镊子夹住沾有丙酮的脱脂棉擦拭一下,同样擦拭反应器内部,用吸耳球吹干。这时要注意,反应器内有测温套管,不能将它碰歪。若感到不方便,可将下法兰也卸下来,这样就很好清洗了。装填催化剂时要先将下法兰装好,后装好支撑架测好位置,装玻璃棉,倒入催化剂,最后再装入玻璃棉。上好上法兰,拧紧螺栓放回反应炉内支撑好,再次连接出入口接头,插入热电偶(其底端位置应根据装在反应器内催化剂的高度而定。催化剂的加入量以实验的要求而定,单位的取舍是根据空速单位而定,由此选择称量重量还是测量体积。装催化剂要通过小漏斗装入反应器。装填时要轻轻震动反应器使催化剂均匀分布,催化剂上部再放入少许玻璃棉。 注意:安装反应器和上开启炉子一定要轻轻操作,拧紧接头时要用力适当不能过力,以免损坏接口螺纹。 2、系统试漏 <1>确定操作压力,关闭尾气出口阀门、背压阀。

动力学参数

有阻尼自由度系统的强迫振动 在多自由度的振动系统中,当激振频率达到某些质体单独的固有频率值时,其中的一个质体静止,这种现象就叫反共振现象。此惯性往复近共振筛上下质体动力学的参数就是依据反共振原理来选择的。 一上质体刚度的选择 如图所示为惯性往复近共振筛的力学模型,不考虑阻尼的情况下,系统的运动微分方程为:

设,则振幅向量为: =-1 (1) = 其中: = 由式(1)可知,当,即时,下质体的振幅,即下质体不再振动,这时出现 反共振现象。此时的,所以振动筛下质体此时的位移为: 即,由此可知下质体质量上受到 的激振力恰好被上质体上的弹性恢复力所平衡。 由此得上质体的刚度: 已知则:

二下质体刚度和质量的选择 引入下列参数 , 为下质体单独的固有频率; 为上质体单独的固有频率; 为上质体与下质体的质量比; 为下质体支撑弹簧的静变形; 为激振频率与下质体固有频率的频率比 为上质体与下质体的固有频率比 为下质体动力放大因子; 为上质体动力放大因子; 有(1)式可知: (2) (3) 由(2)、(3)式可以看出,上、下质体的动力放大因子是参数u、a、的函数。

在实际的振动系统中阻尼比、质量比、频率比等动力学参数均会对系统的振幅产生不同程度的影响。但由于实际振动系统中的粘性阻尼系数都很小并且是固定不变的,所以振动机械在稳态工作状态下,系统的阻尼可以忽略不计,因此对系统有影响的只有上、下质体固有频率之比和质量比。以下是在不同的质量比和固有频率之比的情况下,利用matlab画出的上质体和下质体的幅频响应曲线: 当质量比u=1,=1 为蓝色曲线;u=1,a=3 为红色曲线

vasp做分子动力学

vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT和NVE。 下面我将对主要参数进行介绍! 一般做分子动力学的时候都需要较多原子,一般都超过100个。 当原子数多的时候,k点实际就需要较少了。有的时候用一个k点就行,不过这都需要严格的测试。通常超过200个原子的时候,用一个k点,即Gamma点就可以了。 INCAR: EDIFF 一般来说,用1E-4或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。 IBRION=0 分子动力学模拟 IALGO=48 一般用48,对于原子数较多,这个优化方式较好。 NSW=1000 多少个时间步长。 POTIM=3 时间步长,单位fs,通常1到3. ISIF=2 计算外界的压力. NBLOCK= 1 多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT. KBLOCK=50 NBLOCK*KBLOCK个步长写一次XDATCAR. ISMEAR=-1 费米迪拉克分布. SIGMA =0.05 单位:电子伏 NELMIN=8 一般用6到8,最小的电子scf数.太少的话,收敛的不好. LREAL=A APACO=10 径向分布函数距离,单位是埃. NPACO=200 径向分布函数插的点数. LCHARG=F 尽量不写电荷密度,否则CHG文件太大. TEBEG=300 初始温度. TEEND=300 终态温度。不设的话,等于TEBEG. SMASS -3 NVE ensemble;-1 用来做模拟退火;大于0 NVT 系综。 ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// 1)收敛判据的选择 结构弛豫的判据一般有两种选择:能量和力。这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的。但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。 到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量

专题02 常见动力学模型(上)(解析版)

浙江高考物理尖子生核心素养提升 之常见动力学模型(上) 滑块滑板问题是高考常考的热点,这类问题对学生的综合分析能力和数学运算能力要求较高,而且滑块滑板模型常和功能关系、动量守恒等结合,分析过程较复杂。学生常因为对过程分析不清或计算失误而丢分。 命题点一水平面上的滑块—滑板模型 1.两种位移关系 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移大小之和等于板长。 2.解题思路 [典例]如图所示,质量m=1 kg的物块A放在质量M=4 kg的木板B的左端,起初A、B 静止在水平地面上。现用一水平向左的力F作用在B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1。假设最大静摩擦力等于滑动摩擦力,g=10 m/s2。求: (1)能使A、B发生相对滑动的力F的最小值; (2)若力F=30 N,作用1 s后撤去,要想A不从B上滑落,则B至少多长;从开始到A、B 均静止,A的总位移是多少。 [解析](1)A的最大加速度由A、B间的最大静摩擦力决定,即 对于A,根据牛顿第二定律得:μ1mg=ma m 解得a m=4 m/s2 对于A、B整体,根据牛顿第二定律得: F-μ2(M+m)g=(M+m)a m 解得F=25 N。 (2)设力F作用在B上时A、B的加速度大小分别为a1、a2,撤去力F时速度分别为v1、v2,

撤去力F后A、B速度相等前加速度大小分别为a1′、a2′,A、B速度相等时速度为v3,加速度大小为a3 对于A,根据牛顿第二定律得:μ1mg=ma1 得a1=4 m/s2,v1=a1t1=4 m/s 对于B,根据牛顿第二定律得: F-μ1mg-μ2(M+m)g=Ma2 得a2=5.25 m/s2,v2=a2t1=5.25 m/s 撤去力F:a1′=a1=4 m/s2 μ1mg+μ2(M+m)g=Ma2′ 得a2′=2.25 m/s2 经过t2时间后A、B速度相等v1+a1′t2=v2-a2′t2 得t2=0.2 s 共同速度v3=v1+a1′t2=4.8 m/s 从开始到A、B相对静止,A、B的相对位移即为B的最短长度L L=x B-x A=v22 2a2+v32-v22 -2a2′ - 1 2a1(t1+t2) 2=0.75 m A、B速度相等后共同在水平地面上做匀减速运动,加速度大小a3=μ2g=1 m/s2 对于A、B整体从v3至最终静止位移为 x=v32 2a3=11.52 m 所以A的总位移为x A总=x A+x=14.4 m。 [答案](1)25 N(2)0.75 m14.4 m [规律方法] 求解“滑块—滑板”类问题的方法技巧 (1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向。 (2)准确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况。 (3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变。 [集训冲关] 1.如图所示,光滑水平面上静止放着长为L=1.6 m、质量为M=3 kg的木板,一质量为m=1 kg的物块放在木板的最右端,物块与木板之间的动摩擦因数为μ=0.1,对木板施加一水平向右的拉力F,g取10 m/s2。

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

动力学方法及应用

【巩固练习】 一、选择题 1、如图所示,一物块在光滑的水平面上受一恒力F 的作用而运动,其正前方固定一个足够 长的轻质弹簧,当物块与弹簧接触后,则( ) A.物块立即做减速运动 B.物块在开始的一段时间内仍做加速运动 C.当弹簧的弹力等于恒力F 时,物块静止 D.当弹簧处于最大压缩量时,物块的加速度不为零 2、如图(a )所示,质量m =1kg 的物体置于倾角θ=37°的固定粗糙斜面上。t =0时对物体 施以平行于斜面向上的拉力F ,t =1s 时撤去拉力,斜面足够长,物体运动的部分v t 图如 图(b )所示,则下列说法中正确的是( ) A .拉力的大小为20N B .t =3s 时物体运动到最高点 C .t =4s 时物体的速度大小为10m/s D .t =1s 时物体的机械能最大 3、如图所示,半径为R 的光滑圆形轨道竖直固定放置,小球m 在圆形轨道内侧做圆周运动。对于半径R 不同的圆形轨道,小球m 通过轨道最高点时都恰好与轨道间没有相互作用力。下列说法中正确的是 ( ) A .半径R 越大,小球通过轨道最高点时的速度越大 B .半径R 越大,小球通过轨道最高点时的速度越小 C .半径R 越大,小球通过轨道最低点时的角速度越大 D .半径R 越大,小球通过轨道最低点时的角速度越小 4、如图所示,竖直平面内有一足够长的金属导轨,金属导体棒ab 可在导轨上无摩擦地上下滑动,且导体棒ab 与金属导轨接触良好,ab 电阻为R ,其它电阻不计。导体棒ab 由静止开始下落,过一段时间后闭合电键S ,发现导体棒ab 立刻作变速运动,则在以后导体棒ab 的运动过程中,下列说法中不正确的是 ( ) A .导体棒ab 作变速运动期间加速度一定减小 B .单位时间内克服安培力做的功全部转化为电能,电能又转化为电热 C .导体棒减少的机械能转化为闭合电路中的电能和电热之和,符合 能的转化和守恒定律

动力学分析方法

1 动力学分析方法 结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10] 分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精、去伪存真的过程。在结构动力学中,着重研究力学模型(物理模型)和数学模型。建模方法很多,一般可分为正问题建模方法和反问题建模方法。正问题建模方法所建立的模型称为分析模型(或机理模型)。因为在正问题中,对所研究的结构(系统)有足够的了解,这种系统成为白箱系统。我们可以把一个实际系统分为若干个元素或元件(element),对每个元素或元件直接应用力学原理建立方程(如平衡方程、本构方程、汉密尔顿原理等),再考虑几何约束条件综合建立系统的数学模型。如果所取的元素是一无限小的单元,则建立的是连续模型;如果是有限的单元或元件,则建立的是离散模型。这是传统的建模方法,也称为理论建模方法。反问题建模方法适用于对系统了解(称黑箱系统——black box system)或不完全了解(称灰箱系统——grey box system)的情况,它必须对系统进行动力学实验,利用系统的输入(载荷)和输出(响应——response)数据,然后根据一定的准则建立系统的数学模型,这种方法称为试验建模方法,所建立的模型称为统计模型。 在动力平衡方程中,为了方便起见一般将惯性力一项隔离出来,单独列出,因此通常表达式为: +P M (2) u I - = 其中M为质量矩阵,通常是一个不随时间改变的产量;I和P是与位移和速度有关的向量,而与对时间的更高阶导数无关。因此系统是一个关于时间二级导数的平衡系统,而阻尼和耗能的影响将在I和P中体现。可以定义: + = (3) I Ku C u 如果其中的刚度矩阵K和阻尼矩阵C为常数,系统的求解将是一个线性的问题;否则将需要求解非线性系统。可见线性动力问题的前提是假设I是与节点位移和速度是线性相关的。 将公式(2)代入(1)中,则有 (4) + M= + u P Ku C u

动力学方程

1问题一:什么是非等温试验? 通常有等温法(也称静态法)和非等温法(也称动态法), 等温法是较早研究化学动力学时普遍采用的方法,该法的缺点在于比较费时,并且研究物质分解时,往往在升到一定的试验温度之前物质己发生初步分解,使得结果不很可靠。在非等温法中,试样温度随时间按线性变化,它在不同温度下的质量由热天平连续记录下来。非等温法是从反应开始到结束的整个温度范围内研究反应动力学,测得的一条热重曲线与不同温度下测得的多条等温失重曲线提供的数据等同,相比于等温法,非等温法只需一个微量的试验样品,消除了样品间的误差以及等温法将样品升至一定温度过程中出现的误差,并节省了试验时间。在目前的热重分析中常采用非等温法来进行动力学的研究。 问题二:文献中常用热解动力学表达式 d (a)/dt=kf(a) ——(1) a为t时刻的分解率(材料的失重百分率)又称转化率。a=(m0-m)/(m0-m∞) k=A exp(-E/RT)——(2)β=dT/dt ——(3) 采用coats-Readferm积分法推到 Ln[g(a)/T2]=ln(AR/βE)-E/RT f(a)=(1-a)2 f(a)为分饵的固体反应物与反应速率的函数关系。设Y= Ln[g(a)/T2] X=1/T 做X,Y直线曲线,求出斜率即可得到活化能E,同时得到结局求出指前因子A。 确定g(a)的值就能得到活化能E,常用g(a)的形式很多,有的是模型,有的是反应级数,总之尝试多种方法,找到最合适的,得到更精确的线性关系。 问题三: 1单条升温速率曲线的Coats-Redfern法,跟上述方程表达式一样,可得, ln[-ln( 1 -a)/T 2] = ln[AR/βE( 1-2RT/ E) ]-E/RT( n = 1) ,(4) ln[-( 1 -a)1 -n/T2( 1 -n ) ] = ln [AR/βE (1-2RT/ E) ]-E/RT( n≠1) . (5) 因为,一般活化能 E 的数值远大于温度T,所以(1?2RT/E)≈1,则式(4)和式(5)右端第1项几乎是常数。因此,可分别取n等于0.5, 0.6, 0.7, 0.8, 1.0, 1.2和1.5,结合热重实验的数据得到式(4)和式(5)的左端数值,并对1/T作图,得到这些直线的线性相关系数和标准误差数据,通过对比确定出线性较好的直线,由其斜率得到活化能E。 2,多条升温速率曲线的Flynn-Wall-Ozawa 法 Flynn-Wall-Ozawa(FWO)法通过多条升温速率曲线确定动力学参数,是等转化率法、积分法的一种。 根据式(1)(2)(3)进行移项积分得到, Logβ=log[AE/RG(a)]-2.315-0.4567E/RT 由不同升温速率βi的TG 实验数据,在同一反应深度a下,找到相应的温度Ti,则lgβi 与Ti可以拟合得到一条直线,由其斜率可以得到活化能E,并且可以得到活化能随反应深度a的变化关系。(例如excel蒙古栎的四种升温速率)

电极过程动力学

电极过程动力学 一、实验目的 通过对铜电极的阳极极化曲线和阴极极化曲线的测定,绘制出极化曲线图,从而进一步加深对电极极化原理以及有关极公曲线理论知识的理解。通过本实验,熟悉用恒电流法测定极化曲线。 二、实验原理 当电池中由某金属和其金属离子组成的电极处于平衡状态时,金属原子失去电子变成离子获得电子变成原子的速度是相等的,在这种情况下的电极称为平衡电极电位。 电解时,由于外电源的作用,电极上有电流通过,电极电位偏高了平衡位,反应以一定的速度进行,以铜电极Cu|Cu2+为例,它的标准平衡电极电位是+0.337V,若电位比这个数值更负一些,就会使Cu2+获得电子的速度速度增加,Cu失去电子的速度减小,平衡被破坏,电极上总的反应是Cu2+析出; 反之,若电位比这个数值更正一些,就会使Cu失去电子的速度增加,Cu2+获得电子的速度减小,电极上总的反应是Cu溶解。这种由于电极上有电流通过而导致电极离开其平衡状态,电极电位偏离其平衡的现象称为极化,如果电位比平衡值更负,因而电极进行还原反应,这种极化称为阴极极化,反之,若电位比平衡值更正,因而电极进行氧化反应,这种极化称为阳极极化。 对于电极过程,常用电流密度来表示反应速度,电流密度愈大,反应速度愈快。电流密度的单位常用安培/厘米2,安培/米2。 由于电极电位是影响影响电流密度的主要因素,故通常用测定极化曲线的方法来研究电极的极化与电流密度的关系。 一、实验方法及装置 本实验电解液为CuSO4溶液(溶液中CuSO4.5H2O浓度为165g/l,H2SO4 180g/l);电极用φ=0.5mm铜丝作为工作电极,铂片电极作为辅助电极。为了测得不同电流密度下的电极电位,以一个甘汞电极与被测电极组成电池,甘汞电极通过盐桥与被测电极相通,用CHI660B电化学工作站测得不同电流密度下对应的阴极或阳极极化曲线。

分子动力学资料-moldy和GULP结合

实验4:分子动力学资料 在本次实验中,我们将采用MOLDY以及GULP作为我们分子动力学(MD)的软件.MOLDY使用手册见下面连接. https://www.wendangku.net/doc/2b2964026.html,/~keithr/mold y-manual/moldy.html 这是非常好的一本手册,它是一个全面学习分子动力学的非常好的资源. 因为GULP首先是一个静态的能量代码,所以它的MD特性并是那么好,在GULP使用手册以及实验1的GULP资料中都有介绍. 另外的一些推荐的连接: http://www.fisica.uniud.it/~ercolessi/md/md/ http://www.fisica.uniud.it/~ercolessi/md/f90/ 第一个连接是介绍MD,是Furio Ercolessi写的.它非常棒并且在阐述分子动力学及原子间作用势上简单易懂.强烈推荐你读这个链接. 第二个连接是一些关于分子动力学代码例子,用Fortran90写的。你看到这些代码样本时,会觉得代码本身不是很复杂(不包括复杂的能量方法). 还有很多其它有用的分子动力学开源代码,下面网页中例举了很多. https://www.wendangku.net/doc/2b2964026.html,/resources/MDPackages.html 包括CHARMM,,MOSCITO,,MARVIN,DYNAMO等等许多. 第1页

MD简要摘要 分子动力学遵守经典力学,特别地,对所有原子求解牛顿运动方程: 这里i表示原子.所以原则上,对于任何初始参数(位置,速度),将来任意时刻的位 置,速度,加速度都是确定的。原子所受的力,可以由势能对原子位置求导获得: . 这里U是势能.当U的形式是解析的(如势能的形式),计算作用在原子上力是相对 容易的。因此,我们能求出加速度,因为原子质量是已知的.理论上我们能积分加速度得到速度,再积分速度得到位置. 在实践中,所有积分由数值计算给出。控制积分细度(fineness)的参数称为时间步长,δt。知道t时刻的位置,速度和加速度,我们就能得到时刻t+δt的位置,速度以及加速度。 在课堂上,你学了Verlet算法,Verlet是非常通用且简单的得到时间积分的算法。Mold y采用Beeman算法,属于一种预测-矫正算法。大致介绍如下: x表示坐标,和分别表示"预测"和"矫正"的速度。GULP求解积分采用 leapfrog Verlet,velocity Verlet或者是Gear Predictor-Corrector算法。在起始参数下,选定时间步长,我们能计算t+δt时刻的参数。注意起始速度是随机选取的,但遵从Maxwell-Boltzmann分布。不幸的是,我们开始的速度可能会很不正确,所以在采样(sample)热力学量(例如势能和动能)前我们需要系统先运行几个时间步长。 第2页

介绍一种处理动力学数据的新方法_张恒

第24卷 第6期大学化学2009年12月 自学之友 介绍一种处理动力学数据的新方法 张恒 汪存信 (武汉大学化学与分子科学学院 湖北武汉430072) 摘要 介绍一种处理动力学数据的新方法 反应进程动力学分析法(R eacti on P rogress K i netic A nalysis)。该方法通过反应速率除以一个反应物的浓度对另外一个反应物的浓度作图,结合不同超额浓度和相同超额浓度的3个实验,得到反应级数以及催化剂稳定性等信息。 在表观动力学研究中,确定反应级数是一个很重要的环节。从反应级数可以得到动力学方程、推测反应机理、分析反应历程,有助于对反应的深入研究。一般教科书上介绍的确定反应级数的方法有:积分法(尝试法)、微分法、半衰期法、孤立法等[1]。当反应级数是简单整数时,积分法比较方便,缺点是对于非整数级数的反应相当麻烦,并且当实验浓度范围不够大时,常难以区分反应的级数。对于微分法,结果的准确性直接取决于由微分得到的反应速率的准确性,而这一点往往会引入较大误差。对于半衰期法,只有一种反应物时比较简单,当反应物多于一种并且相互间浓度关系不确定时就变得比较复杂了。而孤立法或通过逐步让各反应物大大过量,或认为在反应初始状态各反应物浓度基本不变,测定初始反应速率,然后结合微分法求出反应级数,这种方法往往工作量较大。在这些方法中,有些虽然只需要较少的实验数据,但可能得不到准确的结果;有些虽然可以得到准确的结果,但实验的工作量往往较大。 最近,英国帝国理工学院的B lack m ond教授提出了一种处理动力学数据的新方法 反应进程动力学分析法(Reacti o n Prog ress K i n etic Ana l y sis)[2 3]。这种方法只需要较少的接近真实实验条件的实验,而不需要大大过量的实验就可以得到反应级数,此外还可以提供有关催化剂激活和失活,产物抑制等信息。使用反应动力学分析法必须具备的条件是: 能够连续提供准确数据的原位实验方法; 处理实验数据的计算机软件。 以式(1)所示的两底物反应为例,反应进程动力学分析法的基本思路是考虑到物料守恒,反应物A每消耗一个分子,反应物B必然也消耗一个分子,也就是在反应过程中任一时刻,必然满足式(2)。 A+B C(1) [B]0-[B]=[A]0-[A](2) 因此,可以如式(3)所示定义一个超额浓度[e]。超额浓度[e]可以大,也可以小,可以为正,也可以为负。当采用假级数的反应条件时,[e] [A]。而在真实的反应条件下,[e]往往都是一个比较小的值。 [e]=[B]0-[A]0(3) 超额浓度[e]是反应进程动力学分析法中一个十分重要的概念,通过设计有相同超额浓 65

第五章电极过程和电极过程动力学讲解学习

第五章电极过程和电极过程动力学

5.电极过程和电极过程动力学 5.1电化学装置的可逆性:化学反应可逆性;热力学上可逆性 5.2电极的极化 5.3电极过程的控制步骤:电极反应的特点;电极反应的控制步骤5.4电荷转移动力学方程 5.5交换电流密度与电极反应速度常数 5.6稳态极化时的电极动力学方程 5.7浓差极化及其电机动力学方程 5.8化学极化 分解电压E分:在可逆情况下使电解质有效组元分解的最低电压,称为理论分解电压(V e)。理论分解电压是阳极平衡电极电位(εe(A))与阴极平衡电极电位(εe(K))之差。 Ve=εe(A)- εe(K)(10 - 5) 当电流通过电解槽,电极反应以明显的速度进行时,电极反应将会明显偏离平衡状态,而成为一种不可逆状态,这时的电极电位就是不平衡电位,阳极电位偏正,阴极电位偏负。这时,能使电解质熔体连续不断地发生电解反应所必需的最小电压叫作电解质的实际分解电压。显然,实际分解电压比理论分解电压大,有时甚至大很多。

实际分解电压简称分解电压(V),是阳极实际析出电位(ε(A))和阴极析出电位(ε(K))之差。 V=ε(A)- ε(K)(10 - 6) 当得知阴、阳极在实际电解时的偏离值(称为超电位)就可以算出某一电解质的实际分解电压。 分解电压符合能斯特方程,可以表示为如下形式: 式中 E i,E0分别表示实际和标准状态下组元i的分解电压; a i__组元的活度; n i __组元在熔盐中的化合价; F __ 法拉弟常数; 可以看出,温度和电解质组成均会影响分解电压 电极极化

电解时的实际分解电压比理论分解电压要大很多,这是由于电流通过电解槽时,电极反应偏离了平衡状态。通常将这种偏离平衡电极电位的现象称为极化现象。电解过程实际分解电压和理论分解电压之差称为超电压。 ?电解电极反应一般包含1: ?(1)反应离子由熔体向双电层移动并继续经双电层向 电极表面靠近。这一阶段在很大程度上靠扩散实现,扩 散则是由于导电离子在熔体和双电层外界的浓度差别引 起的。 ?(2)反应离子在电极表面进行电极反应前的转化过 程,如表面吸附等; ?(3)在电极上的电子传递 - - 电化学氧化或电化学还 原反应; ?(4)反应产物在电极表面进行反应后的转化过程,例 如自电极表面的脱附,反应产物的复合、分解和其它化 学反应; ?(5)反应产物形成新相,或反应产物自电极表面向电 解质熔体的传递。

知识讲解 动力学方法及应用

高考冲刺:动力学方法及应用 编稿:xx 审稿:xx 【高考展望】 本专题主要讨论利用动力学方法分析解决物理问题的方法。动力学问题是高中物理的主干和重点知识,动力学方法是高中物理中处理物理问题的常用方法和重要方法,也是历年高考热点。历年高考试卷中的综合问题往往与动力学知识有关,并且往往把动力学知识与非匀变速直线运动、圆周运动、平抛运动、电场、磁场、电磁感应等知识点综合起来,这类问题过程多样复杂,信息容量大,综合程度高,难度大。 牛顿运动定律、运动学知识是本专题知识的重点。在对本专题知识的复习中,应在物理过程和物理情景分析的基础上,分析清楚物体的受力情况、运动情况,恰当地选取研究对象和研究过程,准确地选用适用的物理规律。 【知识升华】 “动力学方法”简介:从“力与运动的关系”角度来研究运动状态和运动过程的学习研究方法。物体所受的合外力决定物体运动的性质。物体所受的合外力是否为零,决定物体的运动是匀速运动(或静止)还是变速运动;物体所受的合外力是否恒定,决定物体的运动是匀变速运动还是非匀变速运动;物体所受合外力的方向与物体运动方向的关系决定物体的运动轨迹是直线还是曲线。 解决动力学问题,要对物体进行受力分析,进行力的分解和合成;要对物体运动过程进行分析,然后根据牛顿第二定律,把物体受的力和运动联系起来,列方程求解。 【方法点拨】 常用的解题方法:整体法和隔离法;正交分解法;合成法。 考点一、整体法和隔离法 整体法和隔离法通常用于处理连接体问题。 要点诠释:作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。处理连接体问题的关键是整体法与隔离法的配合使用。隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。 考点二、正交分解法 当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。 要点诠释:多数情况下是把力正交分解在加速度方向和垂直加速度方向上,x F ma =(沿加速度方向)0y F =(垂直于加速度方向),特别要注意在垂直于加速度方向根据合力为零的特点正确求出支持力。特殊情况下也可以分解加速度。 考点三、合成法(也叫平行四边形定则、三角形定则) 要点诠释:若物体只受两个力作用而产生加速度时,这时二力不平衡,根据牛顿第二定律可知,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。特别是两个力相互垂直或相等时,应用力的合成法比较简单(匀速圆周运动都属于这类问题)。 【典型例题】 类型一、匀变速直线运动 用动力学方法解决匀变速直线运动问题时,主要根据牛顿运动定律,往往结合运动学知识和动能定理(动能定理是根据牛顿第二定律推导出来的,导出的公式、定理等很多时候用起来要简单得多)

相关文档