文档库 最新最全的文档下载
当前位置:文档库 › 103万年吨甲醇提纯过程设计说明书

103万年吨甲醇提纯过程设计说明书

103万年吨甲醇提纯过程设计说明书
103万年吨甲醇提纯过程设计说明书

XXXX大学

《化工过程设计》

课程设计

化学化工学院院(系)化学工程与工艺专业班题目甲醇精馏塔设计

学生

指导教师

评阅人

二O一六年月

目录

1过程设计及工艺流程概述与原料各组分理化性质介绍 (2)

1.1过程设计及工艺流程概述 (2)

1.1.1 设计任务 (2)

1.1.2 原料组成 (2)

1.1.3 生产工艺及流程概述 (2)

1.1.4 主要产品及副产品 (3)

1.1.5 生产制度 (3)

1.2原料各组分理化性质介绍 (3)

2甲醇提纯过程流程分析 (8)

2.1Aspen Plus简介 (8)

2.1.1Aspen Plus简介 (8)

2.1.2产品功能 (8)

2.1.3工程能力 (8)

2.2流程模拟 (9)

3分离结果分析 (10)

3.1塔顶 (10)

3.2塔底: (10)

3.3塔各项参数: (11)

4灵敏度分析 (12)

4.1最佳进料位置 (12)

4.2回流比 (12)

4.3塔内液相质量组成分布图 (12)

4.4塔内温度分布图 (13)

5设备的选取 (14)

5.1塔 (14)

5.1.1 概述 (14)

5.1.2 塔型比较 (14)

5.1.3 塔板类型与性能比较 (16)

5.1.4 CUP-TOWER简介 (17)

5.1.5CUP-TOWER计算结果 (18)

5.2泵 (33)

5.2.1 泵的选型原则 (33)

5.2.2 泵选型依据 (34)

5.2.3智能选泵 (35)

5.3换热器 (37)

5.3.1换热器类型简介 (38)

5.3.2 换热器选型 (40)

5.3.3 换热器型号表示方法 (44)

5.3.4 设计与选型 (44)

5.3.5 EDR换热器选型 (46)

6:结论 (49)

参考文献: (50)

摘要:本设计为103.0万吨/a甲醇水精馏装置工艺设计。甲醇原料来源广泛,生产工艺成熟,主要来自煤化工和天然气合成,可以利用煤炭、天然气、煤层气、生物质等制成。甲醇在传统化工领域应用广泛,是甲醛、二甲醚、醋酸、MTBE、DMF、氯甲烷、甲胺等一系列化工产品的上游原料,在化工领域具有重要的基础性地位。据统计,以甲醇为原料的一次加工产品已有近30种,以甲醇为原料进行深加工的产品可达上百种。本设计运用Aspen Plus模拟精馏过程,计算得到回流比,塔板数,塔径等设计参数,并水力学计算得到各个塔板上的物性参数,对精馏塔的塔板数、进料位置、最小回流比进行校核,并模拟计算再沸器和冷凝器的负荷,换热面积等参数,帮助选择辅助设备。计算结果表明,精馏装置选择筛板塔,塔板数为10,塔径为4.0m,溢流堰长度1.56m,溢流堰高度0.0335m,塔板间距0.6m,开孔率7%,开孔区面积11.2854m2,孔气速30.7579m/s,空塔气速2.153m/s,液体在降液管停留时间为6.4155s,单板压降0.101mmHg;再沸器热负荷为160806kW,换热面积为77.59m2,换热器选立式热虹吸式再沸器。关键词:甲醇精馏设计

1过程设计及工艺流程概述与原料各组分理化性质介绍

1.1过程设计及工艺流程概述

1.1.1 设计任务

使用Aspen Plus软件对103.0万吨/年甲醇和水精馏装置工艺流程的模拟和工艺参数的优化以及对整个项目进行塔设备设计选型、换热器选型及泵选型。该装置以甲醇、甲酸、乙酸和水为原料,采用精馏的方法,最终分离出符合设计要求的甲醇。

1.1.2 原料组成

本套甲醇—水精馏装置的原料总量为103.0万吨,原料组成见表1-1:

表1-1甲醇-水精馏装置原料组成

组分质量分数

甲醇甲酸23.59% 0.05%

乙酸水0.03% 76.33%

1.1.3 生产工艺及流程概述

本套精馏装置的原料气总量为103.0万吨/年,此混合气经精馏塔将甲醇与甲酸、乙酸、水加工分离,从而得到甲醇。本装置采用单塔常规生产流程,其工艺操作流程见图1-1,原料气进入该气体精馏装置,由进料泵输送到精馏塔中,泵输送过程中经预热器加热至泡点状态进入精馏塔第6层塔板。进料预热器热源是自本装置所回收的凝结水。精馏塔为筛板塔板,塔顶压力控制在90.02kPa,塔顶蒸出的甲醇经精馏塔塔顶冷凝器冷却后进入塔顶回流罐,其中一部分冷凝液作为回流返回精馏塔塔顶。塔釜馏出物为甲酸、乙酸和水,该馏出物经换热器冷却后部分由回流泵打回精馏塔进料板位置,剩余部分送入釜液罐。该装置主要分离混

合气中的甲醇,以使其达到较高纯度。

本装置的生产原理是利用物理分离的原理对混合气中各组分在同一压力下具有不同的挥发度而加以分离,分离出较高纯度的甲醇。

图1-1甲醇-水精馏装置工艺流程

1.1.4 主要产品及副产品

主要产品:甲醇

副产品:甲酸、乙酸、水

1.1.5 生产制度

装置年开工8000小时

1.2原料各组分理化性质介绍

甲醇(Methanol,dried,CH4O)系结构最为简单的饱和一元醇,CAS号有67-56-1、170082-17-4,分子量32.04,沸点64.7℃。又称“木醇”或“木精”。是无色有酒精气味易挥发的液体。人口服中毒最低剂量约为100mg/kg体重,经口摄入0.3~1g/kg可致死。用于制造甲醛和农药等,并用作有机物的萃取剂和酒精的变性剂等。通常由一氧化碳与氢气反应制得。甲醇性质可见表1-2。

项目状态

物态液体

颜色透明,无色

气味纯品清淡,类似乙醇;粗品刺激难闻

熔点-98 °C(lit.)

沸点64.5~64.7 °C(lit.)

密度0.791 g/mL at 25 °C

闪点52 °F(约11°C)

蒸气密度 1.11 (大气压=1)

蒸气压127 mm Hg(25°C)410 mm Hg(50°C)

折射率n20/D 1.329(lit.)

爆炸上限%(V/V):44.0

爆炸下限%(V/V): 5.5

沾染量<10(APHA)

甲醇用途广泛,是基础的有机化工原料和优质燃料。主要应用于精细化

工,塑料等领域,用来制造甲醛、醋酸、氯甲烷、甲氨、硫二甲酯等多种有机产品,也是农药、医药的重要原料之一。甲醇在深加工后可作为一种新型清洁燃料,也加入汽油掺烧。甲醇和氨反应可以制造一甲胺。

甲醇可从煤制取,特别是可利用劣质高硫煤和焦炉气回收制取。也可自生物质(如林木、有机垃圾等)提取。甲醇生产是我国化工行业中的成熟产业,生产工艺简单,投资和生产成本都较低。2012年我国甲醇年产能力有5074万吨,年产量约2640万吨,产能过剩情况严重。新建一个年产60万吨的装置,投资约20亿元,其生产工艺路线和装备完全可立足国内,并拥有自主知识产权。

甲酸,又称作蚁酸,分子式为HCOOH。甲酸无色而有刺激气味,且有腐蚀性,人类皮肤接触后会起泡红肿。甲醛同时具有酸和醛的性质。在化学工业中,甲酸被用于橡胶、医药、染料、皮革种类工业。

易燃,能与水、乙醇、乙醚和甘油任意混溶,和大多数的极性有机溶剂混溶,在烃中也有一定的溶解性。相对密度(d204)1.220,折光率1.3714,燃烧热254.4 kJ/mol,临界温度306.8 ℃,临界压力8.63 MPa。闪点68.9 ℃(开杯)。密度1.22,相对蒸气密度1.59(空气=1),饱和蒸气压(24℃)5.33 kPa。浓度高的甲酸在冬天易结冰。

禁配物:强氧化剂、强碱、活性金属粉末。

危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与强氧化剂可发生反应。

溶解性:与水混溶,不溶于烃类,可混溶于醇。

在烃中及气态下,甲酸以通过以氢键结合的二聚体形态出现。在气态下,氢键导致甲酸气体与理想气体状态方程之间存在较大的偏差。液态和固态的甲酸由连续不断的通过氢键结合的甲酸分子组成。

甲酸在浓硫酸的催化作用下分解为CO和H2O:

由于甲酸的结构特殊,它的一个氢原子和羧基直接相连。也可看做是一个羟基甲醛。因此甲酸同时具有酸和醛和性质。

甲酸具有与大多数其他羧酸相同的性质,尽管在通常情况下甲酸不会生成酰氯或者酸酐。甲酸脱水分解为一氧化碳和水。甲酸具有和醛类似的还原性。它能起银镜反应,把银氨络离子中的银离子还原成金属银,而自己被氧化成二氧化碳和水。

甲酸是唯一能和烯烃进行加成反应的羧酸。甲酸在酸的作用下(如硫酸,氢氟酸),和烯烃迅速反应生成甲酸酯。但是类似于Koch反应的副反应也会发生,产物是更高级的羧酸。

甲酸为强的还原剂,能发生银镜反应。在饱和脂肪酸中酸性最强,离解常数为2.1×10-4。在室温慢慢分解成一氧化碳和水。与浓硫酸一起加热至60~80℃,分解放出一氧化碳。甲酸加热到160℃以上即分解放出二氧化碳和氢。甲酸的碱金属盐加热至400℃生成草酸盐。

乙酸,也叫醋酸、冰醋酸,化学式CH?COOH,是一种有机一元酸,为食醋内酸味及刺激性气味的来源。纯的无水乙酸(冰醋酸)是无色的吸湿性液体,凝固点为16.7℃(62℉),凝固后为无色晶体。尽管根据乙酸在水溶液中的解离能力它是一种弱酸,但是乙酸是具有腐蚀性的,其蒸汽对眼和鼻有刺激性作用。

相对密度(水为1):1.050 相对分子量:60.05

凝固点(℃):16.6 沸点(℃):117.9

粘度(mPa.s):1.22(20℃)20℃时蒸气压(KPa):1.5

外观及气味:无色液体,有刺鼻的醋味。

溶解性:能溶于水、乙醇、乙醚、四氯化碳及甘油等有机溶剂。

相容性:材料:稀释后对金属有强烈腐蚀性,316#和318#不锈钢及铝可作良好的结构材料。

国家产品标准号:GB/T 676-2007

乙酸在常温下是一种有强烈刺激性酸味的无色液体。乙酸的熔点为16.6℃(289.6 K)。沸点117.9℃(391.2 K)。相对密度1.05,闪点39℃,爆炸极限4%~17%(体积)。纯的乙酸在低于熔点时会冻结成冰状晶体,所以无水乙酸又称为冰醋酸。乙酸易溶于水和乙醇,其水溶液呈弱酸性。乙酸盐也易溶于水,水溶液呈碱性。

乙酸具有酸性,羧酸中,例如乙酸的羧基氢原子能够部分电离变为氢离子(质子)而释放出来,导致羧酸的酸性。乙酸在水溶液中是一元弱酸,酸度系数为4.8,pKa=4.75(25℃),浓度为1mol/L的醋酸溶液(类似于家用醋的浓度)的pH为2.4,也就是说仅有0.4%的醋酸分子是解离的。

乙酸酸性的体现:CH3COOH→CH3COO- + H+

a、与指示剂作用:可使紫色石蕊试液变为红色,使甲基橙变为红色。

b、与碱反应:CH3COOH + NaOH→CH3COONa + H2O

c、与某些活泼金属反应:Mg + 2CH3COOH →Mg(CH3COO)2 + H2↑

d、与某些氧化物反应:CaO + 2CH3COOH →(CH3COO)2Ca + H2O

e、与某些弱酸盐反应:2CH3COOH + Na2CO3→2CH3COONa + CO2↑+ H2O

乙酸的晶体结构显示,分子间通过氢键结合为二聚体(亦称二缔结物),二聚体也存在于120℃的蒸汽状态。二聚体有较高的稳定性,现在已经通过冰点降低测定分子量法以及X光衍射证明了分子量较小的羧酸如甲酸、乙酸在固态及液态,甚至气态以二聚体形式存在。当乙酸与水溶和的时候,二聚体间的氢键会很快的断裂。其它的羧酸也有类似的二聚现象。(两端连接H)

液态乙酸是一个亲水(极性)质子化溶剂,与乙醇和水类似。因为介电常数为6.2,它不仅能溶解极性化合物,比如无机盐和糖,也能够溶解非极性化合物,比如油类或一些元素的分子,比如硫和碘。它也能与许多极性或非极性溶剂混合,比如水,氯仿,己烷。乙酸的溶解性和可混合性使其成为了化工中广泛运用的化学品。

乙酸能发生普通羧酸的典型化学反应,特别注意的是,可以还原生成乙醇,通过亲核取代机理生成乙酰氯,也可以双分子脱水生成酸酐。

同样,乙酸也可以成酯或氨基化合物。如乙酸可以与乙醇在浓硫酸存在并加热的条件下生成乙酸乙酯(本反应为可逆反应,反应类型属于取代反应中的酯化反应)。

2甲醇提纯过程流程分析

2.1Aspen Plus简介

2.1.1Aspen Plus简介

Aspen Plu是大型通用流程模拟系统源于美国能源部七十年代后期在麻省理工学院(MIT)组织的会战,开发新型第三代流程模拟软件。该项目称为“过程工程的先进系统”(Advanced System for Process Engineering简称ASPEN)并于1981年底完成。1982年为了将其商品化 成立了AspenTech公司并称之为Aspen Plus。该软件经过20多年来不断地改进、扩充和提高已先后推出了十多个版本成为举世公认的标准大型流程模拟软件应用案例数以百万计。全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。

2.1.2产品功能

1.工程工作流

Aspen Plus 在整个工艺生命周期优化工程工作流: 回归实验数据;用简单的设备模型初步设计流程;用详细的设备模型严格地计算物料和能量平衡;确定主要设备的大小;在线优化完整的工艺装置(Aspen Plus offline and Aspen RT-Opt)Aspen Plus根据模型的复杂程度支持规模工作流。可以从简单的、单一的装置流程到巨大的、多个工程师开发和维护的整厂流程。分级模块和模板功能是模型的开发和维护非常简单。

2.1.3工程能力

Aspen Plus 提供了单元操作模型到装置流程模拟。这些模型的可靠性和增强功能已经经过20多年经验的验证和数以百万计例子的证实。Aspen Plus 在整个工艺装置的从研发、工程到生产生命周期中 提供了经过验证的巨大的经济效益。它将稳态模型的功能带到工程桌面 传递着无与伦比的模型功能和方便使用

的组合。利用Aspen Plus 公司可以设计、模拟、瓶颈诊断和管理有效益的生产装置。

2.2流程模拟

为得到较高纯度的甲醇,通过甲醇塔R1对混合物进行精馏,采用Aspen Plus 软件中的DSTWU 和RadFrac 模型对精制过程进行模拟,并根据给定的条件、分离要求对各塔的理论塔板数、进料口位置和回流比进行优化.

甲醇提纯模拟流程如图2-1所示.

图2-1甲醇提纯模拟流程图

设定混合物的进料流量为103万吨/年,进料温度为20℃,进料压力为90 kPa,要求分离结束后达到以下要求:

a. 产品甲醇含量不得低于95%(W/W);

b. 釜残液甲醇含量不得高于0.3%(W/W)。

分别满足GB/T 6705-2008[14] 、GB/T2279-2008[15]和GB/T 2600-2009[16]的相关要求.

3分离结果分析

3.1塔顶:

塔顶物料组成见表3-1:

表3-1塔顶物料组成表

项目数值

Temperature/ ℃62.8689092

Pressure/ bar 0.9002

Vapor/ Frac 0

Mole Flow/ kmol/hr 1026.65133

Mass Flow /kg/hr 31664.071

Volume Flow/ cum/hr 42.040371

Enthalpy/ Gcal/hr -58.546667

Mass/ Frac

CH4O 0.95000001

CH2O2 1.86E-05

H2O 0.04998125

C2H4O-01 1.49E-07

Mole Flow /kmol/hr

CH4O 938.790259

CH2O2 0.0127894

H2O 87.8481995

C2H4O-01 7.84E-05

3.2塔底:

塔底物料组成见表3-2:

表3-2塔底物料组成表

项目数值

Temperature/ °C 98.2790591

Pressure/ bar 0.9632

Vapor/ Frac 0

Mole Flow/ kmol/hr 5378.35515

Mass Flow/ kg/hr 97085.9395

Volume Flow/ cum/hr 105.634753

Enthalpy/ Gcal/hr -359.94874

Mass/ Frac

CH4O 0.00300024

CH2O20.000657

H2O 0.99594496

C2H4O-01 0.00039779

Mole Flow /kmol/hr

CH4O 9.09056855

CH2O2 1.38586995

H2O 5367.2356

C2H4O-01 0.64310784

3.3塔各项参数:

塔各项参数如图3-1所示

图3-1塔各项参数

如图3-1所示:塔板数:10;回流比:2.11;馏出液和原料液的速度比值:0.160.

4灵敏度分析

利用Aspen Plus软件中的灵敏度分析功能分别研究理论塔板数、最小回流

比和各板与塔顶纯度的关系.

4.1最佳进料位置

图4-1灵敏度分析图

用ASPEN软件对塔进行灵敏度分析不同理论板数下各板与塔顶纯度的关系。由图可知,最佳进料版为第6块板。最少理论板数为10.

4.2回流比

图4-2回流比分析图

用ASPEN软件对塔进行灵敏度分析回流比,如图4-2所示分析结果可知最

佳回流比为2.11

4.3塔内液相质量组成分布图

图4-3塔内液相质量组成分布图4.4塔内温度分布图

图4-4塔内温度分布图

5设备的选取

5.1塔

5.1.1 概述

塔器是气—液、液—液间进行传热、传质分离的主要设备,在化工、制药、和轻工业中,应用十分广泛,塔器甚至成为化工装置的一种标志。在气体吸收、液体精馏(蒸馏)、萃取、吸附、增湿、离子交换等过程更离不开塔器,对于某些工艺来说,塔器甚至成为关键设备。

随着时代发展,出现了各种各样型式的塔,而且还不断有新的塔型出现。虽然塔型众多,但根据塔内部结构,通常将塔大致分为板式塔和填料塔两大类。

5.1.2 塔型比较

板式塔与填料塔的对比

板式塔:塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。

填料塔:塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。

表5-1 板式塔与填料塔的对比

(2)塔型选择一般原则:

选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。

1>下列情况优先选用填料塔:

a.在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度;

b.对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔;

c.具有腐蚀性的物料,可选用填料塔。因为填料塔可采用非金属材料,如陶瓷、塑料等;

d.容易发泡的物料,宜选用填料塔。

2>下列情况优先选用板式塔:

a.塔内液体滞液量较大,操作负荷变化范围较宽,对进料浓度变化要求不敏感,操作易于稳定;

b.液相负荷较小;

c.含固体颗粒,容易结垢,有结晶的物料,因为板式塔可选用液流通道较大

的塔板,堵塞的危险较小;

d.在操作过程中伴随有放热或需要加热的物料,需要在塔内设置内部换热组件,如加热盘管,需要多个进料口或多个侧线出料口。这是因为一方面板式塔的结构上容易实现,此外,塔板上有较多的滞液以便与加热或冷却管进行有效地传热;

e.在较高压力下操作的蒸馏塔仍多采用板式塔。

综合考虑,本项目选择板式塔。

5.1.3 塔板类型与性能比较

根据塔板上气、液两相的相对流动状态,板式塔分为穿流式和溢流式。目前板式塔大多采用溢流式塔板。穿流式塔板操作不稳定,很少使用。

溢流式塔板主要有F形浮阀、十字架形浮阀、条形浮阀、筛板、舌形板、浮动喷射塔板、圆形泡罩、条形泡罩、S形泡罩;穿流式塔板主要有栅板、筛孔板、波纹板。

表5-2 各类塔板性能比较

注:A一不合适;B一尚可;C一合适;D一较满意;E一很好;F一最好。

综上,选择溢流式筛板塔。

5.1.4 CUP-TOWER简介

CUP-TOWER软件是一款可靠、易用、通用的塔设备水力学综合计算软件,它将工业上常见的板式塔、筛板萃取塔、散装填料塔、规整填料塔和填料萃取塔等多种类型的塔内件集合在一起,是一款功能强大、综合性很强的全新软件。其借鉴了国内外相关软件的特点,在可靠性、易用性、通用性等方面更胜一筹。其主要功能如下:

1可用于板式塔、筛板萃取塔、散装填料塔、规整填料塔和填料萃取塔的计算,

丙酮水连续精馏塔设计说明书吴熠

课程设计报告书丙酮水连续精馏浮阀塔的设计学院化学与化工学院 专业化学工程与工艺 学生姓名吴熠 学生学号 指导教师江燕斌 课程编号 课程学分 起始日期

目录 \ "" \ \ \

第部分设计任务书 设计题目:丙酮水连续精馏浮阀塔的设计 设计条件 在常压操作的连续精馏浮阀塔内分离丙酮水混合物。生产能力和产品的质量要求如下: 任务要求(工艺参数): .塔顶产品(丙酮):, (质量分率) .塔顶丙酮回收率:η=0.99(质量分率) .原料中丙酮含量:质量分率(*) .原料处理量:根据、、返算进料、、、 .精馏方式:直接蒸汽加热 操作条件: ①常压精馏 ②进料热状态q=1 ③回流比R=3R min ④加热蒸汽直接加热蒸汽的绝对压强 冷却水进口温度℃、出口温度℃,热损失以计 ⑤单板压降≯ 设计任务 .确定双组份系统精馏过程的流程,辅助设备,测量仪表等,并绘出工艺流程示意图,表明所需的设备、管线及有关观测或控制所必需的仪表和装置。 .计算冷凝器和再沸器热负荷。塔的工艺设计:热量和物料衡算,确定操作回流比,选定板型,确定塔径,塔板数、塔高及进料位置 .塔的结构设计:选择塔板的结构型式、确定塔的结构尺寸;进行塔板流体力学性能校核(包括塔板压降,液泛校核及雾沫夹带量校核等)。 .作出塔的负荷性能图,计算塔的操作弹性。 .塔的附属设备选型,计算全套装置所用的蒸汽量和冷却水用量,和塔顶冷凝器、塔底蒸馏釜的换热面积,原料预热器的换热面积与泵的选型,各接管尺寸的确定。

第部分设计方案及工艺流程图 设计方案 本设计任务为分离丙酮水二元混合物。对于该非理想二元混合物的分离,应使用连续精馏。含丙酮(质量分数)的原料由进料泵输送至高位槽。通过进料调节阀调节进料流量,经与釜液进行热交换温度升至泡点后进入精馏塔进料板。塔顶上升蒸汽使用冷凝器,冷凝液在泡点一部分回流至塔内,其余部分经产品冷却后送至储罐。该物系属于易分离物系(标况下,丙酮的沸点°),塔釜为直接蒸汽加热,釜液出料后与进料换热,充分利用余热。 工艺流程图

最新版甲醇安全技术说明书SDS

化学品安全技术说明书 根据GB/T 16483-2008标准和UN GHS 4.0修订版编写 甲醇 1.0版本 打印日期:2014年12月26日 修订时间:2014年12月26日SDS编号:10000685281 1.1 产品的确认 产品名:甲醇 其他名称:木精;木醇;木酒精。 产品的识别信息:CAS#67-56-1 ;EC#200-659-6 1.2 产品的推荐用途与限制用途 1.2.1 推荐用途:基础的有机化工原料和优质燃料。 1.2.2 限制用途:未知。 1.3 供应商的具体信息 名称:***公司 地址:(工商营业执照上的注册地址) 联系人(电子邮箱): 固定电话: 传真: 1.4应急咨询电话(24h):个人拥有近8万种SDS,全球120种语言。 2.1物质或混合物的分类 2.1.1 GHS危险性分类: 物理危险易燃液体类别2 健康危险急性毒性-经口类别3 急性毒性-经皮类别3 急性毒性-吸入类别3 特异性靶器官系统毒性一次接触类别1 环境危险未被分类 2.2 标签要素 象形图: 警示词:危险 危险性说明:高度易燃液体和蒸气。 吞咽会中毒。 皮肤接触会中毒。 吸入会中毒。 会损害器官。

防范说明 预防措施:远离热源/火花/明火/热表面。禁止吸烟。 保持容器密闭。 容器和接收设备接地/等电位连接。 使用防爆的电气/通风/照明/设备。 只能使用不产生火花的工具。 采取防止静电放电的措施。 不要吸入粉尘/烟/气体/蒸气/喷雾。 作业后彻底清洗双手。 使用本产品时不得进食、饮水或吸烟。 只能在室外或通风良好之处使用。 戴防护手套/穿防护服/戴防护眼罩/戴防护面具。 事故响应:如误吞咽:立即呼叫解毒中心/医生。 如皮肤(头发)沾染:立即去除所有沾染的衣服。用水清洗皮肤/淋浴。 如误吸入:将人员转移到通风环境,保持呼吸顺畅。 如接触到或有疑虑:呼叫解毒中心/医生。 呼叫解毒中心/医生。 漱口。 立即脱去所有沾染的衣物,清洗后方可使用。 火灾时:使用抗溶性泡沫、干粉、二氧化碳、砂土灭火。 安全储存:存放在通风良好的地方。保持容器密闭。 保持低温。 存放处需加锁。 废弃处置:依据地方法规处置内装物/容器。 物质或混合物:物质 成分: 4.1 措施概述 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立 即进行人工呼吸。就医。 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 食入:饮足量温水,催吐。用清水或1%硫代硫酸钠溶液洗胃。就医。 4.2 急性和迟发效应:吞咽会中毒。皮肤接触会中毒。吸入会中毒。会损害器官。 4.3 急救人员的个体防护:务必让医务人员知道所涉及的物质,并采取防护措施以保护他们自己。 4.4 对医生的特别提示:提供一般支持措施,并根据症状进行治疗。

甲醇工艺(精馏工段)设计说明书

甲醇工艺(精馏工段)设计说明书 一概述 1甲醇生产的发展概况 甲醇生产技术发展很快,近20年来,在原料路线、生产规模、节能降耗、过程控制与优化及与其他化工产品联合生产等发面都有新的突破与进展。 1)原料路线 甲醇生产的原料大致有煤、石油、天然气和含H 2、CO(或CO 2 )的工业废气 等。从 50年代开始,天然气逐步成为制造甲醇的主要原料,因为它简化了流程,便于输送,降低了成本,目前世界甲醇总产量中约有70%左右是天然气为原料的。但是,随着能源的紧张,如何有效地开发煤炭资源,这是个从未中断过的研究课题,煤气化技术发展迅速,除传统的固定床UGI炉外,固定床鲁奇汽化炉,流化闯温克勒汽化炉,气流床K-T炉,气流床德士古汽化炉的开发均取得进展并都在工业上得到使用。从长远的战略观点来看,世界煤的储藏量远超过天然气和石油。我国情况更是如此,将来以煤制取甲醇的原料路线终将占主导地位。 2)生产规模 甲醇生产技术发展趋势之一是单系列,大型化。由于高压设备尺寸的限制,50年代以前,甲醇合成塔的单塔生产能力一般不超过100~200t/d,60年代不超过200~300t/d。但近十年来,单系列大型甲醇合成塔不断被开发,并在工业生产中使用,Lurgi管壳型甲醇合成塔单塔生产能力可达2500t/d。随着由气轮机驱动的大型离心压缩机研制成功,为合成气压缩机、循环机的大型化提供了条件。 国内的甲醇装置的规模偏小,除引进的Lurgi与ICI装置单系列年产10万吨甲醇外,较多中型化肥厂中单系列甲醇装置年产仅3~4万吨。更有一些单醇与联醇装置年产仅数千吨。今后必须不断创造条件,增大单系列甲醇装置的生产规模。 3)节能降耗 甲醇成本中能源消耗费用占较大比重。目前,甲醇生产技术改进的重点放在采用低能耗工艺,充分回收和利用能量等方面。主要方向是研制性能更好的转化与合成催化剂,降低甲醇合成压力,开发新的净化方法,降低燃料消耗。采用节能型精馏工艺与设备高、中、低位热能的合理配置与低位能热能的合理使用等措施。 4)过程控制 甲醇生产是连续操作,技术密集的工艺。目前正向高度自动化操作水平发展,化工过程优化控制在甲醇生产中得到推广与应用。 国内甲醇装置的过程控制水平还停留在仪表显示与单参数控制水平。采用数学模型方法对系统进行分析,已有初步成果。引进国内外先进控制技术进一步提高自控水平,对发展我国甲醇工业很有意义。 5)联合生产 国内外大多甲醇装置都是与其他化工产品实现联合生产的。甲醇装置成为大型化肥厂或石油化工厂的一个组成部分。其中具有代表性的是合成氨联产甲醇与城市 煤气联产甲醇。此外,还有利用含CO与H 2 的尾气、废气生产甲醇。目前已投产 的有乙炔尾气制甲醇,乙烯裂解废气制甲醇等。 2设计任务

甲醇制氢设计工艺

前言 氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。 依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点: (1与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。 (2与电解水制氢相比,单位氢气成本较低。 (3所用原料甲醇易得,运输、贮存方便。 (4可以做成组装式或可移动式的装置,操作方便,搬运灵活。 对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。 目录 1.设计任务书 (3

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

最新甲醇安全技术说明书

最新甲醇安全技术说明书

化学品安全技术说明书 产品名称:甲醇按照GB/T 16483、GB/T17519编制修订日期:2015年3月10日SDS编号:********** 最初编制日期:*********** 版本:********** 第1部分化学品及企业标识 化学品中文名:甲醇别名:木醇;木精 化学品英文名:Methanol 企业名称:**********企业地址:************ 电话号码:************* 电子邮件地址:********** 应急咨询电话:********** 邮编:********** 传真:************* 产品推荐及限制用途:甲醇是多种有机产品的基本原料和重要的溶剂,广泛用于有机合成、染料、医药、涂料和国防工业等。甲醇是容易输送的清洁染料,可以单独与汽油混合作为汽车染料。 第2部分危险性概述 紧急情况概述: GHS危险性类别:

易燃液体类别2 急性毒性—经口类别3 急性毒性—经皮类别3 急性毒性—吸入类别3 特异性靶器官毒性—一次接触类别1 标签要素: 象形图: 警示词:危险 危险性说明:高度易燃液体和蒸气,吞咽会中毒,皮肤接触会中毒,吸入会中毒,一次接触。 防范说明: ·预防措施: ——远离火种、热源,工作场所严禁吸烟。 ——密闭操作,防止泄漏,加强通风。 ——注意防雷、防静电,厂(车间)内的储罐应按规定设置防雷防静电设施。 ——禁止使用易产生火花的机械设备和工具。 ——采用防爆型照明、通风设施。 ——戴化学安全防护眼镜,穿防静电工作服,戴橡胶手套,建议操作人员佩戴过滤式防毒面具(半面罩)。 ——作业后彻底清洗。

甲醇钠车间操作规程(碱法)讲解

甲醇钠车间操作规程 (碱法) 山东辛龙生物科技股份有限公司

1 岗位名称、任务、管辖范围 1.1岗位名称: 甲醇精馏及甲醇钠反应岗位。 1.2任务: 甲醇精馏及甲醇钠反应任务是:将氢氧化钠甲醇溶液在合成塔内与过量的无水甲醇反应生成甲醇钠甲醇溶液产品。形成的有水甲醇进入甲醇精馏塔进行精馏,制得的无水甲醇循环使用,精馏塔底的稀甲醇进入稀甲醇回收岗位,进一步脱水、回收甲醇。 1.3管辖范围: 包括甲醇钠合成塔、甲醇精馏塔、甲醇再沸器、甲醇冷凝器、合成塔甲醇再沸器、无水甲醇贮罐、甲醇钠产品储罐,无水甲醇输送泵,有关物料输送部分及其与上述各部分有关的仪表、管道和安全设施。 2 岗位定员及分工 岗位定员:9人 岗位分工:中控6人,巡检取样3人。 3岗位在生产过程中的地位和作用 甲醇精馏塔:提取无水甲醇,辅助甲醇钠反应岗位。 甲醇钠合成塔:NaOH与甲醇反应生产甲醇钠甲醇溶液。 4 工艺信息 4.1 工艺流程图及工艺过程简述 甲醇钠工艺流程方框图: Na OH 反应精馏蒸馏CH3OH CH3ONA 水(H2O) 工艺过程简述:

沉淀合格后的氢氧化钠甲醇溶液与精馏脱水后的无水甲醇反应生产甲醇钠甲醇溶液和水份,生产的水份由过量的甲醇气体从合成塔顶部带入精馏塔底提纯循环利用,部分稀甲醇由精馏塔底部排出进入稀甲醇回收系统回收利用。 4.2 化学反应方程式 CH3OH+Na OH CH3ONA+H2O 4.3岗位工艺指标一览表 工艺过 程 项目工艺参数-- 配制碱液 甲醇钠含水量≤1.5% 醇碱液含量18-20% 静置时间≮24小时 溶液温度55-60℃ Ⅰ套Ⅱ套Ⅲ套 再沸器蒸汽压力0.02-0.10MP a 0.02-0.08MPa 0.02-0.10MPa 精馏塔压力(监 视) 0.02-0.06MP a 0.02-0.04MPa 0.02-0.06MPa 塔顶至塔地温度66-90℃66-90℃66-90℃ 甲醇精馏 分流量7.5-8.5m3/h 4.5-5.5m3/h 7.5-8.5m3/h 回流量11.5-12.5m3/ h 8.5-9.5m3/h 11.5-12.5m3/h 精馏甲醇含水量<0.04%<0.04%<0.04% 塔底液相含水量≯35%≯35%≯35% 甲醇钠合成汽化器蒸汽压力0.1-0.3MPa 0.1-0.3MPa 0.1-0.3MPa 塔底蒸汽压力0.1-0.6MPa 0.1-0.6MPa 0.1-0.6MPa 塔顶至塔地温度85-110℃85-105℃85-110℃ 馏出甲醇含水量 2.0% 2.0% 2.0% 碱液喷淋量1600-2400L/ h 1000-1600L/h 1600-2400L/h

南京工业大学甲醇制氢生产装置设计论文

南京工业大学Array机械学院 2.过程装备与控制工程专业 综合课程设计任务书 设计题目:生产能力为2400 m3/h 甲醇制氢生产装置设计 设计人:陈侃 班级:控制0701 学号: 27 设计时间: 2010年12月21日—2011年1月15日

1.前言 氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。 依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点: (1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。(2)与电解水制氢相比,单位氢气成本较低。 (3)所用原料甲醇易得,运输、贮存方便。 (4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。 对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。

精馏塔设计

精馏塔设计 目录 § 1 设计任务书 (1) § 1.1 设计条件 (1) § 2 概述 (1) § 2.1 塔型选择 (1) § 2.2 精馏塔操作条件的选择 (3) § 2.3 再沸器选择 (4) § 2.4 工艺流程 (4) § 2.5 处理能力及产品质量 (4) § 3 工艺设计 (5) § 3.1 系统物料衡算热量衡算 (5) § 3.2 单元设备计算 (9) § 4 管路设计及泵的选择 (28) § 4.1 进料管线管径 (28) § 4.2 原料泵P-101的选择 (31) § 5 辅助设备的设计和选型 (32)

§ 5.1 贮罐………………………………………………………………………………… 32 § 5.2 换热设备…………………………………………………………………………… 34 § 6 控制方案…………………………………………………………………………………… 34 附录1~………………………………………………………………………………………… 35 参考文献………………………………………………………………………………………… 37 后 记 (38) §1 设计任务书 §1.1 设计条件 工艺条件:饱和液体进料,进料量丙烯含量x f =65%(摩尔百分数) 塔顶丙烯含量D x =98%,釜液丙烯含量w x ≤2%,总板效率为0.6。 操作条件:建议塔顶压力1.62MPa (表压) 安装地点:大连 §2 概述 蒸馏是分离液体混合物(含可液化的气体混合物)常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛的应用。其中,简单蒸馏与平衡蒸馏只能将混合物进行初步的分离。为了获得较高纯度的产品,应

甲醇安全技术说明书

化学品安全技术说明书 (甲醇) 第一部分化学品及企业标识 化学品中文名称:甲醇 化学品英文名称:Methanol 企业名称:XXXXXXX 地址:XXXXXXX 邮编: XXXXXXX 电子邮件地址:XXXXXXX 联系电话: XXXXXXX 传真号码: XXXXXXX 企业应急电话:XXXXXXX 产品代码: XXXXXXX 产品推荐用途:用作农用杀虫剂溶剂 产品限制用途:无资料 第二部分危险性概述 物理化学危险:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、 高热能引起燃烧爆炸。与氧化剂接触发生化学反应或引起燃烧。在火场 中,受热的容器有爆炸危险。其蒸气比空气轻,能在较高处扩散到相当 远的地方,遇火源会着火回燃。 健康危害:对中枢神经系统有麻醉作用;对视神经和视网膜有特殊选 择作用,引起病变;可致代射性酸中毒。急性中毒:短时大量吸入出现

轻度眼上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。慢性影响:神经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等。皮肤出现脱脂、皮炎等。 环境危害:对环境有危害,对水体可造成污染。 GHS危险性类别:易燃液体类别2 急性毒性-经口类别3 急性毒性-经皮类别3 急性毒性-吸入类别3 特异性靶器官毒性-一次接触类别1 标签要素: 象形图: 警示词:危险 危险信息:易燃液体和蒸气;吞咽会中毒;皮肤接触可能中毒;吸入可能中毒;对人健康有危害。 防范说明: 预防措施:远离热源、明火,使用不产生火花的工具作业;采取防

丙酮甲醇混合物萃取精馏分离过程

龙源期刊网 https://www.wendangku.net/doc/262991261.html, 丙酮甲醇混合物萃取精馏分离过程 作者:员建飞白宇杰楚莎莎 来源:《名城绘》2019年第01期 摘要:丙酮和甲醇也是制药工业中常用的有机溶剂。而制药过程中也经常涉及丙酮与甲醇的混合溶液的分离回收再利用的问题。由于甲醇(沸点64.7℃)与丙酮(沸点56.5℃)的沸点相近,容易形成共沸物,因此采用一般精馏的方法很难将其分离。萃取精馏作为常用的分离共沸物的方法而被广泛使用,因此萃取剂的选择便成为了萃取精馏的重中之重。 关键词:丙酮;甲醇;精馏分离 一、引言 化工生产中所使用的原料、产生的中间产物以及粗产品几乎都是由各种不同组分组成的混合物,并且他们当中大部分都是均相物系。在生产过程中经常需要将这些混合物分离,从而获得较纯净或者几乎纯态的物质或者组分。要想达到分离效果,只有通过改变均相物系,创造一个两相物系的环境,才能将均相混合物进行分离,并根据物系中不同组分间的某种物性的差异,使其中某些组分或某个组分从一相向另外一相转移,以达到分离。通常把这种物质在相间的转移过程称分离操作或传质过程。常见的传质过程分为蒸镏、吸收、萃取及干燥等单元操作。就像制药生产工艺中所产生的甲醇和丙酮混合液一样,两种物质为均相混合共沸物,若想将两种物质分离,得到纯度较高的丙酮和甲醇,需经过萃取精馏这一分离操作。 1.精馏原理 精馏是进行多次部分气化和部分冷凝的过程,可使混合液几乎完全的分离。多次进行部分汽化或部分冷凝以后,最终可以在汽相中得到较纯的易挥发组分,而在液相中得到较纯的难挥发组分。 2. 精馏过程简介 精馏一般分为连续精馏和间歇精馏。连续精馏过程中料液从塔中部适当位置连续地加入精馏塔内,塔顶设有冷凝器将塔顶蒸汽冷凝为液体。冷凝液的一部分回到塔顶,称为回流液,其余作为塔顶产品即馏出液连续排出。在加料位置以上的塔内上半部上升蒸汽和回流液体之间进行着逆流接触和物质传递。塔底装有再沸器(蒸馏釜)用来加热液体产生蒸汽,蒸汽沿塔上升,与下降的液体逆流接触并进行物质传递,塔底连续排出部分液体作为塔底产品。在塔的加料位置以上,上升蒸汽中所含的重组分向液相传递,而回流液中的轻组分向气相传递。 二、萃取精馏简介 1.萃取精馏技术介绍

化工原理课程设计说明书-板式精馏塔设计

前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。 板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。 【精馏塔设计任务书】 一设计题目 精馏塔及其主要附属设备设计 二工艺条件

甲醇安全技术说明书

甲醇安全技术说明书 一标识 中文名:甲醇;木酒精 英文名:Methyl alcohol;Methanol O 分子式:CH 4 相对分子质量:32.04 CAS号:67-56-1 危险性类别:第3.2类中闪点易燃液体 化学类别: 二主要组成部分与性状 主要成分:纯品 外观与性状:无色澄清液体,有刺激性气味。 主要用途:主要用于制甲醛、香精、染料、医药、火药、防冻剂等。 三健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:属Ⅲ级危害(中度危害)毒物。对呼吸道及胃肠道粘膜有刺激作用,对血管神经有毒作用,引起血管痉挛,形成瘀血或出血;对视神经和视网膜有特殊的选择作用,使视网膜因缺乏营养而坏死。 急性中毒:短时大量吸入出现轻度眼上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、眩晕、酒醉感、意识朦胧、谵妄,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降、呼吸加速等。 慢性中毒:长期接触可发生经衰弱综合征,植物神经功能失调,粘膜刺激,视力减退等。皮肤出现脱脂、皮炎等。 四急救措施 皮肤接触:脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处,保持呼吸道通畅。如呼吸停止,立即进行人工呼吸。就医。 食入;饮足量温水,催吐,饮足量温水,催吐。用清水或1%硫代硫酸钠溶液洗胃。就医。 五燃爆特性与消防 燃烧性:易燃 闪点(℃):11 爆炸下限(%):5.5 爆炸上限(%):44 引燃温度(℃): 385 最小点火能(mJ): 0.215 最大爆炸压力(MPa): 无资料 危险特性:易燃,其蒸汽与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触发生化学反应或引起燃烧。在火场中,受热的容器有爆炸危险。其蒸汽比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。 六泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。不要直接接触泄漏物。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸汽灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [ 设计计算] (一)设计方案的确定 本设计任务为分离甲醇- 水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 3 原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T 的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h

甲醇制氢生产装置设计

生产能力为2800 m3/h 甲醇制氢生产装置设计

前言 氢气是一种重要的工业用品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量也有着不同的要求。近年来随着中国改革开放的进程,随着大量高精产品的投产,对高纯氢气的需求量正在逐渐扩大。 烃类水蒸气转化制氢气是目前世界上应用最普遍的制氢方法,是由巴登苯胺公司发明并加以利用,英国ICI公司首先实现工业化。这种制氢方法工作压力为2.0-4.0MPa,原料适用范围为天然气至干点小于215.6℃的石脑油。近年来,由于转化制氢炉型的不断改进。转化气提纯工艺的不断更新,烃类水蒸气转化制氢工艺成为目前生产氢气最经济可靠的途径。 甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。它具有以下的特点: 1、与大规模天然气、轻油蒸气转化制氢或水煤气制氢比较,投资省,能耗低。 2、与电解水制氢相比,单位氢气成本较低。 3、所用原料甲醇易得,运输储存方便。而且由于所用的原料甲醇纯度高,不需要在净化处理,反应条件温和,流程简单,故易于操作。 4、可以做成组装式或可移动式的装置,操作方便,搬运灵活。

前言 ----------------------------------------------- 2 目录 ----------------------------------------------- 3 摘要 ----------------------------------------------- 3 设计任务书 ----------------------------------------- 4 第一章工艺设计 ------------------------------------------ 5 1.1.甲醇制氢物料衡算 -------------------------------------- 1.2.热量恒算 ---------------------------------------------- 第二章设备设计计算和选型:塔、换热设备、反应器 ----- 8 2.1.解析塔的选择 ------------------------------------------ 2.2.换热设备的计算与选型 ---------------------------------- 2.3.反应器的设计与选型 ------------------------------------ 第三章机器选型------------------------------------------ 13 3.1.计量泵的选择 ------------------------------------------ 15 3.2.离心泵的选型 第四章设备布置图设计---------------------------------- 15 4.1.管子选型 ---------------------------------------------- 17 4.2.主要管道工艺参数汇总一览表 ---------------------------- 8 4.3.各部件的选择及管道图 ---------------------------------- 第五章管道布置设计 ------------------------------- 16 5.1.选择一个单参数自动控制方案 ---------------------------- 21 5.2.换热器温度控制系统及方块图 课设总结 ------------------------------------------- 28

甲醇安全技术说明书正式版

化学品安全技术说明书 产品名称:甲醇按照 GB/T 16483、GB/T 17519编制 修订日期:2014年10月23日 SDS编号:BCT-AH-2014031 最初编制日期:2008年12月26日版本:3.1 第一部分化学品及企业标识 化学品中文名称:甲醇 化学品英文名称:methyl alcohol 企业名称:山东薛焦化工有限公司 地址:山东省枣庄市薛城区临泉路68号 邮编:277000 电子邮箱地址:xjhggs@https://www.wendangku.net/doc/262991261.html, 联系电话:0632-4460087 传真号码:0632-4412032 企业应急电话:0632-4411382 产品代码:(鲁)XK13-014-00005 第二部分危险性概述 物理化学危险:易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热有燃烧爆炸危险。与氧化剂接触发生化学反应或引起燃烧。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引起回燃。健康危害:对中枢神经系统具麻醉作用,对视神经和视网膜有特殊选择作用,引起病变;可致代谢性酸中毒。急性中毒:短时大量吸入出现轻度眼及上呼吸道刺激症状(口服有胃肠道刺激症状);经一段时间潜伏期后出现头痛、头晕、乏力、

眩晕、酒醉感、意识朦胧,甚至昏迷。视神经及视网膜病变,可有视物模糊、复视等,重者失明。代谢性酸中毒时出现二氧化碳结合力下降,呼吸加速等。慢性影响:神经衰弱综合症,植物神经功能失调,粘膜刺激,视力减退等。皮肤出现脱脂、皮炎等。 环境危害:该物质对环境有危害,应特别注意对水体的污染。 GHS危险性类别:根据《化学品分类和危险性公示通则》(GB 13690-2009)及化学品分类、警示标签和警示性说明规范系列标准,该产品属于: 易燃液体-2,皮肤腐蚀/刺激-2,特异性靶器官系统毒性一次接触-3,特异性靶器 官系统毒性反复接触-2,严重眼睛损伤/眼睛刺激性-2,对水环境的危害-急性3,对水环境的危害- 长期慢性3,吸入危害-2, 标签要素: 象形图: 警示词:危险 危险信息:高度易燃液体和蒸气; 引起皮肤刺激; 可能引起呼吸道刺激,可能引起昏昏欲睡或眩晕; 长期或反复接触可致器官损害; 引起严重眼睛刺激; 对水生生物有害; 对水生生物有害并且有长期持续影响; 吞咽并进入呼吸道可能有害; 防范说明: 预防措施: ——在得到专门指导后操作。在未了解所有安全措施之前,且勿操作。 ——远离热源、火花、明火、热表面。使用不产生火花的工具作业。 ——采取防止静电措施,容器和接收设备接地、连接。 ——使用防爆型电器、通风、照明及其他设备。 ——保持容器密闭。

化工原理甲醇-水板式精馏塔设计

一、甲醇-水板式精馏塔设计条件 (1)生产能力:3万吨/年,年开工300天 (2)进料组成:甲醇含量65%(质量分数) (3)采用间接蒸汽加热并且加热蒸汽压力:0.3MPa (4)进料温度:采用泡点进料 (5)塔顶馏出液甲醇含量99%(质量分数) (6)塔底轻组分的浓度≤1%(本设计取0.01) (7)塔顶压强常压 (8)单板压降≤0.7Kpa (9)冷却水进口温度25℃ (10)填料类型:DN25金属环矩鞍散堆填料 二、设计的方案介绍 1、工业流程概述 工业上粗甲醇精馏的工艺流程,随着粗甲醇合成方法不同而有差异,其精制过程的复杂程度有较大差别,但基本方法是一致的。首先,总是以蒸馏的方法在蒸馏塔的顶部,脱出较甲醇沸点低的轻组分,这时,也可能有部分高沸点的杂质和甲醇形成共沸物,随轻组分一并除去。然后,仍以蒸馏的方法在塔的底部或侧脱除水和重组分,从而获得纯净甲醇组分。其次,根据精甲醇对稳定性或其他特殊指标的要求,采取必要的辅助办法。 常规甲醇精制流程可以分为两大部分,第一部分是预精馏部分,另一部分是主精馏部分。预精馏部分除了对粗甲醇进行萃取精馏脱出某些烷烃的作用之外,另外的还可以脱出二甲醚,和其它轻组分有机杂质。其底部的出料被加到主塔的中间入料板上,主塔顶部出粗甲醇,底部出废液,下部侧线出杂醇。 2、进料的热状况 精馏操作中的进料方式一般有冷液加料、泡点进料、汽液混合物进料、饱和蒸汽进料和过热蒸汽加料五种。本设计采用的是泡点进料。这样不仅对塔的操作稳定较为方便,不受厦门季节温度影响,而且基于恒摩尔流假设,精馏段与提馏段上升蒸汽的摩尔流量相等,因此塔径基本相等,在制造上比较方便。 3、精馏塔加热与冷却介质的确定 在实际加热中,由于饱和水蒸气冷凝的时候传热的膜系数很高,可以通过改变蒸汽压力准确控制加热温度。水蒸气容易获取,环保清洁不产生环境污染,并且不容易使管道腐蚀,成本降低。因此,本设计是以133.3℃总压是300 kpa的饱和水蒸汽作为加热介质。 冷却介质一般有水和空气。在选择冷却介质的过程中,要因地制宜充分考虑。以茂名市地处亚热带为例,夏天室外平均气温28℃。因此,计算选用28℃的冷却水,选择升温10℃,即冷却水的出口温度为38℃。 4、塔顶的回流方式 对于小型塔采用重力回流,回流冷凝器一般安装在比精熘塔略高的地方,液体依靠自身的重力回流。但是必须保证冷凝器内有一定持液量,或加入液封装置防止塔顶汽相逃逸至

甲醇制氢操作规程完整

400Nm3/h甲醇制氢 操作规程

目录 目录 .................................................................................................................................................. I 操作规程. (1) 一岗位管辖及任务 (1) 1.1岗位管辖围 (1) 1.2岗位任务: (1) 二、工艺说明及流程示意图: (1) 2.1工艺说明 (1) 2.2流程示意图 (4) 三岗位工艺指标: (5) 3.1温度指标: (5) 3.2流量指标: (5) 3.3压力指标:MPa (5) 3.4液位: (6) 3.5分析指标 (6) 四:装置启动初次开车及停车后的再启动 (6) 4.1管道的试漏、保压 (6) 4.2催化剂的装填 (6) 4.3设备、仪表的调校 (9) 4.6投料启动 (10) 4.7停车后再启动 (10) 4.8催化剂的卸出 (12) 五正常停车步骤和紧急停车: (12) 5.1正常停车 (12) 5.2紧急停车 (14) 5.3临时停车 (14)

六常见故障及处理方法: (14) 6.1外界供给条件失常 (14) 6.2操作失调 (15) 6.3 PLC故障 (16) 5.4操作注意事项 (17) 七巡回检查制度: (17) 八岗位责任制: (17) 九设备维护保养制度: (18) 十设备润滑管理制度: (19) 十一安全注意事项: (19)

操作规程 一岗位管辖及任务 1.1岗位管辖围 界区所有管道、设备、阀门、电气及仪表等均属于岗位管辖围。 1.2岗位任务: 利用甲醇和水的重整反应制氢,重整气组成为氢气约75%,二氧化碳约25%,还有微量的甲烷,二乙醚的等杂质,之后在通过变压吸附分离提氢,改变变压吸附(PSA)操作条件可生产不同纯度的氢气,氢气纯度最好可达99.999%以上。 二、工艺说明及流程示意图: 2.1工艺说明 2.1.1重整工段 甲醇进入界区后直接进入混配罐中,通过液位控制甲醇进料量,无离子水进入界区后直接进入混配罐中,通过控制液位控制无离子水进料量,两台混配罐一台陪料,一台使用。混配罐甲醇、水混合液体能维持一个班八小时的工作用量。混配罐中的混合液经计量泵输送到换热器中。本工艺现场配备三台计量泵,其中一台输送混合液体,一台给水洗塔输送无离子水,另一台备用,三台泵型号、结构完全相同,开二备一。甲醇、水混合液体进入换热器与由反应器出来的重整气进行换热,换热后混合液温度由室温升至140℃,并呈现部分气化的气液胶着状态,然后接着进入气化过热器,被过热器下部管壳高温导热油加热气化,气化后的甲醇、水混合蒸气通过气化过热器上部列管被管壳中的高温导热油进一步加热到240~300℃围,然后进入反应器中。进入反应器的甲醇、水混合蒸气由上而下通过催化剂床层,在催化剂的作用下发生甲醇、水蒸气重整反应,生成产物为二氧化碳和氢气—重整气。由反应器出来的重整气进入换热器中与原料甲醇、水液体进行换热,完成热量交换后,重整气的温度由240~300℃降为160℃左右,然后进入水冷却器进一步冷却至室温,经冷却后的

相关文档
相关文档 最新文档