文档库

最新最全的文档下载
当前位置:文档库 > 10112108-盛守荣-矩阵函数以及应用-邱玉文

10112108-盛守荣-矩阵函数以及应用-邱玉文

天津科技大学2014届本科生毕业设计

1 绪论

1.1 矩阵(Matrix)的发展与历史

人们对矩阵(Matrix)的研究历史非常悠久,在很久以前就已经有人研究过了幻方和拉丁方阵。在过去的很长时间内,矩阵都是人们解决线性问题的最主要方法。成书于汉朝前期的《九章算术》,在表示线性方程组的过程中使用了将方程中不同系数分开的方法,这种方法在后来的不断演化下最终得到方程的增广矩阵。在计算的过程中经常使用矩阵的初等变换进行消元,具体说就是通过一些计算技巧将前面给出的增广矩阵化为行最简型。但是当时我们能知道的矩阵知识非常的少,虽然过去的标准和现在的矩阵在表示上已经非常的类似了,但这两者都是以线性方程为基本标准。事实上子宫基质的控制中心和开始生活意义的地方是矩阵最开始的意义,所以说矩阵有生命的意义。在数学中,开始出现的是对现在数学都有决定性的行列式,但需要行列式的行和列相等,最终的排成的表都是方的,随着研究的深入人们发现行数等于列数的行列式已经无法满足现实生活中的实际需要了。在这种情况下,矩阵应运而生。现在对于我们来说非常熟悉的矩阵和行列式,它们的概念是非常的不一样的。行列式能按照我们的规则计算出它的结果,而矩阵是将数字按一定顺序排列得到的。在学术研究中恰当地使用矩阵,能用向量空间中的向量表示线性方程组中系数矩阵;因此,一个多元线性方程组的解的情况,以及一系列问题的理论解之间的不同关系,都可以得到彻底解决。矩阵都有自身的行和列,水平的称之为行,竖直的称之为列。这些我们现在能看到的关于矩阵的一切都是由无数数学家的摸索得来的。

矩阵(Matrix)在数学发展历史上有着非常重要的位置,它一直是数学研究的一个主要方面,是数学在研究和应用过程中经常用到的知识。“矩阵”由英国数学家叶(Sylvester)第一次使用,他使用的这个数学术语最后将矩阵的列数和早期的行列式分离开来。在数学发展的历史长河中矩阵理论的创立者被一致认为是英国数学家凯莱(Cayley),是他最先将矩阵作为一个单独的数学上的概念提出来,并且关于矩阵的很多学术论文和著作都是他最早发表的。事实上最早的矩阵是从对大量行列式的研究中分离出来的,因为和行列式对应的方阵本身就可以做许多的研究和运用,随着对行列式研究的深入,矩阵的许多知识点也日渐完善。从逻辑上讲,概念应先于行列式的矩阵的概念和历史上真正的顺序是恰恰相反的。在19世纪50年代,英国数学家凯莱(Cayley)公开展示了自己关于矩阵的最新研究成果--《矩阵论的研究报告》,这项研究成果使我们对矩阵的认识更深入了一步。本文定义了矩阵相等、矩阵的算法、矩阵的转置和基本概念,如矩阵的逆矩阵的加法,给出了系列,互换性和约束力。除此之外,英国数学家凯莱(Cayley)也给出了方阵的特征根(特征值),还有其他许多结论。矩阵的发展历史,著名的德国数学家弗洛伯纽斯(Frobenius)起着非常重要的作用,他是第一个对矩阵中最小多项式问题作全面介绍的著名数学家。他还介绍了矩阵的秩、不变的因素和主要因素、正交矩阵相似变换等知识,矩阵的其他概念如合同,不变的因素和主要因素理论的逻辑排列的形式等等在他的著作中也有体现。在19

1

免费下载Word文档免费下载: 10112108-盛守荣-矩阵函数以及应用-邱玉文

(共32页)