文档库 最新最全的文档下载
当前位置:文档库 › 第一题.矩阵法,梯形法积分

第一题.矩阵法,梯形法积分

第一题.矩阵法,梯形法积分
第一题.矩阵法,梯形法积分

梯形法数值积分

A .算法说明:

梯形法数值积分采用的梯形公式是最简单的数值积分公式,函数()f x 在区间[a,b]上计算梯形法数值积分表达式为:

()[()()]2b a b a f x dx f a f b -≈+? 由于用梯形公式来求积分十分粗糙,误差也比较大,后来改进后提出了复合梯形公式:b a

h n -=,其中,n 为积分区间划分的个数;h 为积分步长。

在MATLAB 中编程实现的复合梯形公式的函数为:Combine Traprl.

功能:复合梯形公式求函数的数值积分。

调用格式:[I,step]=CombineTraprl(f,a,b,eps).

其中,f 为函数名;

a 为积分下限;

b 为积分上限;

eps 为积分精度;

I 为积分值;

Step 为积分划分的区间个数

B .流程图

C.复合梯形公式的原程序代码:

function[I,step]=CombineTraprl(f,a,b,eps)

% 复合梯形公式求函数f在区间[a,b]上的定积分

%函数名:f

%积分下限:a

%积分上限:b

%积分精度:eps

%积分值:I

%积分划分的子区间个数:step

if(nargin==3)

eps=1.0e-4; %默认精度为0.0001

end

n=1;

h=(b-a)/2;

I1=0;

I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h;

while abs(I2-I1)>eps

n=n+1

h=(b-a)/n;

I1=I2;

I2=0;

for i=0:n-1 %第年n次的复合梯形公式积分

x=a+h*i; %i=0 和n-1时,分别代表积分区间的左右端点

x1=x+h

I2=I2+(h/2)*(subs(sym(f),findsym(sym(f)),x)+subs(sym(f),findsym(sym(f)),x1));

end

end

I=I2;

step=n;

D.应用举例

复合梯形法求数值积分应用举例,利用复合梯形法计算定积分

dx x

?

-

4

221

1

流程图

原程序代码:

[q,s]=CombineTraprl('1/(x^2-1)',2,4) %精度为默认的10-4

结果

q=

0.2945

S=

15

[q,s]=CombineTraprl('1/(x^2-1)',2,4,1.0e-6) %精度为10-6

结果:

q=

0.2939

s=

66 所以从复合梯形公式可以得出dx x ?-4

221

1≈0.2939 矩形法数值积分

源程序代码

function[I,step]=CombineTraprl(f,a,b,eps)

% 复合矩形公式求函数f 在区间[a,b]上的定积分

%函数名:f

%积分下限:a

%积分上限:b

%积分精度:eps

%积分值:I

%积分划分的子区间个数:step

if(nargin==3)

eps=1.0e-4; %默认精度为10-4

end

n=1;

h=b-a;

I1=0;

I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps

n=n+1

h=(b-a)/n;

I1=I2;

I2=0;

for i=0:n-1 %第年n 次的复合矩形公式积分

x=a+h*i; %i=0 和n-1时,分别代表积分区间的左右端点 x1=x+h

I2=I2+h*subs(sym(f),findsym(sym(f)),x1);

end

end

I=I2;

step=n;

应用举列:

复合矩形法求数值积分应用举例,利用复合矩形法计算定积分dx x 2

12

流程图

原程序代码:

[q,s]=CombineTraprl('x^2',1,2) %精度为默认的10-4结果:

q=

2.3340

s=

16

第九章矩阵位移法习题集

第九章 矩阵位移法 【练习题】 9-1 是非题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 9-2 选择题: 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A .完全相同; B .第2、3、5、6行(列)等值异号; C .第2、5行(列)等值异号; D .第3、6行(列)等值异号。

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法 一、是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 ? 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 — 3、单元i j 在图示两种坐标系中的刚度矩阵相比:

《结构力学习题集》-矩阵位移法习题及答案(DOC)

第八章 矩阵位移法 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234x y M , θ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 123l l 4l l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) x y M , θ EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l (0,0,1) (0,5,0) (2,3,4) l ① ② 123x y M , θ 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l l 1 3 4 2A , I A A /222A I , 2A x y M , θ 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 3 12① ② ③ [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 : 4 x y M , θ

矩阵位移法大作业

矩阵位移法大作业 学号:151210122 姓名:谭逸天 班级:土木一班

编制原理: 使用Math Work公司开发的科学与工程计算机软件——MATLAB, 利用其矩阵运算的便利性,将题目要求结构的基本信息编入脚本命令文件中,并编入求解步骤。加上刚度信息的输入指令,以及提取解答要求信息并输出的指令。令使用者只需输入结构材料相关信息便可计算题目对应悬索—拱组合体系的信息,并直接在命令窗口输出。 利用计算套路的重复性,程序开发时进行模块化设计。再由重复单元完成多次、重复的运算。 从整体性考虑,数据储存采用“算后集装,装后回收”对变量及数组重复使用,由配音进行简单命名,提高可辨识度。由于计算套路及程序本身高度模块化,并且题目所需个体信息相对于整体极少,提取个体化的信息只需简单改造命令模块,从整体信息中提取处理得出。编程所需的“数据化”“编码”等预处理由人工在编程开始前完成,由左下斜索基座作原点,正右向为X轴正向,正上为Y轴正向,建立右手系。编码顺序从左倒右由上及下,并用先处理法处理基座。(如下图所示)

6 7 共45个单元,32个结点编号,71个位移编号。 本人学号对应节间数m=14;f1=7L/4;f2=7L/10;h=7L/2;以上数据 为编程中人工设定值,结构的其余信息根据用户的输入进行计算得出。

程序说明: 初始计算结构在坐标系中的坐标信息,手动编入悬索与拱的曲线关键点信息,代入方程求解。随后由循环语句模块计算并存储结构中各类杆件的角度、长度信息,采用以直代曲的方法处理曲线。 由于先处理法,两端各四个单元不与其余单元通用编码递进规律,采用单独的语句进行计算并集装入总体信息储存矩阵中,其余规律性单元信息由循环的语句模块进行集装,便于之后的计算。定位向量统一装至71行6列的矩阵“dingwei”中,单元的长度与夹角信息统一装至71行2列的矩阵“danyuan”中,第一列为长度,第二列为角度。使两个信息矩阵的行序号对应单元序号,便于之后使用。 之后进入单元分析部分。先是对上部悬索进行单元分析,此部分为桁架单元,从“danyuan”矩阵中提取长度信息与角度信息,结合 开始时输入的刚度信息组装单刚矩阵与坐标变换矩阵,进行坐标变换后直接提取定位向量进行集装部分总刚矩阵的步骤。集装命令通过循环嵌套配合判断语句,对单刚矩阵进行二维遍历,并提取合格的元素填充至对应位置。随后,通过少量改动实现对斜索、吊杆、拱、主塔的处理。 之后保留基本结构,进行单元结点荷载的分析,并集装出结构结点荷载矩阵。 之后通过简单矩阵运算即得结构结点位移列阵。 进入单元后处理。将集装循环语句进行改造,达成逆向提取单元结点位移的功能。提取之前存储的单元信息进行坐标变换。最后算出

《结构力学习题集》-矩阵位移法习题及答案

第八章 矩阵位移法 – 老八校 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 12 3l l 4 l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l 1 3 4 2 A , I A A /222A I , 2A 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 :

矩阵位移法单元测验(daan )

一、 判断题(认为正确的打O ,错误的打 ) 1.(本小题4分) 矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。(O ) 二.选择题(将选中答案的字母填入括弧内) 1.(本小题4分) 桁架中任一单元的最后内力计算公式为: {}[]{}[] A. F k F e e e e =-δ ; {} []{} {}B. F T k e e e =δ; {}[][]{}[] C. F T k F e e e e =+δ0; {} [][]{}[] D. F T k F e e e e =+δ 。(B) 2.(本小题4分) 电 算 分 析 中 ,结 构 原 始 刚 度 矩 阵 引 入 边 界 条 件 后 : A .一 定 是 非 奇 异 的 ; B .可 能 奇 异 ,也 可 能 非 奇 异 ,要 视 具 体 边 界 条 件 而 定 ; C .只 要 引 入 的 条 件 多 于 3个 ,则 一 定 是 非 奇 异 的 ; D .一 定 是 奇 异 的 。(D) 三.填充题(将答案写在空格内) 1.(本小题4分).图示结构采用位移编码先处理法集成所得结构刚度矩阵元素K 11 为 36EI/L 3,K 23为2EI/L ,不计轴向变形。 l l (0,3)(1,2)(0,0) 2EI EI 01 2 x y M , θx 2.(本小题4分) 图示刚架,l=6m ,q=20kN/m ,则等效结点荷载列阵元素 P 2=0,P 4=60kn.m 。 q l l l 1 2 34 x θ

四.(本大题10分) 图示梁结点转角列阵为{} [] ?=--0 0.4529 0.0615 0.2487 0.0562 0.0032T 。试求杆56的杆端弯矩列 阵。 0.5m m 1kN 3kN m .1 234 1kN/m 2kN m .5 0.5m 1m 1m 16 m 1EI=1kN m .2 EA=oo x y M , θ 五.(本大题10分) 已知:图示结构(不计轴变,EI=常数)的结点位移为 试求4单元的杆端弯矩。 {}[]{}[] ? ? ????---=??? ???-+??????-??????=+=92/512/112/1184/512/12/368/5042242 22 2 ql ql ql i ql i i i i F k F e q e e e δ {}[]T i ql i ql 368/5552/722-=?1(0,0,0) 2(0,0,0) 3(0,0,1) 4(0,0,2) 2 1 3 5(0,0,0) 4 q ql l l l/2 l/2

设计采用梯形法和辛普生法求定积分的程序

河北工业大学计算机软件技术基础(VC)课程设计报告 学院信息工程学院院班级通信101 姓名崔羽飞学号 102117 成绩 __ ____ 一、题目: 设计采用梯形法和辛普生法求定积分的程序 二、设计思路 1、总体设计 1)分析程序的功能 本题目的功能是对梯形法和辛普森法,在不同区间数下计算所得的定积分的值,进行精度比较。 2)系统总体结构: 设计程序的组成模块,简述各模块功能。 该程序共分为以下几个模块 模块一:各函数原型的声明。 模块二:主函数。 模块三:各函数的定义。 包括两个数学函数y1=1+x*x、y2=1+x+x*x+x*x*x的定义和两个函数指针double integralt(double ,double ,int ,double(*f)(double)) double integrals(double ,double ,int ,double(*f)(double)) 的定义。 2、各功能模块的设计:说明各功能模块的实现方法 模块一:对各种函数进行声明。 模块二:求梯形法和辛普森法,在不同区间数下计算所得的定积分的值。 模块三:将各函数写出来。 3、设计中的主要困难及解决方案 在这部分论述设计中遇到的主要困难及解决方案。 1)困难1:函数指针的应用。解决方案:仔细阅读课本,以及与同学之间的讨论,和向老师求助。 2)困难2:将程序分成不同的.cpp文件。解决方案:与同学讨论。 4、你所设计的程序最终完成的功能 1)说明你编制的程序能完成的功能 在数学上求一个函数与x轴在一定范围内所围的面积即求定积分,对梯形法和辛普森法求定积分的比较。 2)准备的测试数据及运行结果

《结构力学习题集》下矩阵位移法习题及答案 2

第七章 矩阵位移法 一、就是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性与奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 就是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它就是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义就是变形连续条件与位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数与。 10、矩阵位移法中,等效结点荷载的“等效原则”就是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,就是: A.非对称、奇异矩阵; B.对称、奇异矩阵; C.对称、非奇异矩阵; D.非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A.完全相同; B.第2、3、5、6行(列)等值异号;

结构力学-第9章 矩阵位移法课堂练习

结构力学练习题——矩阵位移法 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。)(对 2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有 K ij = K ji ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 ()错 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 113 24=/ 。 ( )错 l l 附: ????? ? ????????? ?????????? ???? ?--------l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA 4602606120612000002604606120612000002 22323222323 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且 各 杆 单 元 类 型 相 同 时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 :A (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3) (1,0,2) (0,0,0) (0,0,0) (1,0,3) (0,0,0) (0,1,2) (0,0,0) (0,3,4) A. B. C. D. 2 1 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ( ) 2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵 []k 66 ?,就 其 性 质 而 言 ,是 : ( )B A .非 对 称 、奇 异 矩 阵 ; B .对 称 、奇 异 矩 阵 ; C .对 称 、非 奇 异 矩 阵 ; D .非 对 称 、非 奇 异 矩 阵 。 3、单 元 i j 在 图 示 两 种 坐 标 系 中 的 刚 度 矩 阵 相 比 :B A . 完 全 相 同 ;

第一题.矩阵法,梯形法积分

梯形法数值积分 A .算法说明: 梯形法数值积分采用的梯形公式是最简单的数值积分公式,函数()f x 在区间[a,b]上计算梯形法数值积分表达式为: ()[()()]2b a b a f x dx f a f b -≈+? 由于用梯形公式来求积分十分粗糙,误差也比较大,后来改进后提出了复合梯形公式:b a h n -=,其中,n 为积分区间划分的个数;h 为积分步长。 在MATLAB 中编程实现的复合梯形公式的函数为:Combine Traprl. 功能:复合梯形公式求函数的数值积分。 调用格式:[I,step]=CombineTraprl(f,a,b,eps). 其中,f 为函数名; a 为积分下限; b 为积分上限; eps 为积分精度; I 为积分值; Step 为积分划分的区间个数 B .流程图

C.复合梯形公式的原程序代码: function[I,step]=CombineTraprl(f,a,b,eps) % 复合梯形公式求函数f在区间[a,b]上的定积分 %函数名:f %积分下限:a %积分上限:b %积分精度:eps %积分值:I %积分划分的子区间个数:step if(nargin==3) eps=1.0e-4; %默认精度为0.0001 end n=1; h=(b-a)/2; I1=0; I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps n=n+1 h=(b-a)/n; I1=I2; I2=0; for i=0:n-1 %第年n次的复合梯形公式积分 x=a+h*i; %i=0 和n-1时,分别代表积分区间的左右端点 x1=x+h I2=I2+(h/2)*(subs(sym(f),findsym(sym(f)),x)+subs(sym(f),findsym(sym(f)),x1)); end end I=I2; step=n; D.应用举例 复合梯形法求数值积分应用举例,利用复合梯形法计算定积分 dx x ? - 4 221 1 流程图

矩阵位移法练习题

结构力学自测题(第八单元) 矩阵位移法 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 ( ) 2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有 K ij = K ji ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 () 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 113 24=/ 。 ( ) EI l l EI 212 x y M , θ 附: ????? ?????????? ?????????? ???? ?--- -----l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA 460260612061200000260460 6120612000002 22323222323 4、在 任 意 荷 载 作 用 下 ,刚 架 中 任 一 单 元 由 于 杆 端 位 移 所 引 起 的 杆 端 力 计 算 公 式 为 :{} [][]{}F T K e e e =δ 。 ( ) 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且 各 杆 单 元 类 型 相 同 时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 : (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3) (1,0,2) (0,0,0) (0,0,0) (1,0,3) (0,0,0) (0,1,2) (0,0,0) (0,3,4) A. B. C. D. 2 1 3 4 1 2 3 4 1 2 3 4 1 2 3 4 x y M , θ ( ) 2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵 []k 66?, 就 其 性 质 而 言 ,是 : ( ) A .非 对 称 、奇 异 矩 阵 ; B .对 称 、奇 异 矩 阵 ; C .对 称 、非 奇 异 矩 阵 ; D .非 对 称 、非 奇 异 矩 阵 。 3、单 元 i j 在 图 示 两 种 坐 标 系 中 的 刚 度 矩 阵 相 比 : A . 完 全 相 同 ; B . 第 2、3、5、6 行 (列 ) 等 值 异 号 ; C . 第 2、5 行 (列 )等 值 异 号 ; D . 第 3、6 行 (列 ) 等 值 异 号 。 ( ) i j y x i j y x M , θ M , θ 4、矩 阵 位 移 法 中 ,结 构 的 原 始 刚 度 方 程 是 表 示 下 列 两 组 量 值 之 间 的 相 互 关 系 : ( ) A .杆 端 力 与 结 点 位 移 ; B .杆 端 力 与 结 点 力 ; C .结 点 力 与 结 点 位 移 ; D .结 点 位 移 与 杆 端 力 。 5、单 元 刚 度 矩 阵 中 元 素 k ij 的 物 理 意 义 是 : A .当 且 仅 当 δi =1 时 引 起 的 与 δj 相 应 的 杆 端 力 ; B .当 且 仅 当 δj =1时 引 起 的 与 δi 相 应 的 杆 端 力 ; C .当 δj =1时 引 起 的 δi 相 应 的 杆 端 力 ; D .当 δi =1时 引 起 的 与 δj 相 应 的 杆 端 力。 () 6、用 矩 阵 位 移 法 解 图 示 连 续 梁 时 ,结 点 3 的 综 合 结 点 荷 载 是 : A .[]-ql ql 2 12 T 132 ; B .[]ql ql 2132 12T -; C .[]--ql ql 2112 12T ; D .[]ql ql 2112 12T 。 ( ) 123 l /2 l l ql 2 q 4 ql l /2 x y M , θ 7、用 矩 阵 位 移 法 解 图 示 结 构 时 ,已 求 得 1 端 由 杆 端 位 移 引 起 的 杆 端 力 为 {}[] T F 461--=,则 结 点 1 处 的 竖 向 反 力 Y 1 等 于 : A .6-; B .-10; C .10 ; D .14 。 ( ) 2m 4m 12 3 M 1 Y 20kN/m 1 x y M , θ 三、填 充 题 ( 将 答 案 写 在 空 格 内) 1、图 示 桁 架 结 构 刚 度 矩 阵 有 个 元 素 ,其 数 值 等 于 。 2m 3m 3m A B C D EA EA EA x y M , θ 2、图 示 刚 架 用 两 种 方 式 进 行 结 点 编 号 ,结 构 刚 度 矩 阵 最 大 带 宽 较 小 的 是 图 。 3 5 641 2 7 1 2345 6 7 (a) (b) 3、图 示 梁 结 构 刚 度 矩 阵 的 主 元 素 K K 1122== , 。 l l 2EI EI 1 2 x y M , θ 四、图 a 、b 所 示 两 结 构 ,各 杆 EI 、l 相 同 ,不 计 轴 向 变 形 , 已 求 得 图 b 所 示 结 构 的 结 点 位 移 列 阵 为 {}?=-???? ? ?ql EI ql REI ql EI 34396192192 T 。试 求 图 a 所 示 结 构 中 单 元 ① 的 杆 端 力 列 阵。 q 1 2 3 4(a) ql 2 ② ③ ① 1 2 34 (b) ② ③ ① x y M , θ 五、图 a 所 示 结 构 (整 体 坐 标 见 图 b ),图 中 圆 括 号 内 数 码 为 结 点 定 位 向 量 (力 和 位 移 均 按 水 平 、竖 直 、转 动

矩形、梯形法计算定积分的黎曼和

钦州学院数学与计算机科学学院 数 学 实 验 报 告 实验完成日期 2010 年 11 月 5 日 , 第 10 周 , 星期五 成绩等级(五级分制) 评阅教师 评阅日期 年 月 日 数学实验报告填写要求:思路清晰,中间结果和最终结果真实;字迹工整,报告完整。 [实验题目及内容] 实验题目:(1)通过矩形法、梯形法分别计算定积分? ++-= b a x x x f 32.0)(2 的黎曼和; (2)通过10=n ,50=n ,200=n 时黎曼和的值分析两种方法逼近定积分的 速度。 内容:黎曼和逼近定积分值的动态过程演示,可利用几何画板制作 [问题描述](用自己组织的相关数学语言重述现实问题;注意对约定的条件作说明) 将AB 边n 等分,过这些分点作E B '的垂线,将抛物线32.0)(2 ++-=x x x f 和以AB 为边形成的图形分割为n 个直角小梯形或小矩形,求这些小梯形或小矩形面积的和,即可求出定积分? ++-= b a x x x f 32.0)(2 黎曼和即面积。当n 充分大时,直角小梯形或小矩形的 面积之和可近似代替定积分? ++-=b a x x x f 32.0)(2 黎曼和。因此可通过计算梯形或矩形 面积求出定积分? ++-= b a x x x f 32.0)(2 的黎曼和。 定积分dx x f b a ?)(在数值上等于以曲线)(x f y =和三直线0=y 、a x =、b x =所围 成的曲边梯形的面积。解决的办法是分割后再求和:设想将区间],[b a 分为n 个小区间,以每个小区间左端点对应的函数值为高,以小区间的长度为宽,构作n 个梯形或矩形,并以这些小梯形或小矩形的面积的和(即黎曼和)近似代替定积分的面积。当改变参数n 的大小时,随着n 的逐渐增大(并且每个小区间的长度逐渐缩小),黎曼和的值逐渐趋近定积分的值。 [模型建立或思路分析](建立合理,可解释的数学模型,通过公式、表格或图形直观明确地描述模型的结构;无法通过建立模型解决的,给出解题的思路及办法。) 利用几何画板作图:

《结构力学习题集》(下)-矩阵位移法习题及答案

第八章 矩阵位移法 1、(O) 2、(X) 3、(O) 4、(X) 5、(X) 6、(O) 7、(O) 8、(X) 9、(O) 10、(O) 11、(A) 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234x y M , θ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 123l l 4l l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) x y M , θ EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l (0,0,1) (0,5,0) (2,3,4) l ① ② 123x y M , θ 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l l 1 3 4 2A , I A A /222A I , 2A x y M , θ 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 3 12① ② ③ [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 : 4x y M , θ

第9章 矩阵位移法 例题

第9章 矩阵位移法 习 题 9-1:请给图示结构编号(同时用先处理法和后处理法)及建立坐标。 题9-1图 9-2:求图示连续梁的整体刚度矩阵。 题9-2图 9-3:求图示刚架的整体刚度矩阵。 (c ) (e )

题9-3图 9-4:求图示组合结构的整体刚度矩阵。 题9-4图 9-5:求图示桁架结构的整体刚度矩阵,所有杆件的EA 均相同。 题9-5图 9-6:求图示排架结构的整体刚度矩阵。 题9-6图 9-7:求图示结构的等效结点荷载,请利用结构的对称性。 1kN/m

题9-7图 9-8:求图示结构的等效结点荷载,请利用结构的对称性。 题9-8图 9-9:求图示结构的等效结点荷载。 题9-9图 9-10:求出图示结构的荷载列阵。 题9-10图 9-11:求出图示结构的荷载列阵,请分别用先处理法和后处理法进行编号。 q q

题9-11图 9-12:求图示结构的荷载列阵,考虑轴向变形。 题9-12图 9-13:求图示结构的荷载列阵。 题9-13图 9-14:图示连续梁中间支座发生了下向的移动a ,请求出其整体刚度方程。 题9-14图 10kN/m q

9-15:请求出图示连续梁的整体刚度方程。 题9-15图 9-16:求图示连续梁的整体刚度矩阵。 题9-16图 9-17:图示结构温度发生了变化,请求出整体刚度方程。杆件的EI 、EA 相同。 题9-17图 9-18:图示结构温度发生了变化,请求出整体刚度方程。 题9-18图 9-19:图示结构发生了支座移动,请画出结构的内力图。 00

C语言-用矩形法和梯形法求定积分

一.写一个用矩形法求定积分的函数,求sin(x)在(0,1)上的定积分。 #include #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; //n表示划分的单位宽度,n越小结果越精确,n是矩形的宽 l=(b-a)/n; // l表示有多少个单位宽度 for(i=0;i #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; l=(b-a)/n; for(i=0;i #include jifen(float a,float b,double (*fun)(double)) {int i,l;

结构力学习题集矩阵位移法习题及答案老八校

第八章 矩阵位移法 – 老八校 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。 ,cos α=C ,sin α=S ,C C A ?= S S D S C B ?=?=,,各杆EA 相同。

利用复化梯形公式复化simpson 公式计算积分

实验 目 的 或 要 求1、利用复化梯形公式、复化simpson 公式计算积分 2、比较计算误差与实际误差 实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码 ) 取n=2,3,…,10分别利用复化梯形公式、复化simpson 公式计算积分1 20I x dx =?,并与真值进行比较,并画出计算误差与实际误差之间的曲线。 利用复化梯形公式的程序代码如下: function f=fx(x) f=x.^2; %首先建立被积函数,以便于计算真实值。 a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n 值所计算出的结果 for n=2:10; h=(b-a)/n; %步长 x=zeros(1,n+1); %给节点定初值 for i=1:n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^2; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/2*(y(i)+y(i+1)); %利用复化梯形公式求值 end T=[T,t]; %把不同n 值所计算出的结果装入 T 中 end R=ones(1,9)*(-(b-a)/12*h.^ 2*2); %积分余项(计算误差) true=quad(@fx,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*') %将计算误差与实际误差用图像画出来 注:由于被积函数是x.^2,它的二阶倒数为2,所以积分余项为:(-(b-a)/12*h.^ 2*2)

实 验 原 理 ( 算 法 流 程 图 或 者 含 注 释 的 源 代 码)利用复化simpson 公式的程序代码如下: 同样首先建立被积函数的函数文件: function f=fx1(x) f=x.^4; a=0; %积分下线 b=1; %积分上线 T=[]; %用来装不同n值所计算出的结果 for n=2:10 h=(b-a)/(2*n); %步长 x=zeros(1,2*n+1); %给节点定初值 for i=1:2*n+1 x(i)=a+(i-1)*h; %给节点赋值 end y=x.^4; %给相应节点处的函数值赋值 t=0; for i=1:n t=t+h/3*(y(2*i-1)+4*y(2*i)+y(2*i+1)); %利用复化simpson公式求值end T=[T,t] ; %把不同n值所计算出的结果装入T中 end R=ones(1,9)*(-(b-a)/180*((b-a)/2).^4*24) ; %积分余项(计算误差) true=quad(@fx1,0,1); %积分的真实值 A=T-true; %计算的值与真实值之差(实际误差) x=linspace(0,1,9); plot(x,A,'r',x,R,'*')

矩阵位移法习题

矩阵位移法 一、选择题:(将选中答案的字母填入括弧内) 1、图示连续梁结构,在用结构矩阵分析时将杆AB 划成AD 和DB 两单元进行计算是:( ) A .最好的方法; B .较好的方法; C .可行的方法; D .不可行的方法。 2、图示结点所受外载,若结点位移列阵是按转角顺时针、水平位移(→)、垂直位移(↑)顺序排列,则2结点荷载列阵()2P 应写成:( ) A .[]6105T ; B .[]---6105T ; C .[]6510-T ; D .[] 6105-T 。 3、图示结构,用矩阵位移法计算时(计轴向变形),未知量数目为:( ) A .7; B .8; C .9; D .4。 4、图示结构,用矩阵位移法计算时(计轴向变形),未知量数目为:( ) A .9; B .5; C .10; D .6。 5、在直接刚度法的先处理法中,定位向量的物理意义为:( ) A .变形连续条件; B .变形连续条件和位移边界条件; C .位移边界条件; D .平衡条件。 6、设有一单跨两层支座为固定的对称刚架,承受反对称荷载作用,若考虑杆件的轴向变形与弯曲变形,取半刚架计算时,其先处理法所得结构刚度矩阵的阶数为:( ) A .8×8; B .9×9;

C .10×10; D .12×12。 7、单元ij 在图示两种坐标系中的刚度矩阵相比:( ) A .完全相同; B .第2、3、5、6行(列)等值异号; C .第2、5行(列)等值异号; D .第3、6行(列)等值异号。 j y x i 二、填充题:(将答案写在空格内) 1、根据 互等定理可以证明结构刚度矩阵是 矩阵。 2、图示结构中,已求得结点2的位移列阵{} [][]T T 2222 u a b c ?θ==v ,则单元②的杆端2在局 部坐标下的位移列阵:{}[] T T 2222 u ?θ??==?? ② ②v 。 3、图示桁架结构刚度矩阵有 个元素,其数值等于 。 3m 3m A B C D EA EA EA 4、结构刚度方程中的荷载列阵是由 和 叠加而得。 5、用先处理法中,若只考虑弯曲变形则图示刚架的结构刚度矩阵[]K 中第1行元素为: 。 三、计算题: y

相关文档
相关文档 最新文档