文档库 最新最全的文档下载
当前位置:文档库 › 高一数学两点式和截距式_20200731172516

高一数学两点式和截距式_20200731172516

高中数学必修一求函数解析式解题方法大全及配套练习

高中数学必修一求函数解析式解题 方法大全及配套练习 一、 定义法: 根据函数的定义求解析式用定义法。 【例1】设23)1(2 +-=+x x x f ,求)(x f . 2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2 ++-+x x 65)(2+-=∴x x x f 【例2】设2 1 )]([++= x x x f f ,求)(x f . 解:设x x x x x x f f ++=+++=++=11111 11 21)]([ x x f += ∴11)( 【例3】设3 3 22 1)1(,1)1(x x x x g x x x x f +=++ =+,求)]([x g f . 解:2)(2)1 (1)1(2222-=∴-+=+=+ x x f x x x x x x f 又x x x g x x x x x x x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([2 4 6 2 3 -+-=--=x x x x x x g f 【例4】设)(sin ,17cos )(cos x f x x f 求=. 解:)2 ( 17cos )]2 [cos()(sin x x f x f -=-=π π x x x 17sin )172 cos()1728cos(=-=-+ =π π π.

二、 待定系数法:(主要用于二次函数) 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程, 从而求出函数解析式。 它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴????? ?=-===32 1 2b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2 )1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ?? ?=++=+8 2 2b a b b a 解得 ?? ?==. 7, 1b a 故f (x )= x 2+7x. 【例3】已知1392)2(2 +-=-x x x f ,求)(x f . 解:显然,)(x f 是一个一元二次函数。设)0()(2 ≠++=a c bx ax x f 则c x b x a x f +-+-=-)2()2()2(2 )24()4(2c b a x a b ax +-+-+= 又1392)2(2 +-=-x x x f 比较系数得:?????=+--=-=1324942c b a a b a 解得:?? ???=-==312c b a 32)(2 +-=∴x x x f

求函数解析式常用的方法

求函数解析式常用的方法 求函数解析式常用的方法有:待定系数法、换元法、配凑法、消元法、特殊值法。 以下主要从这几个方面来分析。 (一)待定系数法 待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。 例1:已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式。 解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0 由(1)()1f x f x x +=++ 得 22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得22(2)()1ax a b x a b c ax b c x c +++++=++++ 得 212211120011()22 a a b b a b c c b c c f x x x ?=?+=+????++=+?=????=?=??? ∴=+ 小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)= k x (k≠0);f(x)为

二次函数时,根据条件可设①一般式:f(x)=ax2+bx+c(a≠0) ②顶点式:f(x)=a(x-h)2+k(a≠0) ③双根式:f(x)=a(x-x1)(x-x2)(a≠0) (二)换元法 换元法也是求函数解析式的常用方法之一,它主要用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。 例2 :已知1)1,f x =+求()f x 的解析式。 解析: 1视为t ,那左边就是一个关于t 的函数()f t , 1t =中,用t 表示x ,将右边化为t 的表达式,问题即可解决。 1t = 2220 1 ()(1)2(1)1()(1)x t f t t t t f x x x ≥∴≥∴=-+-+=∴=≥ 小结:①已知f[g(x)]是关于x 的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t ,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x 替换t ,便得f(x)的解析式。 注意:换元后要确定新元t 的取值范围。 ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。 (三)配凑法 已知复合函数[()]f g x 的表达式,要求()f x 的解析式时,若[()]f g x 表达式右边易配成()g x 的运算形式,则可用配凑法,使用

直线的两点式和截距式方程

直线的两点式和截距式方程(导学案) 知识目标:1.能根据点斜式方程推导两点式方程、根据两点式方程推导截距式方程 2.掌握直线的两点式方程和截距式方程,会应用两点式方程和截距式方程解决相关问题(重点) 3.能已知条件的特点,恰当选取方程的形式来求方程 探究1写出下列经过A、B两点的直线的方程: (1)A(8,-1),B(-2,4) 解: (2)A(6,-4),B(-1,2) 解: (3)A (x 1,y 1 ),B ( x 2 ,y 2 ) ,其中x 1 ≠x 2 ,y1≠y2 解: 思考1:上面问题的求解过程可以简化吗? 已知两点P 1(x 1 ,y 1 ) , P 2 ( x 2 ,y 2 ),其中x 1 ≠x2,y1≠y2,则经过这两点的直线 方程为 思考2:若P 1, P 2 中有x 1 =x 2 或y 1 =y 2 ,此时过这两点的直线方程是什么? 综上所述,在运用两点式公式时应注意什么? 探究2已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a≠0,b≠0,求直线l的方程。 思考3:应用截距式公式时应注意什么问题?

下列说法中不正确的命题是 。 ①点斜式y -y 0=k (x -x 0)适用于不垂直于x 轴的任意直线; ②斜截式y =kx +b 适用于不垂直x 轴的任意直线; ③两点式 1 21 121x x x x y y y y --=-- 适用于不垂直于x 轴的任意直线; ④截距式 1=-b y a x 适用于不垂直x 轴的任意直线. 4 已知三角形的三个顶点A (-5, 0),B (3,-3),C (0,2), 求BC 边所在直线的方程,以及该边上的中线所在直线的方程。 1,2,3 灵活选取方程的形式来求方程 例2 根据下列条件,写出直线的方程 (1)倾斜角为30°,经过A (8,-2); (2)经过点B (-2,0),且与x 轴垂直; (3)斜率为-4,在y 轴上的截距为7; (4)经过点A (-1,8),B (4,-2); (5)在y 轴上的截距是2,且与x 轴平行; (6)在x 轴,y 轴上的截距分别是4,-3; 5 经过点A (1,2)并且在两个坐标轴上的截距的绝对值相等的直线有 几条?请求出这些直线方程。

(精心整理)直线方程的点斜式、斜截式、两点式和截距式

直线方程的点斜式、斜截式、两点式和截距式 一、教学目标 (一)知识教学点 在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线. (二)能力训练点 通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力. (三)学科渗透点 通过直线方程的几种形式培养学生的美学意识. 二、教材分析 1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上. 的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程. 三、活动设计 分析、启发、诱导、讲练结合. 四、教学过程 (一)点斜式 已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)? 设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得

注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l 的方程. 重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k 的直线l的方程. 这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式. 当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1. 当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1. (二)斜截式 已知直线l在y轴上的截距为b,斜率为b,求直线的方程. 这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得: y-b=k(x-0) 也就是

高一数学函数经典习题及答案

函 数 练 习 题 班级 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)111 y x x =+-++ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,数m 的取值围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y =⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y ⑽ 4y = ⑾y x =-

6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y =⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;

直线方程的点斜式、斜截式、两点式和截距式

【课 题:】直线的点斜式方程 【教学目的:】 知识目标:在直角坐标平面,已知直线上一点和直线的斜率或已知 直线上两点,会求直线的方程;给出直线的点斜式方程, 能观察直线的斜率和直线经过的定点 能力目标:通过直线的点斜式方程向斜截式方程的过渡,训练学生由 一般到特殊的处理问题方法;通过直线的方程特征观察直 线的位置特征,培养学生的数形结合能力. 德育目标:通过直线方程的几种形式培养学生的美学意识. 【教学重点:】由于斜截式方程是点斜式方程的特殊情况,教学重点应放在 推导直线的斜截式方程上.实质上它也是整个直线方程理论 的基础。 【教学难点:】在推导出直线的点斜式方程后,说明得到的就是直线的方程, 即直线上每个点的坐标都是方程的解;反过来,以这个方程 的解为坐标的点在直线上. 【授课类型:】新授课 【课时安排:】1课时 【教 具:】 【教学过程:】 1、复习引入: 2、讲解新课: (1)点斜式 已知直线l 的斜率是k ,并且经过点P 1(x 1,y 1),直线是确定的,也就是可求的,怎样求直线l 的方程(图1-24)? 设点P(x ,y)是直线l 上不同于P 1(x 1,y 1)的任意一点,根据经过两点的斜率公式得 1 1x x y y k --= (1) 即y-y 1=k(x-x 1) (2) 注意方程(1)与方程(2)的差异:点P 1的坐标不满足方程(1)而满足方程(2),因此,点P 1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l 的方程. 重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l 上,所以这个方程就是过点P 1、斜率为k 的直线l 的方程.(实质上是证明了直线的方程与方程的直线的关系) 这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式. 注:当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y 1. 当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

直线方程的点斜式、斜截式、两点式和截距式

直线方程得点斜式、斜截式、两点式与截距式 一、教学目标 (一)知识教学点 在直角坐标平面内,已知直线上一点与直线得斜率或已知直线上两点,会求直线得方程;给出直线得点斜式方程,能观察直线得斜率与直线经过得定点;能化直线方程成截距式,并利用直线得截距式作直线. (二)能力训练点 通过直线得点斜式方程向斜截式方程得过渡、两点式方程向截距式方程得过渡,训练学生由一般到特殊得处理问题方法;通过直线得方程特征观察直线得位置特征,培养学生得数形结合能力. (三)学科渗透点 通过直线方程得几种形式培养学生得美学意识. 二、教材分析 1.重点:由于斜截式方程就是点斜式方程得特殊情况,截距式方程就是两点式方程得特殊情况,教学重点应放在推导直线得斜截式方程与两点式方程上. 2.难点:在推导出直线得点斜式方程后,说明得到得就就是直线得方程,即直线上每个点得坐标都就是方程得解;反过来,以这个方程得解为坐标得点在直线上. 得坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1得坐标满足方程. 三、活动设计 分析、启发、诱导、讲练结合. 四、教学过程 (一)点斜式 已知直线l得斜率就是k,并且经过点P1(x1,y1),直线就是确定得,也就就是可求得,怎样求直线l得方程(图1-24)? 设点P(x,y)就是直线l上不同于P1得任意一点,根据经过两点得斜率公式得 注意方程(1)与方程(2)得差异:点P1得坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示得图形上而在方程(2)表示得图形上,方程(1)不能称作直线l 得方程.

重复上面得过程,可以证明直线上每个点得坐标都就是这个方程得解;对上面得过程逆推,可以证明以这个方程得解为坐标得点都在直线l上,所以这个方程就就是过点P1、斜率为k 得直线l得方程. 这个方程就是由直线上一点与直线得斜率确定得,叫做直线方程得点斜式. 当直线得斜率为0°时(图1-25),k=0,直线得方程就是y=y1. 当直线得斜率为90°时(图1-26),直线得斜率不存在,它得方程不能用点斜式表示.但因l上每一点得横坐标都等于x1,所以它得方程就是x=x1. (二)斜截式 已知直线l在y轴上得截距为b,斜率为b,求直线得方程. 这个问题,相当于给出了直线上一点(0,b)及直线得斜率k,求直线得方程,就是点斜式方程得特殊情况,代入点斜式方程可得: y-b=k(x-0) 也就就是 上面得方程叫做直线得斜截式方程.为什么叫斜截式方程?因为它就是由直线得斜率与它在y轴上得截距确定得. 当k≠0时,斜截式方程就就是直线得表示形式,这样一次函数中k与b得几何意义就就是分别表示直线得斜率与在y轴上得截距. (三)两点式 已知直线l上得两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线得位置就是确定得,也就就是直线得方程就是可求得,请同学们求直线l得方程. 当y1≠y2时,为了便于记忆,我们把方程改写成 请同学们给这个方程命名:这个方程就是由直线上两点确定得,叫做直线得两点式. 对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行得直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码得规律完全一样. (四)截距式

直线方程的点斜式、斜截式、两点式和截距式

【课题:】直线的点斜式方程 【教学目的:】 知识目标:在直角坐标平面,已知直线上一点和直线的斜率或已知 直线上两点,会求直线的方程;给出直线的点斜式方程, 能观察直线的斜率和直线经过的定点 能力目标:通过直线的点斜式方程向斜截式方程的过渡,训练学生由 一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力. 德育目标:通过直线方程的几种形式培养学生的美学意识. 【教学重点:】由于斜截式方程是点斜式方程的特殊情况,教学重点应放在推导直线的斜截式方程上?实质上它也是整个直线方程理论的基础。 【教学难点:】在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上. 【授课类型:】新授课 【课时安排:】1课时 【教具:】 【教学过程:】 1、复习引入: 2、讲解新课: (1)点斜式 已知直线I的斜率是k,并且经过点P i(x i, y i),直线是确定的,也就是可求的,怎样求直线I的方程(图1-24)? 设点P(x , y)是直线I上不同于R(X1, yj的任意一点,根据经过两点的斜率公式得 , y y1 k - (1) x X-| 即y-y 1=k(x-x 1)(2) 注意方程(1)与方程⑵ 的差异:点R的坐标不满足方程(1)而满足方程⑵,因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线I的方程. 重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以 这个方程的解为坐标的点都在直线I上,所以这个方程就是过点R、斜率为k的直线I的方程.(实质上 是证明了直线的方程与方程的直线的关系) 这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式. 注:当直线的斜率为0°时(图1-25), k=0,直线的方程是y=y「 当直线的斜率为90。时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示. 但因I上每一点 的横坐标都等于X i,所以它的方程是X=X i .

《直线方程的点斜式、斜截式、两点式和截距式》教案(公开课)

《直线方程的点斜式、斜截式、两点式和截距式》教案 一、教学目标 (一)知识教学点 在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线. (二)能力训练点 通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力. (三)学科渗透点 通过直线方程的几种形式培养学生的美学意识. 二、教材分析 1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上. 的坐标 不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程. 三、活动设计 分析、启发、诱导、讲练结合. 四、教学过程 (一)点斜式 已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?

设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得 注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程. 重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程. 这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1. 当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

(完整版)高一数学函数解析式的七种求法

函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设b ax x f +=)( )0(≠a ,则 b ab x a b b ax a b x af x f f ++=++=+=2)()()]([ ∴???=+=342b ab a ∴? ?????=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知2 21)1 (x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f Θ, 21≥+x x 2)(2-=∴x x f )2(≥x 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+ ∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥x x x x x f 21)1()1(22+=-+=+∴ )0(≥x 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2 x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

直线方程的两点式和截距式

直线教案直线方程的两点式和截距式教案 教学目标 1.让学生掌握直线方程两点式和截距式的发现和推导过程,并能运用这两种形式求出直线的方程. 2.通过这节课的学习,让学生学会较灵活的求直线方程的方法,能够一题多法,一题妙法. 3.培养学生的数形结合的数学思想,为今后的学习打下良好的基础. 教学重点与难点 关于两点式的推导以及斜率k不存在或斜率k=0时对两点式方程的讨论及变形,是本节课的重点和难点. 教学过程 (先回顾点斜式方程的推导过程,因为点斜式是推导两点式的基础.) 师:上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的? 生:点斜式是y-y 1=k(x-x 1 ),x 1 ,y 1 是直线l的某一定点P1的坐标,k是这 条直线的斜率.点斜式的推导过程主要依据是直线上任意一点P(x,y)与这条直 线上一个定点P 1(x 1 ,y 1 )所确定的斜率相等,并且就是此直线 y-y 1=k(x-x 1 ). (此回答可以找两个左右的同学回答,不够的,老师再概括,一定要说清楚.) 老师再使用投影仪,要学生求直线的方程,题目如下: 1.A(8,-1),B(-2,4); 2.A(6,-4),B(-1, 2); 3.A(x 1,y 1 ),B(x 2 ,y 2 )(x 1 ≠x 2 ).

(分别找3个同学说上述题的求解过程和答案,并着重要求说求k及求解过程.) 师:请你说出上述练习的求解过程及答案. (学生Ⅰ、Ⅱ略) 生Ⅲ:首先利用直线的斜率公式求出斜率k,然后利用点斜式写出 师:这个答案对我们有何启示?求解过程可不可以简化? 生:可以直接用上述答案作为求直线方程的公式. (老师应适时表扬该学生) 就比较对称和美观,体现了数学美.由于这个方程是由直线上两点确定的,我们可以把这种直线方程取一个什么名字? 生:可以叫做直线方程的两点式. (教师引导学生对下述问题进行分析) 生:不同,因为后者y 1≠y 2 ,所以后者不能表示倾斜角是90°的直线. 师:这个问题提得好,但后者形式对称,整齐,便于记忆及应用,所以采用后者作为公式。 师(启发):两点式公式里面的x 1≠x 2 ,y 1 ≠y 2 ,哪些直线不能用公式表示?

直线的两点式、截距式方程

课题:直线的两点式、截距式方程 一、学习目标: 1.掌握两点式方程并会应用其求直线方程. 2.掌握直线的截距式方程、中点坐标公式. 二、重点:两点式方程、截距式方程及其应用. 难点:截距式方程的应用. 三、学习过程: (1)复习回顾: 1.什么是直线的点斜式方程和斜截式方程?其适用范围是什么? 2.已知直线上两点),(),,(222111y x p y x p (2121,y y x x ≠≠)如何求出这条直线方程? (2)导读:阅读课本9795P P -,完成下列问题: 1.给定两个点),(),,(222111y x p y x p .当21x x ≠时,过这两点的直线的斜率 k = .把21p p 或作为定点,由点斜式方程可得过这两点的直线 方程为 .当21y y ≠时可得两点式方程为 . 2. 两点式方程的适用范围是什么?当时,或2121y y x x ==过这两点的 直线方程是什么? (3)导思: 1.直线l 在x 轴上的截距的定义?直线l 在y 轴上的截距的定义? 2.已知直线l 与x 轴的交点为A (a,0),与y 轴的交点为B (0,b )其 中a .0,0≠≠b 求直线l 的方程. 3.写出直线的截距式方程,其适用范围是什么? 4.已知点的坐标为 的中点,则为p p p p y x p y x p 21222111),,(),,( 即中点坐标公式. (4)导练: 1.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2).求BC 边所在直线的方程,以及该边上中线所在直线的方程. 2.求过点p (2,3),并且在两轴上的截距相等的直线方程. 四、达标训练 1.课本97p 1,2,3. 2.课本100p A 组 1.(4)(5)(6),4,7,8. 五、反思小结:

直线方程的两点式、截距式和一般式

全方位教学辅导教案 学科:数学任课教师:夏应葵授课时间:2013年4 月 1 8 日星期四学号 姓名林康性别男年级高一总课次: 第3 8 次课 教学 内容 直线方程的两点式、截距式和一般式 重点 难点 直线方程的两点式、截距式和一般式 教学目标 使学生掌握直线方程的两点式,掌握直线方程的截距式,掌握直线方程的一般式,并能灵活运用知识解决相关问题。 教学过程课前 检查 与交 流 作业完成情况: 交流与沟通: 针 对 性 授 课 一、课前练习 1.若经过点P(1-a,1+a)和Q(3,2a)的直线的倾斜角为钝角,求实数a的取值范围。 2.已知经过点A(-2,0)和点B(1,3a)的直线 1 与经过点P(0,-1)和点 Q(a,-2a)的直线 2 互相垂直,求实数a的值。

3. 直线l 1的倾斜角为30°,直线l 2⊥,l 1,则直线l 2的斜率为 ( ) A.3 B.-3 C.3 3 D.- 33 4. 经过两点A (2,1),B (1,m 2 )的直线L 的倾斜角为锐角,则m 的取值范围是( ) A .m <1 B.m > -1 C.-1<m <1 D.m >1或m <-1 5.过点A (2, b )和点B (3, -2)的直线的倾斜角为45°,则b 的值是 ( ) A.-1 B.1 C.-3 D.3 6.直线x y 31=-的斜率是 ,倾斜角是 。 7.设直线经过)1,2(),2,1(N M -,求此直线的方程。

8.已知直线l:2 + =kx y经过点)1,1( P,求直线l的倾斜角和斜率。 9.已知两直线n tx y l m x y l+ = + =: , 2 : 2 1,且 1 l⊥ 2 l,)1 ,2( 2 1 - = ?P l l,求这两条直线 的方程。 10.直线)2 (2 2+ - = -x y的斜率是,在y轴上的截距是;已知直线经过点)8 ,2 (- - P,若它垂直于y轴,则它的方程是,若它平行于y轴,则它的方程是,若它的倾斜角是1350,则它的方程是,若它在y轴上的截距是3,则它的方程是。

高一数学函数解析式的求法之欧阳文创编

第四讲 函数解析式的求法 重 点:求解析式的方法. 难 点:求复合函数的解析式. 教学目标:掌握求解析式的几种常用方法 教学过程: 一、导入新课 复习函数定义(重点是构成函数的三要素). 二、新课 1.求解析式的常用方法: (1)待定系数法: 例1.若)(x f 是二次函数,其图象过原点,且.5)1(,1)1(=-=f f 求:).(x f 练习:1.若一次函数)(x f 满足()[]{}.78+=x x f f f 求:).(x f 小结:①待定系数法适用于:已知所求函数解析式的一般形式; ②解法是:根据已知条件列出以所求系数为未知数的方程或方程组,解出系数的值,代回所设解析式. (2)换元法:(配凑) 例2.⑴ 2 ()1f x x =+,求(1)f x + ⑵ 2 (1)22f x x x +=++,求()f x 练习: 2 (1)21f x x +=+,求()f x 例3.2 (2)5f x x x -=+,求()f x 练习:1.1)f x =+

2.已知: , 1)1(22x x x x f +=+求).(x f 解法二: . 2)(,2)1 (1)1(2222-=∴-+=+=+x x f x x x x x x f 小结:①应用换元法求解析式的题型特征是:题中没有给出函数最简的解析式 ②解法是:通过换元,找出原函数的解析式.(还可以用配凑) (3)函数方程法(消元法) 例4.已知:.2)(2)(x x f x f =-+求:).(x f 小结:①例4的解法相当于消元法. ②消元法的特点是在所给解析式中)(x f 与)(x f -中的自变量互为相反的数,或)(x f 与 ) 1 (x f 中的自变 量互为倒数;得到相当于两个未知数的两个方程,求解。 (4)特殊值法:(选讲) 例5.对于一切实数y x ,有x y x x f y x f )12()()(+--=-都成立,且.1)0(=f 求).(x f 小结:此类型题的特点是:条件是:对于一切实数y x ,都成立. 课后作业: 求下列函数的解析式: 1. 已知)(x f 是一次函数,且64)]([+=x x f f ,求)(x f . ()(x f 62)(22--=+=x x f x 或) 2. 若, 1)1(x x x f -=求)(x f . () (x f 11 -= x ) 3.若 2 21)1(x x x x f +=-,求()f x . (()f x 2 2x =+)

高一人教版必修一数学函数定义域、值域、解析式题型

高一人教版必修一数学函数定义域、值域、 解析式题型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高一函数定义域、值域、解析式题型 一、 具体函数的定义域问题 1 求下列函数的定义域 (1 )1 y = (2 )y = (2)(3 )若函数()f x =R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 二、 抽象函数的定义问题 (一)已知函数()f x 的定义域,求函数[()]f g x 的定义域 2. 已知函数()f x 的定义域为[0,1],求函数2(2)f x 的定义域。 (二)已知函数[()]f g x 的定义域,求函数()f x 的定义域 3. 已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域。 (三)已知函数[()]f g x 的定义域,求函数[()]f h x 的定义域 4. 已知函数2(1)f x -的定义域为(2,5),求函数1()f x 的定义域。 5.已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

三、 求函数解析式的方法 (一) 配凑法 5 .已知22113(1)x f x x x ++=+,求()f x 的解析式。 (二) 换元法 6.已知(12f x +=+()f x 的解析式。 (三) 特殊值法 7 .已知对一切,x y R ∈,关系式()()(21)f x y f x x y y -=--+且(0)1f =,求()f x 。 待定系数法 8.已知()f x 是二次函数,且2(1)(1)244f x f x x x ++-=-+,求()f x 。 (四) 转化法 9. 设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈,均有()(2)0f x f x ++=,当11x -≤≤时,()21f x x =-,求当13x <≤时,函数()f x 的解析式。 (五) 消去法 11.已知函数()f x 21()()x f x x -=,求()f x (六) 分段求解法 12. 已知函数2,()21,()1,0x x o f x x g x x ?≥=-=?-

湖南省师范大学附属中学高三数学总复习 直线方程的点斜式、斜截式、两点式和截距式教案

湖南师范大学附属中学高三数学总复习教案:直线的倾斜角和斜率 一、教学目标 (一)知识教学点 在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线. (二)能力训练点 通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力. (三)学科渗透点 通过直线方程的几种形式培养学生的美学意识. 二、教材分析 1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上. 2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上. 的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程. 三、活动设计 分析、启发、诱导、讲练结合. 四、教学过程 (一)点斜式 已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?

设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得 注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程. 重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程. 这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式. 当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1. 当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

相关文档
相关文档 最新文档