文档库 最新最全的文档下载
当前位置:文档库 › 02低噪声放大器

02低噪声放大器

《通信电子线路》

(第 2 版)

2.1引言

2.2晶体管高频小信号模型2.3LNA主要指标

2.4单管低噪声放大器2.5集成宽带低噪声放大器2.6LNA的噪声匹配

2.7LNA设计举例

2.1 引言

?低噪声放大器在接收通道中的作用与位置

图2.1.1 某CDMA移动台射频前端收发系统结构框图

2.1 引言

?LNA的主要特点

1、要求LNA有较低的噪声系数。

2、要求LNA有一定的功率增益。

3、要求LNA具有足够的线性范围。

4、LNA的匹配问题

?双极型晶体管共射小信号等效模型

主要参数:

发射结的结电阻r b’e 、发射结电容C b’e 、集电结电容C b’c 基极电阻r bb’、g m U b’e 、特征频率f T .

2.2 晶体管高频小信号模型

?r b ’e 为发射结的结电阻,其值为:

EQ

T e e b I U r r )1()1('ββ+=+=?C b ’e 为发射结电容,包含势垒电容C T 和扩散电容C D 两部份,C b ’e = C T + C D

?C b ’c 为集电结电容,它也包含势垒电容C T 和扩散电容C D 两部份

主要参数:2.2 晶体管高频小信号模型

2.2.1

双极型晶体管共射小信号等效模型

?r bb ’由基极引线电阻和基区体电阻组成,其值约为几十到几百欧。

?g m U b ’e 表示双极型晶体管放大作用的等效电流源。

mV

I r U i g E be Q BE C m 26≈=??=β?特征频率f T ,定义为共射输出短路电流放大倍数β下降为1时的频率m m T C g C C g f 2)(2ππ≈+=主要参数:

2.2 晶体管高频小信号模型

2.2.1双极型晶体管共射小信号等效模型

主要参数:

跨导g m 、输出电阻r ds 、栅源极间和栅漏极间电容C gs 和C gd 、漏源极间电容C ds 、最高工作频率f m

2.2 晶体管高频小信号模型2.2.2场效应管小信号模型

?跨导g m

DQ

ox th GS GSQ ox m I l W

C U U l W

C g 22)()(μμ≈?≈μ为迁移率,通常为常数。C ox 为单位面积的栅极电容量,l 为沟道长度,W 为沟道宽度。

?输出电阻r ds DQ

ds ds I g r λ11≈=A U /1?=λ称为沟道长度调制系数,U A 为厄尔利电压

主要参数:

2.2 晶体管高频小信号模型

2.2.2

场效应管小信号模型

?栅源极间和栅漏极间电容C gs 和C gd

?漏源极间电容C ds ,主要由漏、源区分别与衬底之间PN 结的势垒电容组成,通常为0.1~1pF 左右。C gs 和C gd 主要由MOS 平板电容组成,工程中可以用下式近似估算

Wl C C Wl C C ox gd ox gs 3

1,32== ?最高工作频率f m gs m gd gs m m C g C C g f ππ2)(2≈+=主要参数:

2.2 晶体管高频小信号模型

2.2.2场效应管小信号模型

-30

-21-21反向隔离(dB )-4-3-11.1IIP3 (dBm)

14.49.518.1增益(dB )

1.3

2.82.8噪声系数NF(dB)

1.4-

2.51.91.9工作频率(GHz )

3.52.0

4.0电源电流(mA )

2.7-5.51.9

3.0电源电压(V )

SiGe 0.8μm Si Bipolar 0.5μm GaAs FET 工艺

2.3 LNA 主要指标

2.3 LNA主要指标

?功耗

在保证放大器指标的前提下,适当减小偏置电流。?噪声系数

结论:对于无源互易网络,其损耗等于噪声系数。

(a)LC滤波器(b)RC滤波器

?例2.3.1图2.1.1所示为某CDMA 移动台射频前端收发系统结构框图,设窄带CDMA 信号带宽B N 为

1.23MHz ,接收灵敏度S(dBm)为-117dBm ,输出信噪比D 为11dB 。

求1) 窄带CDMA 接收系统的噪声系数;

2) 若天线开关损耗为0.5dB ,收发双工器损耗为

3.5dB ,LNA 的噪声系数控制在多少才能保证整个接收机的性能?

2.3 LNA 主要指标

2.3 LNA主要指标

■动态范围

动态范围通常定义为接收电路在能保证输出信号质量情况下,最大输入电平与最小输入电平的比值。

SFDR (dB) = Smax(dBm) -Smin(dBm)

■例2.3.2某接收机的前端LNA噪声系数

NF=3dB,输入三阶互调阻断点IIP3 = -20dBm,带宽B = 1MHz。若要求输出信噪比D为12dB,求LNA的无失真动态范围SFDR。

LNA 的匹配LNA 与信号源的匹配是非常重要的,由匹配方式决定了LNA 的拓扑结构:功率匹配与噪声匹配。■

增益及增益控制■线性度

例2.3.4 已知LNA 的噪声带宽B

N =200KHz ,

N F =2dB ,求基底噪声N Ft 为多少?若1dB 压缩点的输入功率S in1= -20dBm ,要求输出信噪比D =15dB 时,问此时LNA 的线性动态范围IEDR (Linear dynamic range)为多少?

2.3 LNA 主要指标

分析步骤:

?计算输入端总等效电容C eq ;

?把该系统单向化近似,简化为含一个电容的一阶系统;?计算主极点(输入极点)的值ωP ?计算系统上限角频率ωH 、共发放大器增益带宽积GBP

2.4单管低噪声放大器

2.4.1双极型三极管共射极高频小信号电路分析

e b e b e b c b L m eq DC C C C R

g C ''']1[''=+=?主极点值为

eq eq p C R 1=ωI I out us C sR A s A s U s A +=+==?1/1)()(.ωe b bb s L I r r R R A '''++?=βe

b bb s bb s e b e b bb s eq r r R r R r r r R R ''''')(//)('+++=+=e

b e b bb s e b bb s eq eq p H DC r r R r r R C R ''''')(1+++===ωω?共射小信号放大电路的电压增益?上限角频率?输入端总等效电容为?C eq 两端并联等效电阻?中频区源电压增益2.4单管低噪声放大器

2.4.1双极型三极管共射极高频小信号电路分析

共源电路及密勒近似简化电路

分析步骤:

?计算输入端等效电容C eq 、一阶系统主极点(输入极点)ωP 、电路的电压增益为A US 、上限角频率ωH

2.4单管低噪声放大器

2.4.2场效应管共源极高频小信号电路分析

gs gs D m gs gd

gd D m gs gd D m gs eq DC C R g C C C R g C C R g C C =+=+≈++=)1()1(eq

S p C R 1=ωgs

S D m eq S I p I s out us DC sR R g C sR A s A s U s U s A ?+?=+=+==11/1)()()(ωgs

s eq S p H DC R C R 11===ωω?输入端等效电容?主极点值为?电压增益

?上限角频率ωH 为2.4单管低噪声放大器

2.4.2场效应管共源极高频小信号电路分析

2.4单管低噪声放大器

2.4.2场效应管共源极高频小信号电路分析

JFET构成的共源LNA放大电路

射频低噪声放大器电路设计详解

射频低噪声放大器电路设计详解 射频LNA 设计要求:低噪声放大器(LNA)作为射频信号传输链路 的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为 高性能射频接收电路的第一级LNA 的设计必须满足:(1)较高的线性度以抑 制干扰和防止灵敏度下降;(2)足够高的增益,使其可以抑制后续级模块的噪 声;(3)与输入输出阻抗的匹配,通常为50Ω;(4)尽可能低的功耗, 这是无线通信设备的发展趋势所要求的。 InducTIve-degenerate cascode 结构是射频LNA 设计中使用比较多的结构之一,因为这种结构能够增加LNA 的增益,降低噪声系数,同时增加输入级 和输出级之间的隔离度,提高稳定性。InducTIve-degenerate cascode 结构在输入级MOS 管的栅极和源极分别引入两个电感Lg 和Ls,通过选择适当的电感 值,使得输入回路在电路的工作频率附近产生谐振,从而抵消掉输入阻抗的虚部。由分析可知应用InducTIve-degenerate cascode 结构输入阻抗得到一个50Ω的实部,但是这个实部并不是真正的电阻,因而不会产生噪声,所 以很适合作为射频LNA 的输入极。 高稳定度的LNA cascode 结构在射频LNA 设计中得到广泛应用,但是当工作频率较高时 由于不能忽略MOS 管的寄生电容Cgd,因而使得整个电路的稳定特性变差。 对于单个晶体管可通过在其输入端串联一个小的电阻或在输出端并联一个大的 电阻来提高稳定度,但是由于新增加的电阻将使噪声值变坏,因此这一技术不 能用于低噪声放大器。 文献对cascode 结构提出了改进,在其中ZLoad=jwLout//(jwCout)-

按应用分类的运算放大器选型指南

ADI 公司开发创新能源解决方案已逾十年。我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。 能源应用放大器 欲了解有关能源应用的更多信息,请访问:https://www.wendangku.net/doc/273285845.html,/zh/energy 典型太阳能电池系统图 典型变电站自动化系统图

过程控制和工业自动化应用放大器 40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。 欲了解有关过程控制和工业自动化应用的更多信息,请访问:https://www.wendangku.net/doc/273285845.html,/zh/processcontrol

仪器仪表和测量应用放大器 ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。领先的放大器产品可帮助客户优化定性和定量仪器的性能。 网络分析仪框图 电子秤框图 欲了解有关仪器仪表和测量应用的更多信息,请访问:https://www.wendangku.net/doc/273285845.html,/zh/instrumentation

电机和电源控制应用放大器 针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。 欲了解有关电机和电源控制应用的更多信息,请访问:https://www.wendangku.net/doc/273285845.html,/zh/motorcontorl

健器械的未来。 脉搏血氧仪功能框图

GPS低噪声放大器的设计

低噪声放大器的设计 姓名:#### 学号:################ 班级:1######## 一、设计要求 1. 中心频率为1.45GHz ,带宽为50MHz ,即放大器工作在1.40GHz-1.50GHz 频率段; 2. 放大器的噪声系数NF<0.8dB , S11<-10dB ,S22<-15dB ,增益Gain>15dB 。 二、低噪声放大器的主要技术指标 低噪声放大器的性能主要包括噪声系数、合理的增益和稳定性等。 1. 噪声系数NF 放大器的噪声系数(用分贝表示)定义如下: ()10lg in in out out S N NF dB S N ??= ??? 式中NF 为射频/微波器件的噪声系数;in S ,in N 分别为输入端的信号功率和噪声功率;out S ,out N 分别为输出端的信号功率和噪声功率。 噪声系数的物理含义是,信号通过放大器后,由于放大器产生噪声,使得信噪比变坏,信噪比下降的倍数就是噪声系数。 2. 放大器的增益Gain 在微波设计中,增益通常被定义为传输给负载的平均功率与信号源的最大资用功率之比: S L P P Gain = 增益的值通常是在固定的频率点上测到的,低噪声放大器都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,因此增益Gain 要下降。噪声最佳匹配情况下的增益称为相关增益。通常,相关增益比最大增益大概低2~4dB. 3.稳定性 一个微波管的射频绝对稳定条件是2 2 1112212212211,1,1K S S S S S S ><-<-。只有当3个条件都满足时,才能保证放大器是绝对稳定的。

三、低噪声放大器的设计步骤 1.下载并安装晶体管的库文件 (1)由于ADS2008自带的元器件库里并没有ATF54143的元器件模型,所以 需要从Avago公司的网站上下载ATF54143.zap,并进入ADS主界面,点击【File】——【Unarchive Project】进行安装。 (2)新建工程ATF54143_LNA_1_prj,执行菜单命令【File】——【Include/Remove Projects】将ATF54143_prj添加到新建工程中,这样新建工程就能使用器件ATF54143了。 2.确定直流工作点 低噪声放大器的设计的第一步是设置晶体管的直流工作点。 (1)在ADS中执行菜单【File】——【New Design】,在弹出的对话框中的 Schematic Design Templates下拉列表中选择“DC_FET_T”模板,在Name 文本框中输入DC_FET_T,单击【OK】,这样DC_FET控件就被放置在原理图中了。 (2)在原理图中放置器件ATF54143,设置DC_FET控件的参数并连接原理图如 图1所示。 图1 完整DC_FET_T原理图 (3)仿真得到ATF54143的直流特性图如图2所示。

低噪声放大器设计指南

低噪声放大器设计指南 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分 别为获得 F min 时的最佳源反射系数、 晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF -1)/G 1G +…… (4) 232其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。 所以,一般来说低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

低噪声放大器

低噪声放大器(Low Noise Amplifier,LNA)广泛应用于射电天文、卫星接收、雷达通信等收信机灵敏度要求较高的领域,主要作用是放大所接收的微弱信号、降低噪声、使系统解调出所需的信息数据。而噪声系数(Noise Figure,NF)作为其一项重要的技术指标直接反映整个系统的灵敏度,所以LNA设计对整个系统的性能至关重要。 1 GPS接收机低噪声放大器的设计 设计的LNA主要指标为:工作频率为1 520~1 600 MHz;噪声系数NF16.0 dB;输入驻波比<2;输出驻波比<1.5。 1.1 器件选择 选择合适的器件,考虑到噪声系数较低、增益较高,所以选择PHEMT GaAsFET低噪声晶体管。在设计低噪声放大器前,首先要建立晶体管的小信号模型,一般公司都会提供具有现成模型的放大器件。这里选择Agilent公司的生产的ATF-54143。1.52~1.60 GHz频带内,设计反τ型匹配网络,该匹配网络由集总元件电感、电容构成。选择电感时,要选择高Q 电感。为了在模拟仿真中能够与实际情况相符合,选用Murata公司的电感和电容模型。这里选用贴片电感型号为LQWl8,贴片电容型号为GRMl8,电感LQWl8在1.6 GHz典型Q值为80。 1.2 直流偏置 在设计低噪声放大器中,设计直流偏置的目标是选择合适的静态工作点,静态点的好坏直接影响电路的噪声、增益和线性度。由电阻组成的简单偏置网络可以为ATF-54143提供合适的静态工作点,但温度性较差。可用有源偏置网络弥补温度性差的缺点,但有源偏置网络会使电路尺寸增加,加大了电路板排版的难度以及增加了功率消耗。在设计实际电路中,要根据具体情况选择有源偏置网络,或是电阻偏置网络。就文中的LNA而言,考虑到结构和成本,这里选择电阻无源偏置网络。采用Agilenl的ATF54143,根据该公司给出的datasheet 指标,设计Vds=3.8 V、Ids=ll mA偏置工作点。因为在电流为llmA时ATF-54143性能较好。电阻R3为100 Ω;R2为680 Ω;R1为60 Ω,如图1所示。

低噪声功率放大器设计

微波电子线路大作业 ——低噪声功率放大器设计 班级:021013班 学号:02011268 姓名:

低噪声放大器的设计 一、设计要求: 已知GaAs FET 在4 GHz 、50 Ω系统中的S 参数和噪声参量为 S11=0.6∠-60°,S21=1.9∠81°, S12=0.05∠26°,S22=0.5∠-60° Fmin=1.6 dB Γout=0.62∠100°RN=20 Ω 设计一个低噪声放大器,要求噪声系数为2 dB ,并计算相应的最大增益。 若按单向化进行设计,则计算GT 的最大误差。 二、低噪声放大器设计原理及思路 1.1低噪声放大器功能概述 低噪声放大器是射频/微波系统的一种必不可少的部件,它紧接接收机天线,放大天线从空中接收到的微弱信号。低噪声放大器在对微弱信号放大的同时还会产生附加于扰信号,因此它的设计目标是低噪声,足够的增益,线性动态范围宽。低噪声放大器影响整机的噪声系数和互调特性,分析如下 (1) 系统接收灵敏度: (2) 多个级连网络的总噪声系数 1.2 放大器工作组态分类 A 类放大器(导通角360度,最大理论效率50%)用于小信号、低噪声,通常是接收机前端放大器或功率放大器的前级放大。 B 类(导通角180度,最大理论效率78.5%)和 C 类(导通角小于180度,最大理论效率大于78.5% )放大器电源效率高,愉出信号谐波成分高,需要有外部混合电路或滤波电路.由B 类和C 类放大器还可派生出 D 类、 E 类、P 类等放大器。 min 114(dBm/Hz)NF 10log BW(MHz)/(dB) S S N =-+++321112121 11n tot A A A A A An F F F F F G G G G G G ---=+ +++L L

低噪声放大器设计 论文

低噪声放大器设计 摘要:微弱信号检测就是利用近代电子学和信号处理方法从噪声中提取有用信号,其关键在于抑制噪声。恢复、增加和提取有用信号。与普通放大器相比,低噪声放大器应具有低得多的噪声系数。欲使放大器获得良好的低噪声特性,除使用好的低噪声器件外,还要有周密的设计。本文将从低噪声放大器在通讯系统中的作用,低噪声放大器的主要技术指标以及低噪声放大器的设计方法来论述低噪声放大器,以获得最佳噪声性能的低噪声放大器。重点介绍了低噪声放大器的设计方法。 关键词:低噪声,微弱信号检测,噪声系数,放大器 0.引言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

低噪声放大器的设计制作与调试

微波电路 CAD 射频实验报告 姓名 班级 学号

实验一低噪声放大器的设计制作与调试 一、实验目的 (一)了解低噪声放大器的工作原理及设计方法。 (二)学习使用ADS软件进行微波有源电路的设计,优化,仿真。 (三)掌握低噪声放大器的制作及调试方法。 二、实验内容 (一)了解微波低噪声放大器的工作原理。 (二)使用ADS软件设计一个低噪声放大器,并对其参数进行优化、仿真。 (三)根据软件设计的结果绘制电路版图,并加工成电路板。 (四)对加工好的电路进行调试,使其满足设计要求。 三、实验步骤及实验结果 (一)晶体管直流工作点扫描 1、启动软件后建立新的工程文件并打开原理图设计窗口。 2、选择File——New Design…进入下面的对话框; 3、在下面选择BJT_curve_tracer,在上面给新建的Design命名,这里命名为BJT Curve; 4、在新的Design中,会有系统预先设置好的组件和控件; 5、如何在Design中加入晶体管;点击,打开元件库; 6、选择需要的晶体管,可以点击查询; 7、对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型; 8、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描; 9、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 10对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型 11、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描 12、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。

13、按Simulate键,开始仿真,这时会弹出一个窗口,该窗口会现实仿真或者优化的过程信息。如果出现错误,里面会给出出错信息,应该注意查看。 14、仿真结束,弹出结果窗口,如下页图。注意关闭的时候要保存为适宜的名字。另外图中的Marker是可以用鼠标拖动的。由于采用的是ADS的设计模板,所以这里的数据显示都已经设置好了。一般情况下,数据的显示需要人为自行设置。 图2 典型仿真结果图 (二)晶体管S参数扫描 1、选定晶体管的直流工作点后,可以进行晶体管的S参数扫描,本节中选用的是S参数模型sp_hp_AT-41511_2_19950125,这一模型对应的工作点为Vce=2.7V、Ic=5mA; 2、选择File New Design…进入下面的对话框,在下面选择S-Params,在上面命名,为SP_of_spmod; 3、然后新的Design文件生成,窗口如下:

功放IC常用选型与详细说明

功放IC常用选型与详细说明 前言: 小功率功放芯片的遍地开花,使的目前生产和开发蓝牙、MP3的音箱的公司,在功放选型上有很大的多样性和灵活性。但要选择一个合适的功放芯片,也是一件比较麻烦的事,特别是选一款工作电压较宽的功放芯片,更加不容易。下面我就针对我公司的功放芯片,给在家介绍一下。 先例出几款常用功放芯片的比较:QQ:298391364 从列表可以看出,我公司推出的HX系列功放芯片,工作电压和 输出功率明显的高于其它的功放。 HX8358资料介绍: 芯片功能说明: HX8358是一款超低EMI,无需滤波器,AB/D类可选式音频功率

放大器。6V工作电压时,最大驱动功率为8W(VDD=6V,2ΩBTL负载,THD<10%),音频范围内总谐波失真噪声小于1%,(20Hz~20KHz);HX8358的应用电路简单,只需极少数外围器件; HX8358输出不需要外接耦合电容或上举电容和 缓冲网络; HX8358采用ESOP8封装,特别适合用于小音 量、小体重的便携系统中; HX8358可以通过控制进入关断模式,从而减少 功耗; HX8358内部具有过热自动关断保护机制; HX8358工作稳定,通过配置外围电阻可以调整 放大器的电压增益,方便应用。 芯片功能主要特性: 超低EMI,高效率,音质优 AB/D类切换、单通道 VDD=6V,RL=2Ω,Po=8W,THD+N≤10% VDD=6V,RL=4Ω,Po=5W,THD+N≤10% (防失真关断模式) 宽工作电压范围2.5V—7V 优异的上掉电POP声抑制 采用ESOP8封装 芯片的基本应用:

手提电脑、台式电脑 扩音器 蓝牙音箱 HX8358原理框图: 典型应用电路: 注:以上应用图中元件说明:

低噪声放大器设计指南

低噪声放大器设计指南 文件标识:基础知识 当前版本: 1.0 作者:刘明宇 日期:2006.12.2 审阅\修改: 修改日期: 文件存放: 版本历史 版本作者日期修改内容 盖受控章 除非加盖文件受控章,本文一经打印或复印即为非

1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分别为获得 F min 时的最佳源反射系数、晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF 3-1)/G 1G + (4) 22其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪

GPS低噪声放大器的设计

NF(dB)=10lg ? 一个微波管的射频绝对稳定条件是K>1,S 11<1-S12S21,S22<1-S12S21。 低噪声放大器的设计 姓名:####学号:################班级:1######## 一、设计要求 1.中心频率为1.45GHz,带宽为50MHz,即放大器工作在1.40GHz- 1.50GHz频率段; 2.放大器的噪声系数NF<0.8dB,S11<-10dB,S22<-15dB,增益 Gain>15dB。 二、低噪声放大器的主要技术指标 低噪声放大器的性能主要包括噪声系数、合理的增益和稳定性等。 1.噪声系数NF 放大器的噪声系数(用分贝表示)定义如下: ?S in N in? ?S out N out? 式中NF为射频/微波器件的噪声系数;S in ,N in 分别为输入端的信号功率和噪 声功率;S out ,N out 分别为输出端的信号功率和噪声功率。 噪声系数的物理含义是,信号通过放大器后,由于放大器产生噪声,使得信噪比变坏,信噪比下降的倍数就是噪声系数。 2.放大器的增益Gain 在微波设计中,增益通常被定义为传输给负载的平均功率与信号源的最大资用功率之比: Gain=P L P S 增益的值通常是在固定的频率点上测到的,低噪声放大器都是按照噪声最佳匹配进行设计的。噪声最佳匹配点并非最大增益点,因此增益Gain要下降。噪声最佳匹配情况下的增益称为相关增益。通常,相关增益比最大增益大概低2~4dB. 3.稳定性 22

只有当3个条件都满足时,才能保证放大器是绝对稳定的。 三、低噪声放大器的设计步骤 1.下载并安装晶体管的库文件 (1)由于ADS2008自带的元器件库里并没有ATF54143的元器件模型,所以 需要从Avago公司的网站上下载A TF54143.zap,并进入ADS主界面,点击【File】——【Unarchive Project】进行安装。 (2)新建工程A TF54143_LNA_1_prj,执行菜单命令【File】—— 【Include/Remove Projects】将A TF54143_prj添加到新建工程中,这样新建工程就能使用器件A TF54143了。 2.确定直流工作点 低噪声放大器的设计的第一步是设置晶体管的直流工作点。 (1)在ADS中执行菜单【File】——【New Design】,在弹出的对话框中的 Schematic Design Templates下拉列表中选择“DC_FET_T”模板,在Name文本框中输入DC_FET_T,单击【OK】,这样DC_FET控件就被 放置在原理图中了。 (2)在原理图中放置器件A TF54143,设置DC_FET控件的参数并连接原理图 如图1所示。 图1完整DC_FET_T原理图 (3)仿真得到A TF54143的直流特性图如图2所示。

(完整版)TI常用运放芯片型号

CA3130 高输入阻抗运算放大器Intersil[DA TA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器MC14573 ICL7650 斩波稳零放大器 LF347(NS[DATA])带宽四运算放大器KA347 LF351 BI-FET单运算放大器NS[DA TA] LF353 BI-FET双运算放大器NS[DA TA] LF356 BI-FET单运算放大器NS[DA TA] LF357 BI-FET单运算放大器NS[DA TA] LF398 采样保持放大器NS[DATA] LF411 BI-FET单运算放大器NS[DATA] LF412 BI-FET双运放大器NS[DA TA] LM124 低功耗四运算放大器( 军用档 ) NS[DATA]/TI[DATA] LM1458 双运算放大器NS[DATA] LM148 四运算放大器NS[DATA] LM224J 低功耗四运算放大器(工业档 ) NS[DATA]/TI[DA TA] LM2902 四运算放大器NS[DATA]/TI[DATA] LM2904 双运放大器NS[DATA]/TI[DA TA] LM301 运算放大器 NS[DATA] LM308 运算放大器 NS[DATA] LM308H运算放大器(金属封装)NS[DATA] LM318 高速运算放大器NS[DATA] LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DATA] LM358 NS[DATA]通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA]音频放大器NJM386D,UTC386 LM386-3 音频放大器NS[DATA] LM386-4 音频放大器NS[DATA] LM3886 音频大功率放大器NS[DATA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DATA] LM733 带宽运算放大器 LM741 NS[DATA]通用型运算放大器HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器TI[DATA] NE5534 高速低噪声单运算放大器TI[DATA] NE592 视频放大器 OP07-CP 精密运算放大器TI[DA TA] OP07-DP 精密运算放大器TI[DATA] TBA820M小功率音频放大器ST[DATA] TL061 BI-FET单运算放大器 TI[DATA] TL062 BI-FET双运算放大器TI[DATA] TL064 BI-FET四运算放大器TI[DATA]

运放关键参数及选型原则

运放参数解释及常用运放选型 集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下:

输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

运放分类及选型

运放分类及选型 对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。 对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小) 运算放大器大体上可以分为如下几类: 1、 通用型运放 2、 高阻型运放 3、 低温漂型运放 4、 高速型运放 5、 低功耗型运放 6、 高压大功率型运放 1、 通用型运放 其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356. 2、 高阻型运放 这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。 这类运放有LF356、LF355、LF347、CA3130、CA3140等 3、 低温漂型运放 在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。底温漂型运放就是为此设计的。 目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。 4、 高速型运放 在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。高速型运放的主要特点是具有高的转换速率和宽的频率响应。 常见的运放有LM318、175A μ等。其SR=50~70V/ms 5、 低功耗型运放 由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。 常用的低功耗运放有TL-022C ,TL-160C 等。 6、 高压大功率型运放 运放的输出电压主要受供电电源的限制。在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。 高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。 Not e1:精密运放是指漂移和噪声非常低、增益和共模抑制比非常高的运放。这类运放的温度漂移一般低于C V ? /1μ Note 2:高输入阻抗运放是指采用结型场效应管或MOS 管做的输入级集成运放。它的一个附带特性是转换速度比较高。高输入阻抗运放应用十分广泛,如采样-保持电路、积分器、对数放大器、测量放大器、带通滤波器等。

运放参数说明(加选型和例子)

1、输入失调电压(Input Offset Voltage) V OS 若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。 其值为数mV,该值越小越好,较大时增益受到限制。 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在 1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 本文来自: https://www.wendangku.net/doc/273285845.html, 原文网址: https://www.wendangku.net/doc/273285845.html,/info/analog/3366_2.html 2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数 TC V OS 一般为数uV/.C 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 本文来自: https://www.wendangku.net/doc/273285845.html, 原文网址: https://www.wendangku.net/doc/273285845.html,/info/analog/3366_2.html 3、输入偏置电流(Input Bias Current) I BIAS 运放两输入端流进或流出直流电流的平均值。 对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

(完整版)24G射频低噪声放大器毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 摘要 近年来,以电池作为电源的电子产品得到广泛使用,迫切要求采用低电压的模拟电路来降低功耗,所以低电压、低功耗模拟电路设计技术正成为研究的热点。本文主要讨论电感负反馈cascode-CMOS-LNA(共源共栅低噪声放大器)的噪声优化技术,同时也分析了噪声和输入同时匹配的SNIM技术。以噪声参数方程为基础,列出了简单易懂的设计原理。为了实现低电压、低噪声、高线性度的设计指标,在本文中使用了三种设计技术。第一,本文以大量的篇幅推导出了一个理想化的噪声结论,并使用Matlab分析了基于功耗限制的噪声系数,取得最优化的晶体管尺寸。第二,为了实现低电压设计,引用了一个折叠式的共源共栅结构低噪声放大器。第三,通过线性度的理论分析并结合实验仿真的方法,得出了设计一个高线性度的最后方案。另外,为了改善射频集成电路的器件参数选择的灵活性,在第四章中使用了一种差分结构。所设计的电路用CHARTER公司0.25μm CMOS 工艺技术实现,并使用Cadence的spectre RF 工具进行仿真分析。本文使用的差分电路结构只进行了电路级的仿真,而折叠式的共源共栅电路进行了电路级的仿真、版图设计、版图参数提取、电路版图一致性检查和后模拟,完成了整个低噪声放大器的设计流程。 折叠式低噪声放大器的仿真结果为:噪声系数NF为1.30dB,反射参数S11、S12、S22分别为-21.73dB、-30.62dB、-23.45dB,正向增益S21为14.27dB,1dB压缩点为-12.8dBm,三阶交调点IIP3 为0.58dBm。整个电路工作在1V电源下,消耗的电流为8.19mA,总的功耗为8.19mW。

微波低噪声放大器的主要技术指标、作用及方案设计

微波低噪声放大器的主要技术指标、作用及方案设计 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高。功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,而这也同时对系统的接收灵敏度提出了更高的要求。 1微波低噪声放大器的作用 一般情况下,一个接收系统的接收灵敏度可由以下计算公式来表示: 由上式可见,在各种特定(带宽BW、解调S/N已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机噪声系数的关键部件则是处于接收机 前端的低噪声放大器。 图1所示是接收机射频前端的原理框图。由图1可见,低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以,低噪声放大器的设计对整个接收机来说是至关重要的。

2微波低噪声放大器的主要技术指标 2.1噪声系数 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: 对单级放大器而言,其噪声系数的计算为: 其中Fmin为晶体管 噪声系数,是由放大器的管子本身决定的,Γopt、Rn和Γs分别为获得Fmin时的 源反射系数、晶体管等效噪声电阻以及晶体管输入端的源反射系数。 对多级放大器。其噪声系数的计算应为: 其中NFn为第n级放大器的噪声系数,Gn为第n级放大器的增益。 对噪声系数要求较高的系统,由于噪声系数很小,用噪声系数表示很不方便,故常用噪声温度来表示,噪声温度与噪声系数的换算关系为: 其中Te为放大器的噪声温度,T0=2900K,NF为放大器的噪声系数。 2.2放大器增益 放大器的增益定义为放大器输出功率与输入功率之比: G=Pout/Pin(7)

低噪声放大器的设计

低噪声放大器的设计 参数: 低噪声放大器的中心频率选为2.4GHz,通带为8MHz 通带内增益达到11.5dB,波纹小于0.7dB 通带内的噪声系数小于3 通带内绝对稳定 通带内输入驻波比小于1.5 通带内的输出驻波比小于2 系统特性阻抗为50欧姆 微带线基板的厚度为0.8mm,基板的相对介电常数为4.3 步骤: 1.打开工程,命名为dzsamplifier。 2.新建设计,命名为dzsamplifier。设置框如下: 点击OK后,如下图。

模板为BJT_curve_traver,带有这个模板的原理图可以自动完成晶体管工作点扫描工作。 3.在ADS元件库中选取晶体管。单击原理图工具栏中的, 打开元件库,然后单击,在 搜索“32011”。其中sp开头的原件是S参数模型,可以用来作S参数仿真,但这种模型不能用来做直流工作点扫描。以pb开头的原件是封装原件,可以做直流工作点扫描,此处选择pb开头的。 4.按照下图进行连接

5.将参数扫描控制器中的 【Start】项修改为Start=0. 6.点击进行仿真,仿真结束后,数据显示窗自动弹出。 如下图: 7.晶体管S参数扫描。 (1)重新新建一个新的原理图S_Params,进行S参数扫描。如下图:

点击OK后,出现: (2)在ADS元件库中选取晶体管。单击原理图工具栏中 的,打开元件库,然后单击,在 搜索“32011”。此处选择sp 开头的。 (3)以如图的形式连接。 (4)双击S参数仿真空间SP,将仿真控件修改如下。

(5)点击仿真按钮,进行仿真。数据如下图所示: (6)双击S参数的仿真控件,选中其中的【Calculate Noise】,如图 执行后:

相关文档