文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计复旦大学出版社第一章课后答案

概率论与数理统计复旦大学出版社第一章课后答案

概率论与数理统计复旦大学出版社第一章课后答案
概率论与数理统计复旦大学出版社第一章课后答案

第一章

1.见教材习题参考答案.

2.设A ,B ,C 为三个事件,试用A ,B ,C

(1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C

(4) A ,B ,C 都不发生; (5) A ,B ,C

(6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC

(3)A

B C (4) ABC =A B C (5) ABC

(6) ABC ∪ABC ∪ABC ∪ABC =AB BC

AC

3.

.

4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6

5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB

(2) 在什么条件下P (AB

【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A

B =+-=,()P AB 取到最小值为0.3.

6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,

P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.

【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0,

由加法公式可得 ()()()()()()()()P A

B C P A P B P C P AB P AC P BC P ABC =++---+

=

14+14+13-112=34

7.

52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?

【解】 设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”,

则样本空间Ω中样本点总数为 1352n C =, A 中所含样本点 5332

13131313k C C C C =,所求概率为

5332

131313131352()=C C C C /C P A

8.

(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=

5

17

=(17)5

(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故

P (A 2)=5567=(67

)5

(3) 设A 3={五个人的生日不都在星期日}

P (A 3)=1-P (A 1)=1-(

17

)5

9..见教材习题参考答案.

10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

. (1) n 件是同时取出的; (2)

n (3) n 件是有放回逐件取出的.

【解】(1)n 件是同时取出, 样本空间Ω中样本点总数为C n

N , A 中所含样本点

m n m M N M k C C --=,所求概率为 ;()=C C /C m n m n M N M N P A --

(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有n N A 种,n 次抽取中有m

次为正品的组合数为C m

n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有m

M A 种,从N -M 件次品中取n -m 件的排列数为n m

N M A --种,故

C ()m m n m

n M N M

n

N A A P A A --= 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成

C C

()C m n m

M N M n N

P A --=

可以看出,用第二种方法简便得多.

(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为n N 种,n

次抽取中有m 次为正品的组合数为C m

n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有m M 种取法,n -m 次取得次品,每次都有N -M 种取法,共有()

n m

N M --种取法,故

()C ()

/m m n m

n n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M

N

,则取得m 件正品的概率为

()C 1m n m

m n M M P A N N -????

=- ? ?

???

?

11..见教材习题参考答案.

12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆

钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱},样本空间Ω中样本点总数为3

50C , A 中所含样本点

13103k C C =,因此,所求概率为 133

103501

()C C /C 1960

P A ==

13.

7个球,其中4个是白球,3个是黑球,从中一次抽取3个,

计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互不相容. 样本空间Ω中样本点总数

为37n=C , 2A 中所含样本点数为 2143C C ,3A 中所含样本点数为 3

4C ,

21343

4

233377C C C 184(),

()C 35

C 35

P A P A ====

故 所求概率为 232322()()()35

P A A P A P A =+=

14.

0.8和0.7,在两批种子中各随机取一粒,求:

(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.

【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)注意到12,A A 相互独立,所求概率为

(1) 1212()()()0.70.80.56P A A P A P A ==?=

(2) 12()0.70.80.70.80.94P A A =+-?=

(3) 2

112()0.80.30.20.70.38P A A A A =?+?=

15.

3次正面才停止. (1) 问正好在第6次停止的概率;

(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1) 设A 表示“正好在第6次停止”,B 表示“第5次出现正面”,事件A 发生意味着“前5次中恰好出现两次正面,且第六次出现正面”,事件AB 发生意味着“前4次中恰好出现1次正面,且第五、六次出现正面”,由伯努利概型公式可知,所求概率为

(1)22351115()()()22232

P A C ==

(2) 1341111

C ()()()22222()()5/325P AB P B A P A === 16.

0.7及0.6,每人各投了3次,求二人进球

数相等的概率.

【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,三次投篮可以看做是3重伯努利试验,由伯努利概型公式可知,所求概率为

3331212

330

(

)(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+??+

222233

33C (0.7)0.3C (0.6)0.4+(0.7)(0.6)?

=0.32076

175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】 设A 表示“4只鞋子中至少有两只鞋子配成一双”,从5双不同的鞋子中任取4只,取法总数为4

10C ,A 表示“4只鞋子中没有配对的鞋子”,A 中所含基本事件数 为4

1

1

1

152222C C C C C , 所求概率为

41111

522224

10C C C C C 13

()1()1C 21

P A P A =-=-= 18.

0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:

(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.

(1) ()0.1

()0.2()0.5

P AB P B A P A =

== (2) ()()()()0.30.50.10.7P A B P A P B P AB =+-=+-=

19.

3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男

为女是等可能的).

【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故

()6/86

()()7/87

P AB P B A P A =

==

或在缩减样本空间中求,此时样本点总数为7.

6()7

P B A =

20.

5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).

【解】 设A ={此人是男人}, B ={此人是色盲},则A ={此人是女人},显然A ,A 是样本空间的一个划分,且1

()()2

P A P A ==

,由贝叶斯公式得 ()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+ 0.50.0520

0.50.050.50.002521

?==

?+? 21.

9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.

题21图 题22图

【解】设两人到达时刻分别,x y 为,则060,060x y ≤≤≤≤,可知样本空间是“边长为60 的正方形区域”,设A 表示 “一人要等另一人半小时以上”,等价于30x y ->,如图阴影 部分所示.由几何概型的概率公式可得

22301

()604

P A ==

22.

0,1)中随机地取两个数,求:

(1) 两个数之和小于

6

5的概率; (2) 两个数之积小于1

4

的概率.

【解】设两数分别,x y 为,则01,01x y <<<<,可知样本空间是“边长为1的正方形 区域”. (1)设A 表示 “两个数之和小于65”,等价于56

x y +<,如图阴影部分所示. 由几何概型的概率公式可得

144

17

255()10.68125

P A =-==

(2) 设B 表示 “两个数之积小于14”,等价于1

4

xy <,如图阴影部分所示.

由几何概型的概率公式可得

1

1114411()1d d ln 242x P B x y ?

?=-=+ ????? 23.

P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )

【解】 ()()()

()()()()()

P AB P A P AB P B A B P A B P A P B P AB -=

=

+- 0.70.51

0.70.60.54

-==+-

24.

15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比

赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.

【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新 球}。显然0A ,1A ,2A ,3A 是样本空间的一个划分。由全概率公式,有

3

()()()i i i P B P A P B A ==∑

3312321333

6996896796333333331515151515151515

C C C C C C C C C C

C C C C C C C C =?+?+?+?0.089= 25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学

生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的},显然A ,A

是样本空间的一个划分,由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知

(1)()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A ==

+ 0.20.11

0.027020.80.90.20.137

?=

==?+?

即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+ 0.80.14

0.30770.80.10.20.913

?=

==?+?

即考试不及格的学生中努力学习的学生占30.77%.

26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而

B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },

C ={收到信息是A },则则={原发信息是B },C ={收到

信息是B }

由贝叶斯公式,得

()()()()()()()

P A P C A P A C P A P C A P A P C A =

+

2/30.98

0.994922/30.981/30.01

?==?+?

27.

【解】设A i ={箱中原有i 个白球}(i =0,1,2),显然0A ,1A ,2A 是样本空间的一个划分。由

题设条件知P (A i )=

1

3

,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 11112

()()()

()()

()()

i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/31

1/31/32/31/311/33

?=

=?+?+?

28.

96%是合格品,检查产品时,一个合格品被误认为是次品的概率

为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.

【解】 设A ={产品确为合格品},B ={产品被认为是合格品}

A

由贝叶斯公式得

()()()

()()()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=+ 0.960.98

0.9980.960.980.040.05

?==?+?

29.

.统计资料表明,上

述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?

【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},

C ={该客户是“冒失的”},

D ={该客户在一年内出了事故} 则由贝叶斯公式得

()()(|)

(|)()()(|)()(|)()(|)

P AD P A P D A P A D P D P A P D A P B P D B P C P D C =

=++

0.20.05

0.0570.20.050.50.150.30.3

?==?+?+?

30.

0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).

4

12341

()1()i i P A P A A A A ==-

12341()()()()P A P A P A P A =-

10.980.970.950.970.124=-???= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概

率不小于0.9? 【解】设A 表示“进行n 次独立射击至少击中一次”,则表示“进行n 次独立射击一次都

没击中”。由题意知

()1()1(0.8)0.9n P A P A =-=-≥

即 (0.8)0.1n

≤,解不等式得 n ≥11,故至少必须进行11次独立射击. 32.

P (A |B )=P (A |B ),则A ,B 相互独立.

【证】 (|)(|)P A B P A B =即

()()

()()

P AB P AB P B P B =

亦即 ()()()()P AB P B P AB P B =

()[1()][()()]()P AB P B P A P AB P B -=-

A

因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.

15,13,1

4

,求将此密码破译出的概率.

【解】 设A i ={第i 人能破译}(i =1,2,3),则

3

1231231

()1()1()()()i i P A P A A A P A P A P A ==-=-

423

10.6534

=-??= 34.

0.4,0.5,0.7,若只有一人

击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3

由全概率公式,得

3

()()(|)i i i P A P B P A B ==∑

=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7) ×0.2+

(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7) ×0.6+(0.4×0.5×0.7)×1 =0.458

35.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:

(1) A =“某指定的一层有两位乘客离开”;

(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.

【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.

(1) 2466

C 9

()10P A =,也可由6重贝努里模型:

224

619()C ()()1010

P A =

(2) 6个人在十层中任意六层离开,故

610

6P ()10

P B =

(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有1

10C 种可能结果,再从

六人中选二人在该层离开,有2

6C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有1

3

1

948C C C 种可能结果;②4人同时离开,有1

9C 种可能结果;

③4个人在不同楼层离开,有4

9P 种可能结果,故

12131146

10694899()C C (C C C C P )/10P C =++

(4) D=B .故

6

10

6P ()1()110

P D P B =-=-

36. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;

(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 n 个朋友随机地围绕圆桌而坐,基本事件总数为

!

(1)!n n n

=- (1) 设A 表示“甲、乙两人坐在一起,且乙坐在甲的左边”,则A 所含基本事件数为

(1)!

(2)!1

n n n -=--,于是(2)!1()(1)!1n P A n n -=

=-- (2) 设B 表示“甲、乙、丙三人坐在一起”,则B 所含基本事件数为

3!(2)!

3!(3)!2

n n n -=--,于是3!(3)!(),3(1)!n P B n n -=

>- (3) 如果n 个人并排坐在长桌的一边,基本事件总数为!n ,A 所含基本事件数为(1)!n -, (1)!1()!n P A n n

-=

= B 所含基本事件数为 3!(2)!n -,于是3!(2)!

(),3!

n P B n n -=

> 37.[0,a ]

【解】 设这三段长分别为,,x y a x y --.则样本空间为由

0,0,0x a y a a x y a <<<<<--<,

即 0,0,0x a y a x y a <<<<<+<所构成的图形,有利事件集(三角形的两边之和大于第三边)为由

()()x y a x y

x a x y y y a x y x

+>--??+-->??+-->? 构成的图形,即

02022a x a y a

x y a ?

<

?

<

?

?<+

如图阴影部分所示,故所求概率为14

p =

. 38. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).

证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关. 【证】 (考虑次序)基本事件总数为k

n A , “试开k 次(k =1,2,…,n )才把门打开”,意味着“第k 次打开门之前,在不能打开门的1n -把钥匙中选则了1k -次”, 共有1

1k n A --种选择方法,因此

1

1

1,1,2,,k n k

n A p k n A n

--=== 由计算结果可以看出“概率与k 无关”。

39.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出

一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.

在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的

小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为

01512384

()0.512,()0.38410001000P A P A =

===, 24968

()0.096,()0.00810001000P A P A ====.

40.对任意的随机事件A ,B ,C

P (AB )+P (AC )-P (BC )≤P (A ). 【证】 ()[()]()P A P A B

C P AB AC ≥=

()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+- 41.

3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.

【解】 设i A ={杯中球的最大个数为i },i =1,2,3.

将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故

3413C 3!3

()48

P A ==

而杯中球的最大个数为3,即三个球全放入一个杯中,故

14

33C 1()416

P A ==

因此 213319

()1()()181616

P A P A P A =--=-

-=

或 121433

23

C C C 9()416

P A == 42.2n 次,求出现正面次数多于反面次数的概率.

【解】掷2n 次硬币,可能结果:A ={正面次数多于反面次数},B ={正面次数少于反面次数},

C ={正面次数等于反面次数},易知A ,B ,C 是样本空间的一个划分,故

()()()1P A P B P C ++=

由于硬币是均匀的,考虑到对称性,故P (A )=P (B ).所以

1()

()2

P C P A -=

在2n 重贝努里试验中正面出现n 次的概率为

211()()()22n n n

n P C C =

故 2211

()[1C ]22

n n n P A =-

43.

Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )

≥P (B ).

【证】由P (A |C )≥P (B |C ),得

()()

,()()

P AC P BC P C P C ≥

即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥

故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 44.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少

有一个旅客的概率.

【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则

12

1(1)1()(1)

2

()(1)1()(1)n k k

i k k

i j k

i i i n P A n n

P A A n n P A A A n

--==-=--=

-

其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是

2

1121111

2

21111111231

11()(1)C (1)2()C (1)1()C (1)0

()(1)n n n

k k

i n

i k

i j n i j n

n k

n i i i n i i i n

n n

n i n

i S P A n n n S P A A n n S P A A A n

S P A S S S S --=≤<≤--≤<<≤+===-=-==--==-

==-+-

+-∑∑

121

1

21C (1)C (1)(1)C (1)k k

n n k

n n n n n n

n

--=---+

+--

故所求概率为

12

1121()1C (1)C (1)n

k i i n n

i P A n n

=-=--+--+11

1(

1)C (1)n n k

n n n

+----

45.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独

立地重复做此试验,则A 迟早会出现的概率为1. 【证】在n 重独立试验中,事件A 都不发生概率为: ()(1)n

p εε=-

由于ε为随机事件A 发生的概率,而题目给定ε>0,因此其定义域为

{}(0,1]D εε=∈

假设n 足够大,即n →∞,在(0,1]ε∈ 上,由极限定义可得

lim ()lim(1)0n n n p εε→∞

→∞

=-=

即假设n 足够大,n 次独立试验中A 都不发生的概率为n →∞时, ()0p ε→

因而在n 足够大时, A 至少发生一次的概率为 l i m (1())n p ε→∞

-=。 证毕。

46.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,

将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}

B ={这只硬币为正品} 由题知 (),()m n

P B P B m n m n

=

=

++ 1

(|),(|)12

r P A B P A B ==

则由贝叶斯公式知

()()(|)

(|)()()(|)()(|)

P AB P B P A B P B A P A P B P A B P B P A B =

=+

1

21212r r

r

m m m n m n m n m n m n

+==++++ 47.n 重贝努里试验中A 出现奇数次的概率. 【解】 设在一次试验中A 出现的概率为p .则由

0011222

()C C C C 1n n n n n n n n n n q p p q pq p q p q --+=++++=.................① 0011222n 0()C -C C (1)C n n n n n n n n n n q p p q pq p q

p q ---=+-+

-.....................②

①—②,得所求概率为

11333

1C C n n n n p pq p q

--=++

1

[1()]2n q p =-- 1

[1(12)]2

n p =-- 若要计算在n 重贝努里试验中A 出现偶数次的概率,则只要将两式相加,即得

21

[1(12)]2

n p p =+-.

48.某人向同一目标独立重复射击每次射击命中目标的概率为(01)p p <<,求此人第4次射击恰好第2次命中目标的概率。

【解】 根据独立重复的伯努利试验,前3次射击中1次成功2次失败其概率为123(1)C p p -,

再加上第4次射击命中目标,其概率为p ,根据独立性,所求概率为

223(1)p p -.

49. 设,,A B C 是随机事件, A C 与互不相容,1()2P AB =

,1

()3

P C =,求()P AB C . 【解】因为A C 与互不相容,所以C A ?,当然C AB ?,于是

()()3

()1()4()

P ABC P AB P AB C P C P C =

==-. 50.设A ,B 是任意两个随机事件,求P {(A +B )(A +B )(A +B )(A +B )}的值. 【解】因为(A ∪B )∩(A ∪B )=A B ∪A B

(A ∪B )∩(A ∪B )=AB ∪AB

所求 ()()()()A B A B A B A B ++++

[()()]AB

AB AB AB =+

=?

故所求值为0.

51.设两两相互独立的三事件,A ,B 和C

ABC =Φ,P (A )=P (B )=P (C )< 1/2,且P (A ∪B ∪C )=9/16,求P (A ). 【解】由()()()()()()()()P A

B C P A P B P C P AB P AC P BC P ABC =++---+

293()3[()]16

P A P A =-=

故1()4P A =

或34

,按题设P (A )<12,故P (A )=14.

52.设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A

不发生的概率相等,求P (A ). 【解】 1

()()1()9

P A B P A B P A

B =

=-= ① ()()P AB P AB = ②

故 ()()()()P A P AB P B P AB -=-

故 ()()P A P B = ③ 由A ,B 的独立性,及①、③式有

1

1()()()()9

P A P B P A P B =--+ 2

12()[()]P A P A =-+ 2

[1()]P A =-

故 11()3

P A -=± 故 2()3P A =

或4

()3

P A =(舍去)

即P (A )=

23

. 53.随机地向半圆0

22x ax - (a 为正常数)内掷一点,

点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于π

/4

【解】利用几何概率来求,图中半圆面积为

1

2

πa 2.阴影部分面积为 22π142

a a + 故所求概率为

22

2π1114212ππ2

a a p a +=

=+ 54.

10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,求另一件也是不合格品的概率.

【解】 设A ={两件中至少有一件是不合格品},B ={另一件也是不合格品}

242102

6

210

C C ()1

(|)C ()51C P AB P B A P A ===- 55.设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3

份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份. (1) 求先抽到的一份是女生表的概率p

(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q . 【解】设A i ={抽到的报名表是i 区的考生的},i =1,2,3.

B j ={第j 次取出的是女生的报名表},j =1,2. 显然 1(),1,2,33i P A i =

= , 1112

13

37

5

(|),(|),(|)1015

25

P B A P B A P B A === (1) 由全概率公式得 3

111

137529

()(|)()310152590i

i P B P B A ==

=++=∑ (2) 由贝叶斯公式得 21212()(|)()

P B B P B B P B =

而 3

22

1

()(|)()i i i P B P B

A P A ==

1782061

()310152590

=

++=

3

21211()(|)()i i i P B B P B B A P A ==∑

137785202()3109151425249

=

?+?+?= 故 212122

()20

9(|)6161()

90

P B B P B B P B ===

56. 设A ,B 为随机事件,且P (B )>0,P (A |B )=1,试比较P (A ∪B )与P (A )的大小. (2006研考)

解:因为 ()()()()P A

B P A P B P AB =+-

()()()()P AB P B P A B P B =?=

所以 ()()()()()P A B P A P B P B P A =+-=.

57.设随机事件,A B 相互独立,且()0.5,()0.3,P B P A B =-=求()P B A -. 【解】 因为 ,A B 相互独立,所以 A B 与、A B 与相互独立. 而 ()()()()0.3,P A B P AB P A P B -===所以()0.6P A = 因此 ()()()()0.5(10.6)0.2P B A P B A P B P A -===?-=。

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论和数理统计 复旦大学 课后题答案4

4习题四 1.设随机变量X 的分布律为 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;82842 E X =-? +?+?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 故 ()0.58300.34010.07020.0073E X =? +?+?+?+?+? 0.501,= 5 2 ()[( )]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?= 3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2222 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则

(){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1().N N k k k P X k kP X k N N n E X N N ===== ===∑∑ 5.设随机变量X 的概率密度为 f (x )=?? ? ??≤≤-<≤.,0,21,2, 10,其他x x x x 求E (X ),D (X ). 【解】1 2 2 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ -4X . 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=?+?+= (2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立 1184568.=?-?= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ), D (2X -3Y ). 【解】(1) (32)3()2()3323 3. E X Y E X E Y -=-=?-?= (2) 2 2 (23)2()(3)412916192.D X Y D X DY -=+-=?+?= 8.设随机变量(X ,Y )的概率密度为

高等数学 复旦大学出版社 课后习题答案

1. 解: (1)相等. 因为两函数的定义域相同,都是实数集R ; x =知两函数的对应法则也相同;所以两函数相等. (2)相等. 因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 解: (1)要使函数有意义,必须 400x x -≥?? ≠? 即 40x x ≤?? ≠? 所以函数的定义域是(,0)(0,4]-∞U . (2)要使函数有意义,必须 30lg(1)010x x x +≥?? -≠??->? 即 301x x x ≥-?? ≠??

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计复旦大学出版社第二章课后答案(供参考)

概率论与数理统计习题二答案 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为 以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)1 33{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为 (2) 当0x <时,{}()0F x P X x =≤= 当01x ≤<时,{}{}22()035 F x P X x P X =≤=== 当12x ≤<时,{}{}{}34()0135 F x P X x P X P X =≤==+== 当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为 分布函数 3次射击中至少击中2次的概率为 4.(1) 设随机变量X 的分布律为 {}! k P x k a k λ==, 其中k =0,1,2,…,λ>0为常数,试确定常数a .

(2) 设随机变量X 的分布律为 {}a P x k N == , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b (1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+== 33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++222233 33C (0.6)0.4C (0.7)0.3(0.6)(0.7)+ (2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+== 312322 33(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑 道,根据题意有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松定理近似计算 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 13 p = 所以 4 451210 (4)C () 33243 P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率;

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC U U 或 ABC ABC ABC ABC U U U ; (3)A B C U U 或 ABC ABC ABC ABC ABC ABC ABC U U U U U U ; (4)ABC ABC ABC U U ; (5)AB AC BC U U 或 ABC ABC ABC ABC U U U ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)123A A A U U ;(3) 123123123A A A A A A A A A U U ;(4)121323A A A A A A U U 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =B ;

概率论与数理统计复旦大学出版社第四章课后答案

概率论 习题四 答案 1.设随机变量X 的分布律为 X -1 0 1 2 P 1/8 1/2 1/8 1/4 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;8 2842 E X =-?+? +?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 0 1 2 3 4 5 P 5905100 C 0.583C = 14 1090 5 100 C C 0.340C = 231090 5 100 C C 0.070C = 321090 5 100 C C 0.007C = 4110905100 C C 0C = 510 5 100 C 0C = 故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5 2 ()[()]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?=L 3.设随机变量X -1 0 1 P p 1 p 2 p 3 且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①, 又12331()(1)010.1E X p p p p p =-++=-=g g ……②, 222212313()(1)010.9E X p p p p p =-++=+=g g g ……③ 由①②③联立解得1230.4,0.1,0.5.p p p ===

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

相关文档
相关文档 最新文档