文档库 最新最全的文档下载
当前位置:文档库 › 实验13交换机超级堆叠实验

实验13交换机超级堆叠实验

实验13交换机超级堆叠实验
实验13交换机超级堆叠实验

实验十三、交换机超级堆叠实验

一、 实验目的

1、了解超级堆叠的应用环境;

2、了解超级堆叠的实现方法。

二、 应用环境

超级堆叠是标准堆叠的一种特殊形式,它使用千兆电口卡以及普通的双绞线实现堆叠,双绞线的长度可以达到100米,突破了“堆叠只能在一个机柜中实现”的教条,实现分布式堆叠。

超级堆叠带宽较大,费用比经济堆叠高,满足高性能堆叠的需求。

超级堆叠也提供了堆叠冗余,当有一条线路出现问题的时候,堆叠组重新启动后仍然可以保持堆叠状态。

三、 实验设备

1、DCS-3926S交换机3台

2、千兆电口卡4-6个

3、千兆双绞线3根

4、PC机2台

5、Console线1-3根

四、 实验拓扑

和标准堆叠一样,堆叠组中间的交换机必须使用两个模块。第一台交换机和最后一台交换机可以只安装一个模块,那么此时堆叠组不提供冗余;如果也安装两个,那么就成为图中虚线的部分,这两条虚线代表标准堆叠组的冗余部分。也可以将虚线连接的两个模块使用链路聚合技术捆绑上联到上级交换机,使堆叠组上联带宽达到2G。

五、 实验要求

1、按照拓扑图连接网络;

2、交换机A的管理IP为192.168.1.11/24,标示符为DCS-3926S-A;

3、交换机B的管理IP为192.168.1.22/24,标示符为DCS-3926S-B;

4、交换机C的管理IP为192.168.1.33/24,标示符为DCS-3926S-C;

5、PC1网卡的IP地址为192.168.1.101/24;

6、PC2网卡的IP地址为192.168.1.102/24;

7、堆叠成功后,处在不同交换机的两台PC之间可以ping通。

六、 实验步骤

第一步:交换机全部恢复出厂设置,取消原来配置的堆叠信息。

在MASTER交换机中取消堆叠配置

DCS-3926S-A(Config)#stacking disable

Please reload to take effect

DCS-3926S-A(Config)#exit

DCS-3926S-A#reload

按照拓扑图正确连线后,虚线也连接,三台交换机的M1、M2灯应该是橙色常亮,link 和act灯不亮,Power灯和D./M./S.灯绿色常亮。(已经stacking disable的交换机M1、M2灯暂时不亮)

第一次ping命令验证:

1、PC1 ping 192.168.1.11 ,通。

2、PC2 ping 192.168.1.33 ,通。

3、PC1 ping PC2 ,不通。

第二步:配置交换机超级堆叠。

交换机A:

DCS-3926S-A#config

DCS-3926S-A(Config)#stacking enable duplex interface ethernet0/1/1interface ethernet 0/2/1

All running configuration except those on stacking interface will be saved...

Please reload to take effect

DCS-3926S-A(Config)#stacking priority 80 !设置该交换机的优先级,缺省是50 Please reload to take effect

验证配置

DCS-3926S-A#show stacking

Stand alone mode

Running:

Mode: stacking disabled

Flash config:

Mode: duplex

Priority: 50

Port: Ethernet0/1/1 Ethernet0/2/1

DCS-3926S-A#

交换机B和交换机C的配置:

switch(Config)#stacking enable duplex interface ethernet 0/1/1 interface ethernet 0/2/1

All running configuration except those on stacking interface will be saved...

Please reload to take effect

switch(Config)#

验证配置

switch#show stacking

Stand alone mode

Running:

Mode: stacking disabled

Flash config:

Mode: duplex

Priority: 50

Port: Ethernet0/1/1 Ethernet0/2/1

第三步:重新启动交换机A、B、C。

每台交换机都会自动再启动一次,互相发送堆叠信息,建立堆叠组。

分别察看各个交换机的标示符和管理IP。

交换机A:

DCS-3926S-A#show stacking !标示符没有改变

Running:

Mode: duplex !超级堆叠

Priority: 80 !优先级80

Flash config:

Mode: duplex

Priority: 80

Port: Ethernet0/1/1 Ethernet0/2/1

DDP state : HB STATE, stack unit : 0

Advertise: send 1, rcvd 2. Advertise ACK: send 0, rcvd 2

Heart Beat: send 13, rcvd 0. Heart Beat ACK: send 0, rcvd 13

Total number of switchs in stack : 3

My switch ID : 0 (master is 0)

……

交换机B、C的显示类似:

Slave1#show stacking !标示符已经改变

Running:

Mode: duplex

Priority: 50

Flash config:

Mode: duplex

Priority: 50

Port: Ethernet0/1/1 Ethernet0/2/1

DDP state : HB STATE, stack unit : 0

Advertise: send 1, rcvd 2. Advertise ACK: send 2, rcvd 0

Heart Beat: send 0, rcvd 12. Heart Beat ACK: send 12, rcvd 0

Total number of switchs in stack : 3

My switch ID : 1 (master is 0)

……(省略下面显示)

第四步:实验验证。

在堆叠组稳定之后,观察堆叠灯的状态,堆叠灯(D./M./S.)一直点亮的交换机就是MASTER,其他均为SLAVE。

第二次ping命令验证:

1、PC1 ping 192.168.1.11 ,通。

2、PC2 ping 192.168.1.11 ,通。

3、PC1 ping PC2 ,通。 !本实验成功,堆叠组已经建立

4、PC1 ping 192.168.1.33,不通。

5、PC2 ping 192.168.1.33,不通。

请大家思考为什么4、5不通。

第五步:验证冗余。

1、在PC1上使用ping 192.168.1.101 –t 命令

2、将其中一根堆叠线拔掉,观察ping窗口和超级终端窗口现象

3、堆叠组出现重新启动的现象,ping窗口会出现十多条“request time out”或“hardware

error”或“destination host unreachable”信息之后,又重新显示ping通的提示。

4、表明虽然有一根堆叠线出现故障,堆叠组在重新启动后会重新生成堆叠,提供了冗

余。

5、再把拔掉的堆叠线插回原处,观察现象。

七、 注意事项和排错

1、如果按照标准堆叠的拓扑图连接硬件,而按照经济堆叠的方式配置交换机,会在交

换机之间出现环路,一旦有广播,就会造成广播风暴。

2、超级堆叠的连接方式很像是级联,如果不加堆叠配置,即构成了级联的环路。

八、 配置序列

九、 共同思考

分析经济堆叠、标准堆叠和超级堆叠之异同。

十、 课后练习

画出两台交换机堆叠的拓扑图,并对两台交换机进行堆叠操作。

十一、 相关配置命令详解

了解千兆接入交换机测试方法

千兆接入交换机有很多值得学习的地方,这里我们主要介绍千兆接入交换机测试方法。此次评估的目的是为了对各厂商的千兆以太网产品进行一次客观的比较。这种比较的主要目的是为IS管理员和其他IT专业人员提供有助于他们做出设备采购决策的信息。 因此,我们的测试不仅仅局限在千兆接入交换机的性能测试上,而是一个全面的考量,既使用定量衡量标准(如吞吐量、包丢失、延迟、每千兆位成本),又使用定性衡量标准(如安装和管理是否简单、可靠性)。 我们主要的测试项目为:配置测试——考量千兆接入交换机配置的灵活性、端口密度、可扩展性等。安装和易用性测试——安装的时间和难易程度、支持文档和在线帮助的有效性等。特性测试——包括端口链路聚合,流量控制,MAC地址表的容量,端口镜像,VLAN,支持第三层交换,冗余特性,基于MAC的安全性,QoS,生成树,组播控制等。管理测试考察控制台及命令行界面的能力,对Web、SNMP、RMON的支持等。还有重要的性能测试。我们在性能测试方面使用了业界知名的网络性能测试仪IXIA 1600。IXIA 1600最多可以插16个模块,我们的测试环境包括5个10/100M自适应模块,每个模块有4个10/100Base-TX 端口;6个10/100/1000Base-T自适应的LM1000T模块,每个模块有2个10/100/1000M的RJ-45端口;5个GBIC模块,每个模块可插2个1000Base-SX/LX端口。如此完备的测试环境使得我们能够同时测试12个1000Base-T端口、10个1000Base-SX端口、32个10/100Base-TX端口。因此我们能够对参测产品中的高密度千兆接入交换机,进行满负载测试,考察出其在最严格情况下的真实性能。测试时,我们使用5类跳线和光纤跳线连接被测千兆接入交换机和测试仪。 完备的测试环境使得我们能够同时测试12个1000Base-T端口、10个1000Base-SX端口、32个10/100Base-T端口。能够对参测产品中高密度千兆接入交换机,进行满负荷测试,考察出其在最严格情况下的真实性能。 我们此次千兆接入交换机测试主要使用IXIA1600测试仪的ScripMate软件配置和运行各项指标测试,ScriptMate专门为RFC 2544和RFC 2285设计了标准自动化脚本,我们根据自己的需求可以轻松地定义各种参数,同时能够产生详细的日志文件和描述结果的文件。 我们依据RFC2544、RFC 2285以及中国通信行业千兆以太网测试规范制定了9项测试指标,它们是吞吐量、帧丢失率、背对背、延迟、部分网状、全网状、背压、线端阻塞、错误帧过滤,基本上涵盖了用户选择千兆以太网交换机时需要考虑的主要性能指标。 在测试时,IXIA 1600所有端口在默认状态下都允许自适应并关闭流控,此次所有测试都考虑了64字节、512字节、1518字节三种典型长度的帧,除非特别指明,测试都在全双工状态下进行。为了确保测试条件的可靠性和准确性,每项测试均重复了三次。最后的结果是取三次测试的平均值。 在吞吐量测试中,端口配置为1对1映射,在满负载情况下测试吞吐量。在帧丢失率测试中,我们将最初速度设定为100%线速,通过端口1对1映射测试帧丢失率。在延迟测试方面,由于千兆接入交换机包括百兆端口和千兆端口,而百兆端口之间的延迟和千兆端口之间的延迟有较大区别,所以我们进行了百兆端口同模块、跨模块以及千兆端口之间三项测试,每项测试选择了其中的一对端口双向发送数据,对于在100%线速时延迟异常大的千兆接入交换机,我们将速度调整的稍微低一些进行测试。在网状测试中,对于千兆骨干交换机,进行全网状测试,对于千兆接入交换机,则采用部分网状测试方法,将每个千兆端口对应10个百兆端口,剩余的百兆端口实现全网状测试。 在Back-to-Back测试中,满负载下端口配置为1对1映射,初始速度设置为100%线速。背压测试采用两种方法,在半双工和全双工状态下,通过3个端口向一个端口发送数据检测是否支持背压和IEEE802.3x流控。线端阻塞则采用端口A和B向端口C发送数据形成拥塞端口,而A也向端口D发送数据形成非拥塞端口。错误帧过滤则通过1对多映射实现了对过

交换机基础配置实验报告

交换机基础配置实验 报告

计算机网络实验报告 学年学期: 班级: 任课教师: 学号: 姓名: 实验一

实验题目:交换机配置基础 实验目的:掌握交换机的管理特性,学会配置交换机的基本方法,熟悉各种视图及常用命令。 实验步骤: 1、通过Console口连接交换机; (1)、搭建实验环境 (2)、创建超级终端 在计算机上点击【开始】—【所有程序】—【附件】—【通讯】— 【超级终端】,设置终端通信参数为:波特率为9600bit/s、8位数据 位、1位停止位、无校验和无流控。 (3)、进入命令行接口视图 给交换机上电(启动交换机),终端上显示交换机自检信息。自检结 束后提示用户键入回车,用户回车后进入用户视图。 (4)、熟悉各类视图 (5)、验证交换机常用配置命令 查看当前设备配置: display current-configuration 保存当前设备配置: save 查看flash中的配置信息 rdiaplay saved-configuration 删除flash中的配置信息: reset saved- configuration 重启交换机:

reboot 显示系统版本信息: display version 显示历史命令,命令行接口为每个用户缺省保存10条历史命令: 【H3C】display history-command 查看接口状态: 【H3C】display interface 关闭/启动端口: 【H3C-Ethernet1/0/1】shutdown 【H3C-Ethernet1/0/1】undo shutdown 设备重新命名,设备的默认缺省名称为: 【H3C】system switch 2、通过Telnet配置交换机 (1)、通过Telnet配置交换机管理VLAN的IP地址: syetem-view 【H3C】interface Vlan-interface 1 【H3C-Vlan-interface1】ip address 192.168.10.0 255.255.255.0 (2)、配置Telnet用户认证方式: 认证方式为None时Telnet登录方式的配置: 【H3C】user-interface vty 0 【H3C-ui-vty0】authentication-mode none 认证方式为Password时Telnet登录方式的配置: 【H3C】user-interface vty 0

实验5 交换机VLAN的划分和配置实验

实验5 交换机VLAN 的划分和配置实验 一、实验目的 1. 了解VLAN 的相关技术 2. 熟悉华为交换机VLAN 的划分和配置 3. 熟悉交换机VLAN Trunk 的配置 二、实验环境 1、使用Console 口配置交换机 Console 口配置连接较为简单,只需要用专用配置电缆将配置用主机通信串口和路由器的Console 口连接起来即可,其配置连接如图1所示: 图1 Console 口配置交换机 配置时使用Windows 操作系统附带的超级终端软件进行命令配置,其具体操作步骤如下: (1) 首先启动超级终端,点击windows 的开始 →程序→附件→通讯→超 级终端,启动超级终端; (2) 根据提示输入连接描述名称后确定,在选择连接时使用COM1后单击 “确定”按钮将弹出如图2所示的端口属性设置窗口,并按照如下参数设定串口属性后单击“确定”按钮。 图2 超级终端串口属性配置 此时,我们已经成功完成超级终端的启动。如果您已经将线缆按照要求连接 consol e

好,并且交换机已经启动,此时按Enter键,将进入交换机的用户视图并出现如下标识符: 2、实验环境搭建(使用华为网络配置模拟软件HW-RouteSim 3.0) 华为S3026交换机二台,Linux操作系统PC机四台,Console控制线二根,直连网络线及电源线若干。按照下图进行连接,并完成配置。 图1 VLAN配置实验网络拓扑图 三、实验原理 1、VLAN简介 ●VLAN(Virtual Local Area Network),是一种通过将局域网内的设备逻辑 地而不是物理地划分成一个个网段从而实现虚拟工作组的技术,IEEE于1999年颁布了用以标准化VLAN实现方案的IEEE 802.1Q协议标准。 ●VLAN技术允许网络管理者将一个物理的LAN逻辑地划分成不同的广播 域(或称虚拟LAN,即VLAN),每一个VLAN都包含一组有着相同需求的计算机,由于VLAN是逻辑地而不是物理地划分,所以同一个VLAN内的各个计算机无须放置在同一个物理空间里,即这些计算机不一定属于同一个物理LAN网段(跨交换机)。 ●VLAN的优势在于VLAN内部的广播和单播流量不会被转发到其它VLAN 中,从而有助于控制网络流量、减少设备投资、简化网络管理、提高网络安全性。 ●冲突域(广播域) ●

实验四-交换机基本配置

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 实验四:交换机基本配置 一、实验项目名称:交换机基本配置。 二、实验环境:与Internet连接的局域网。 三、实验目的和要求: 1.清除交换机的现有配置; 2.检验默认交换机配置; 3.创建基本交换机配置; 4.管理MAC地址表; 5.配置端口安全性。 四、实验过程: 拓扑图 任务1:清除交换机的现有配置 步骤 1. 键入enable 命令进入特权执行模式。 单击S1,然后单击CLI 选项卡。发出enable 命令,进入特权执行模式。

步骤 2. 删除VLAN 数据库信息文件。 VLAN 数据库信息与配置文件分开存储,以vlan.dat 文件名存储在闪存中。要删除VLAN 文件,请发出命令delete flash:vlan.dat 步骤 3. 从NVRAM 删除交换机启动配置文件。 步骤 4. 确认VLAN 信息已删除。 使用show vlan 命令检查是否确实删除了VLAN 配置。 步骤 5. 重新加载交换机。

在特权执行模式提示符下,输入reload 命令开始这一过程。

任务2:检验默认交换机配置 步骤 1. 进入特权模式。 特权模式下,您可以使用全部交换机命令。不过,由于许多特权命令会配置操作参数,因此应使用口令对特权访问加以保护,防止未授权使用。特权命令集不仅包括用户执行模式所包含的那些命令,还包括configure 命令,通过该命令可以访问其余命令模式。 请注意特权执行模式下配置中提示符的变化。 步骤 2. 检查当前交换机配置。 发出show running-config 命令,检查当前的运行配置。

实验二-交换机的端口配置及VLAN划分

实验二、交换机的端口配置及VLAN划分 一. 实验目的: 1. 掌握以太网交换机物理端口常见命令及配置方法 2. 掌握VLAN的原理和配置方法 二.实验设备 华为交换机,计算机 三. 实验内容及步骤: (一)交换机端口基础 随着网络技术的不断发展,需要网络互联处理的事务越来越多,为了适应网络需求,以太网技术也完成了一代又一代的技术更新。为了兼容不同的网络标准,端口技术变的尤为重要。端口技术主要包含了端口自协商、网络智能识别、流量控制、端口聚合以及端口镜像等技术,他们很好的解决了各种以太网标准互连互通存在的问题。以太网主要有三种以太网标准:标准以太网、快速以太网和千兆以太网。他们分别有不同的端口速度和工作模式。 1.进入以太网端口视图 2. 可以使用以下命令设置端口的描述字符串,以区分各个端口。在以太网端口视图下进行下列配置。 3.设置以太网端口双工状态 当希望端口在发送数据包的同时可以接收数据包,可以将端口设置为全双工属性;当希望端口同一时刻只能发送数据包或接收数据包时,可以将端口设置为半双工属性;当设置端口为自协商状态时,端口的双工状态由本端口和对端端口自动协商而定。在以太网端口视图 其设置。百兆以太网光端口由系统设置为全双工模式,不允许用户对其进行配置。其中,S3026 FM/S3026 FS以太网交换机的100Base-FX多模/单模以太网端口的双工模式可以设置为full (全双工)和auto(自协商)。 千兆以太网端口的双工模式可以设置为full(全双工)和auto(自协商)。其中, S3026E/S3026E FM/S3026E FS/S3050C-48的1000Base-T以太网端口可以工作在全双工、半双工或自协商模式下。但当速率设置为1000Mbit/s后,双工状态只可以设置为full(全双工)

【报告】交换机的配置实验报告

【关键字】报告 双绞线的制作实验报告 专业:信息与计算科学 班级:0901班 学号: 姓名: 2011-10-30 一.实验名称:交换机的配置 二.实验目的: (1)交换机的工作原理 (2)掌握二层交换机的启动和基本的只设置(3)掌握交换机的常用命令。

三.实验原理: 交换机(switch),它是集线器的升级换代产品,从外观上看,它与集线器没有多大区别么都是带有多个端口的长方形盒状体,但是却有着本质的区别。如图是为常见的24端口交换机。 交换机的工作原理: 交换机内存中保存着一个MAC地址表,当工作站发出一个帧时,减缓及读出帧的源地址和目标地址,根据地址记下接受该帧的端口,然后根据帧的目标地址和交换机表中的地址进行核对,在地址表中寻找通向目的地址的端口,接着从选定的端口输出该帧。登陆交换机进行配置的三种方式有consol端口、telnet和web等。 四.实验内容和步骤: 1.实验环境: 通过console电缆把pc机的com端口交换机的console端口连接起来。 Console端口链接示意图 2.硬件系统: (1)cpu:交换机的中央处理器 (2)RAM\DRAM:交换机的工作保存器 (3)NARAM:保存配置等信息 (4)闪存:保存系统软件映像,启动配置文件等信息 (5)ROM:存储开机诊断程序,引导程序和操作系统软件 (6)接口:用于网络连接。 3.试验步骤: (1)串口管理: 通过console电缆把pc机的com端口和交换机的console端口连接起来。给交换机加电。 开始—程序—附件—通讯—超级终端。 进入终端建立新的链接。(波特率为9600,数据位为8,奇偶校验为无,停止位为1,流量控制为无,终端仿真为VT100) (2)启动交换机: 交换机上电后首先运行BootRoom程序,若在出现press ctrl-b enter boot menu 等待5秒,否则进入boot菜单。 (3)对交换机进行基本的配置: 命令试图有:系统视图,以太网端口视图,vlan视图,vlan接口视图,本地用户视图,用户界面视图,FTPClient视图,MST视图等。 五.实验作业: 1,主机和交换机之间通过telnet连接时,采用交换机的什么端口?此时使用的是直连线还是交叉线? 答:采用交换机的Console端口。此时使用的双绞线是直连线。 2.观察你所配置的交换进型号,它是基层交换机?

网络测试方案完整版

网络测试方案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

青岛武船网络测试方案

目录 测试原则 一种好的测量方法不仅可以有效监视网络性能、找出网络瓶颈,将性能测量引起的流量降为最低,而且在故障发生时能迅速分离出故障点。理想情况下,一种测量方法应满足以下原则: 不需要额外的结构。尽可能的利用已有的网络拓扑,避免单纯为了测量而重新构造一套新的基础设施。

避免重复测量。尽可能充分的利用测量的结果,避免由于测量而引起网络资源过多的消耗。由测量引起的流量不应对网络原有的服务造成冲击,引起网络性能的下降,否则将与网络管理及性能测量的初衷相违背。 简便。在能满足上述各原则的前提下,测量方法还应尽可能的简便。尽量使用已有的测量工具,使用得到广泛支持的和充分实现的协议。例如:ICMP协议在几乎各种主机和路由器上都得到支持,因此使用ping工具来测量往返延时和丢包率就是十分简便的方法。尽管ping的方法所测得的数据有一定的局限性,其性能和其他TCP、UDP或其他IP协议有一定的出入(一般,路由器给ICMP协议的优先性较低),但考虑ping工具及ICMP协议实现的普遍性,利用ping工具测量全网的性能,尤其在测量端到端性能的时候,是最普遍的做法。 网络测试 网络设备测试 网络设备测试主要是对网络设备的运行情况、设备参数进行测试,验证网络设备参数的正确,网络运行的稳定。 测试对象:核心交换机(S12508)、汇聚交换机(S7503E)、接入交换机(S5120/S3100)。 核心交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机 测试内容:

实验四 交换机中 VLAN 的基本配置实验报告

实验四交换机中 VLAN 的基本配置实验报告 一、实验目的及要求 (一)实验目的 1.理解虚拟 LAN(VLAN)基本配置; 2.掌握一般交换机按端口划分 VLAN 的配置方法; 3.掌握 Tag VLAN 配置方法。 (二)实验要求 按要求完成命令操作使用,将结果和分析记录在实验报告中。 二、实验设备及软件 Packet tracer,计算机; 三、实验原理 VLAN(Virtual Local Area Network)即虚拟局域网,是一种通过将局域网内的设备逻辑地而不是物理地划分成一个个网段从而实现虚拟工作组的新兴技术。IEEE于1999年颁布了用以标准化VLAN实现方案的802.1Q协议标准草案。 VLAN技术允许网络管理者将一个物理的LAN逻辑地划分成不同的广播域(或称虚拟LAN,即VLAN),每一个VLAN都包含一组有着相同需求的计算机工作站,与物理上形成的LAN有着相同的属性。但由于它是逻辑地而不是物理地划分,所以同一个VLAN内的各个工作站无须被放置在同一个物理空间里,即这些工作站不一定属于同一个物理LAN网段。一个VLAN内部的广播和单播流量都不会转发到其他VLAN中,即使是两台计算机有着同样的网段,但是它们却没有相同的VLAN号,它们各自的广播流也不会相互转发,从而有助于控制流量、减少设备投资、简化网络管理、提高网络的安全性。 四、实验步骤 1.新建Packet Tracer 拓扑图:

2.划分VLAN;将端口划分到相应VLAN 中;设置Tag VLAN Trunk 属性;PC1 IP: 192.168.1.2 Submark: 255.255.255.0 Gateway: 192.168.1.1 PC2 IP: 192.168.1.3 Submark: 255.255.255.0 Gateway: 192.168.1.1 PC3 IP: 192.168.1.4 Submark: 255.255.255.0 Gateway: 192.168.1.1 PC4 IP: 192.168.1.5 Submark: 255.255.255.0 Gateway: 192.168.1.1 Switch1 Switch>en Switch#conf t Switch(config)#vlan 2 Switch(config-vlan)#exit Switch(config)#vlan 3 Switch(config-vlan)#exit Switch(config)#inter fa 0/2 Switch(config-if)#switch access vlan 2

交换机与配线架的测试方法

交换机与配线架端口对应快速查找法 在组建局域网时,按照综合布线的一般规范,施工中应使用带有“米标”的网线或在两侧水晶头处套专用“异型号码管”,并在机柜处做与“米标”或“号码管”相对应的计算机标识记录。 许多单位原来计算机的数量很少,后来逐步添加了一些计算机,组成具有一定规模的局域网,而原来组网时并没有给连接计算机的网线做标识,或只加了1234、ABCD这样的纸制标签,容易出现雷同,时间久了有些标识还会模糊不清,这给以后的网络维护工作带来了不便。在给局域网进行标准化改造过程中,给交换机与计算机相连接的网线配对是一项烦琐的工作,下面介绍四种常见的配对方法: 1.使用网线测线器:这也是人们常用的方法,把所有的网线从交换机(或Hub)上拔下,把测线器的发射端连接在计算机一端的网线上,然后用接收端逐一测试交换机端的网线,找出有信号连通指示的一端,套上号码管,插入交换机相应位置,并做好记录,完成一组网线的配对工作,然后进行下一组网线的配对工作。这种方法适合于计算机数量较少的局域网中。 2.逐一开启计算机:在网络连接正常的情况下,计算机网卡的电源指示灯、数据指示灯与交换机端对应端口位置的电源指示灯和数据灯会亮起来,根据这一特点,我们可以逐一开启计算机,观察交换机哪个位置的指示灯会亮起来,相应端口的网线即是与刚开启计算机相连的那根了。某些网卡,只要网卡接入局域网,开机与否指示灯都是亮的,不适合用这种方法。 3.网线“热插拔”:在开启计算机的情况下,拔下与网卡相连的网线,观察交换机上哪个位置的指示灯熄灭,从而确定与计算机相连的网线。道理与方法2是一样的,不过,热插拔对计算机存在一定的危害性。 上述方法需要断开局域网的连接,由两个人配合才能完成,计算机与交换机距离较远时还得通过对讲机、手机进行联络。如果由一个人来完成这项工作,劳动强度是很大的。某些重要的局域网不能随便断开网络连接,那么有没有比较简单的方法呢?当然有了! 4、大数据拷贝法:我们知道,交换机和网卡的数据指示灯在进行数据传输时会快速闪烁,根据这个特点,我们可以从指定的计算机拷贝数据,通过观察交换机快速闪烁的数据指示灯来确定相连的计算机。 首先借用一台计算机放于交换机旁,做一根较短的网线插入交换机指定的端口,确认这台计算机能连接到局域网(假设这台计算机名为test,接入交换机的端口1),然后检查局域网中的每一台计算机是否能接入局域网,可以打开“网上邻居”看能否找到用于测试的那台计算机:test,同时把计算机上的某个大数据文件夹设为共享(如共享C盘)。在网线上套上“号码管”,记下本台计算机的相关数据,如计算机的位置、计算机名称、IP地址、“号码管”编号等。 下面就可以进行快速配对工作了。在test计算机上打开“网上邻居”,双击某一台计算机,找到其共享文件夹,复制大数据文件到test计算机上,此时观察交换机的数据指示灯,应该有两个位置的指示灯快速、持续地闪烁,一个就是连接test计算机的端口1,另一个端口位置连接的就是进行数据复制的那台计算机了,套上“号码管”,记下端口位置,完成了一组网线的配对工作。 在test计算机上打开“网上邻居”,找到另一台计算机的共享文件夹,再复制大数据文件,从而确定其在交换机上的端口位置。逐一完成局域网中的网线配对工作。

交换机VLAN划分实验

二、交换机VLAN划分实验 一、实验目的 1、了解VLAN原理; 2、熟练掌握二层交换机VLAN的划分方法; 3、了解如何验证VLAN的划分。 二、应用环境 学校实验楼中有两个实验室位于同一楼层,一个是计算机软件实验室,一个是多媒体实验室,两个实验室的信息端口都连接在一台交换机上。学校已经为实验楼分配了固定的IP地址段,为了保证两个实验室的相对独立,就需要划分对应的VLAN,使交换机某些端口属于软件实验室,某些端口属于多媒体实验室,这样就能保证它们之间的数据互不干扰,也不影响各自的通信效率。 三、实验设备 1、DCS-3926S交换机1台 2、PC机2台 3、Console线1根 4、直通网线2根 四、实验拓扑 使用一台交换机和两台PC机,还将其中PC1作为控制台终端,使用Console口配置方式;

使用两根网线分别将PC1和PC2连接到交换机的RJ-45接口上。 五、实验要求 在交换机上划分两个基于端口的VLAN:VLAN100,VLAN200。 VLAN 端口成员 1001~8 2009~16 使得VLAN100的成员能够互相访问,VLAN200的成员能够互相访问;VLAN100和VLAN200成员之间不能互相访问。 PC1和PC2的网络设置为: 设备IP地址Mask 交换机A 192.168.1.11 255.255.255.0 PC1 192.168.1.101 255.255.255.0 PC2 192.168.1.102 255.255.255.0 PC1、PC2接在VLAN100的成员端口1~8上,两台PC互相可以ping通;PC1、PC2接在VLAN的成员端口9~16上,两台PC互相可以ping通;PC1接在VLAN100的成员端口1~8上,PC2接在VLAN200的成员端口9~16上,则互相ping不通。 若实验结果和理论相符,则本实验完成 六、实验步骤 第一步:交换机恢复出厂设置 Switch#set default Switch#write Switch#reload 第一步:给交换机设置ip地址即管理ip Config t Interface vlan 1 Ip address 192.168.1.11 255.255.255.0

交换机实验实验报告

交换机实验II 实验目的 1.理解掌握环路对网络造成的影响,掌握环路的自检测的配置; 2.理解路由的原理,掌握三层交换设备路由的配置方法 3.掌握DHCP的原理以及其配置方法 实验步骤 配置交换机的IP地址,及基本的线路连接等; 实验1: ①.用独立网线连接同一台交换机的任意两个端口时期形成自环 ②. 对交换机的两个端口进行配置,开启所有端口的环路检测功能、设置检测周期等属性 实验2: ①.按图1方式对三层交换机的VLAN、端口进行配置 ②. 在交换机中分别对VLAN的IP地址进行配置 ③. 启动三层交换机的IP路由 ④. 设置PC-A、PC-B的IP地址,分别将它们的网关设置为所属三层交换机VLAN的IP地址 ⑤. 通过Ping验证主机A、B之间的互通状况 实验3: 三层交换机作为DHCP服务器,两台PC-A和PC-B,分别从交换机上获取IP地址。PC-C 手动配置IP地址。 ①.按图2方式建立主机A、B、C与三层交换机间的连接,配置交换机的IP地址 ②. 配置三层交换机的DHCP地址池属性 ③. 启动DHCP服务 ④. (1)查看主机A、B能否正确的获取到给定范围内IP地址,通过Ping查看网关、交 换机之间的互通情况;(2)拔掉主机B的网线,将主机C的IP地址设置为主机B所 获取的到的IP地址,然后再插上B机网线,查看其是否能获取到不同的IP地址;(3) 分别重启主机A、B及交换机,查看A、B获取到的IP地址是否和前一次相同。 图1. 三层路由连接图图连接图

实验结果 实验1:环路测试 交换机出现环路的自检测结果: 实验2:路由配置: 主机A连接交换机端口2,划分为vlan10,端口IP地址为。主机IP地址; 主机B连接交换机端口10,划分为vlan20,端口IP地址为。主机IP地址; 在未设置IP routing之前主机A、B分属于不同网段,因此它们不能互通,设置后通过路由则可相互联通:

网络测试方案

xx武船网络测试方案 测试原则 一种好的测量方法不仅可以有效监视网络性能、找出网络瓶颈,将性能测量引起的流量降为最低,而且在故障发生时能迅速分离出故障点。理想情况下,一种测量方法应满足以下原则: 不需要额外的结构。尽可能的利用已有的网络拓扑,避免单纯为了测量而重新构造一套新的基础设施。 避免重复测量。尽可能充分的利用测量的结果,避免由于测量而引起网络资源过多的消耗。由测量引起的流量不应对网络原有的服务造成冲击,引起网络性能的下降,否则将与网络管理及性能测量的初衷相违背。 简便。在能满足上述各原则的前提下,测量方法还应尽可能的简便。尽量使用已有的测量工具,使用得到广泛支持的和充分实现的协议。例如:ICMP协议在几乎各种主机和路由器上都得到支持,因此使用ping工具来测量往返xx和丢包率就是十分简便的方法。尽管ping的方法所测得的数据有一定的局限性,其性能和其他TCP、UDP或其他IP协议有一定的出入(一般,路由器给ICMP协议的优先性较低),但考虑ping工具及ICMP协议实现的普遍性,利用ping工具测量全网的性能,尤其在测量端到端性能的时候,是最普遍的做法。 网络测试 网络设备测试 网络设备测试主要是对网络设备的运行情况、设备参数进行测试,验证网络设备参数的正确,网络运行的稳定。 测试对象:核心交换机(S12508)、汇聚交换机(S7503E)、接入交换机(S5120/S3100)。 核心交换机 基本测试

测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FLHX-1交换机 2. QW-FLHX-2交换机 汇聚交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FLHJ-1交换机 2. QW-FLHJ-2交换机 S5120接入交换机 基本测试 测试目的:查看交换机的硬件和IOS的配置情况 测试平台:PC机从交换机console口接入或工作站远程登录到交换机测试内容: 设备信息 1. QW-FL6-4

交换机基本配置_实验报告

交换机基本配置_实验报告计算机网络工程》 课程设计报告 交换机和交换机的基本配置 学生姓名 学号 班级 成绩 指导教师 广州大学纺织服装学院电子与信息工程系 2013年12 月 交换机和交换机的基本配置一、实验目的 1( 认识锐捷交换机 2( 进行交换机的基本信息查看,运行状态检查 3( 设置交换机的基本信息,如交换机命名、特权用户密码 4( 交换机不同的命令行操作模式以及各种模式之间的切换 5(交换机的基本配置命令。 、实验环境 1( 以太网交换机两台 2(PC多台 3(专用配置电缆多根 4(网线多根

三、实验准备

1、物理连接 交换机设备中配有一根Console (控制口)电缆线,一头为RJ45接口连接在交换 机的Console 端口,另一头为串行接口连接在 PC 机的串行口 (COM 口)上。 串口 2、软件设置 1)、运行Windows XP 操作系统的“开始”菜单? “附件” ? “通讯”中的“超 提示:如果附件中没有“超级终端”组件,你可以通过“控制面板”中的“添 加/删除程序”方式添加该组件。 2)、在“名称”文本框中键入新的超级终端连接项名称,如输入“ Switch ” 弹出对话框输入电话号区号(如:0593),点击“确定”按钮,弹出“连接到”对话 3)、在“连接时使用”的 级终端”软件,弹出“连接描述”对话框如图 12-6所示。 口 PC

下拉列表框中选择与交换 机相连的计算机的串口, 如选择“ COM ”。然后单击 “确定”按钮,弹出的对话框 如图12-7所示。 4)、COM U 性对话框中 图12-6超级终端 的参数设置可按照图 12-4中所示的参数来设置,需要说明的是每秒位数要一定要 端□说置 F 还原芜默认直?11 I 确足 [取消I 5)、完成以上的设置工作 后,就可以打开交换机电源 了,登录交换机过程需要一

物联网平台测试方案汇总

XXXX无线项目测试方案 XXX)公司 2015年6月

1测试品牌 本次测试的设备厂家为业界主流产品,各品牌参与测试的设备应为第一轮测试同档次产品或者相同档次的产品。测试的无线产品主要有:(1)无线控制器 AC; (2)无线接入点AP 2测试环境 2.1主要设备 、设备要求 22辅助工具

4 测试干扰设备微波炉 测试非WiFi 的抗干扰能 力 5 干扰AP 作为干扰AP,测试WiFi 信号的抗干扰能力 H3C AP 1台或提供其 它品牌AP 6 各相关测试服务器 模拟各应用服务器 最好曾经测试使用过 2.3测试要求 1、 所有产品必须在同一测试环境条件下进行,以院实际环境为标准。 2、 所测试主要产品AC ffi AP 必须是各厂商相近档次设备。 3、 测试位置:XXX 现场,AC 及AP 勺安装位置均相同。 4、 测试顺序:不同厂家产品同时参与测试。 2.4组网要求 1、要求 (1) AP M 试时放置位置有较大空间(两个 AR 距离为15米或以上); (2) ACC 能接通模拟测试服务器(如AD 域服务器)或其它模拟测试设备,并 提供正常网 络连接; (3) 测试点时需经过玻璃墙、砖墙等环境,以实际环境为准。 2、组网示意图:根据具体实际测试内容调整结构。 测试PC 2 2.5参与人员 现场参与测试人员有: XXXX 工作人员、产品厂家工程师、代理商或集成商 工程师、临时访问人员 测试PC 1 AC POE 交换机 1< AP 2 AP 1

3测试内容和安排 各厂家在相同的场景和条件下进行测试,具体安排与各厂家技术人员协调后进行。主要测试内容根据我院要求而定,重点对关键技术指标进行全面测试及横向比较,普通技术指标视情况而测试。 3.1关键内容 本次主要测试或对比如下关键技术内容: ■无线吞吐量 ■抗干扰能力 ■终端的识别率及BYO功能 ■视频压力承载能力 ■漫游语音通话质量 3.2 AP吞吐量测试 测试内容AP吞吐量测试(2X2MIMO 在同一个位置和环境下,横向对比各品牌AP的吞吐量,分别选择可视点2个,距离AP分别是10米及20米,分别选择3个不可视的测试点, 测试方法 分别是隔一堵墙,隔一堵玻璃,一个承重柱的阻档,测试终端距离 AP控制大25米以内,合计选取5个测试点 il til 测试组网 VI 2 1. AP通过交换机与AC连接;配置AP与AC正常工作。 2 .使PC1关联到无线网络。 测试步骤 3. 使用性能测试软件工具Chariot测试PC1与PC2之间的吞吐量 4. 不同变换位置重复第3点,记录下行吞吐量的测试结果。

计算机网络实践实验报告基本交换机使用及VLAN配置

计算机网络实践实验报告基本交换机使用及VLAN配置

计算机网络技术实践 实验报告

实验名称:基本交换机使用及VLAN配置 姓名:实验日期:2014年5月4日 学号:实验报告日期: 2014年5月4日 一.环境(详细说明运行的操作系统,网络平台,网络拓扑图) 操作系统:Windows7 网络平台:软件Dynamips环境下的虚拟网络网络拓扑:

二.实验目的 ?掌握以太网交换机的使用方法,能够在模拟 环境中使用以太网交换机组建局域网。 ?掌握以太网交换机的VLAN划分和配置方法, 能够在模拟环境中使用以太网交换机组建虚拟局域网。 三.实验内容及步骤(包括主要配置流程,重要部分需要截图) 1、设计网络物理拓扑和逻辑网段,如上图 2、修改拓扑文件 autostart = False

[localhost] port = 7200 udp = 10000 workingdir = ..\tmp\ [[router SW1]] image = ..\ios\unzip-c3640-js-mz.124-10.bin model = 3640 console = 3003 ram = 128 confreg = 0x2142 exec_area = 64 mmap = False slot1 = NM-16ESW f1/1 = SW2 f1/3 f1/2 = R1 f1/0 f1/11 = PC1 f0/0 f1/12 = PC2 f0/0 [[router SW2]]

image = ..\ios\unzip-c3640-js-mz.124-10.bin model = 3640 console = 3004 ram = 128 confreg = 0x2142 exec_area = 64 mmap = False slot1 = NM-16ESW f1/1 = SW4 f1/2 f1/2 = SW4 f1/1 f1/4 = R1 f1/1 f1/5 = SW3 f1/1 f1/6 = R2 f1/0 f1/11= PC3 f0/0 [[router SW3]] image = ..\ios\unzip-c3640-js-mz.124-10.bin model = 3640 console = 3005 ram = 128

现代交换技术实验报告

实验一 C&C08交换机系统介绍 一.实验目的 通过本实验,让学生了解程控交换机单元所具备的最基本的功能。 二.实验器材 程控交换机一套。 三.实验内容 通过现场实物讲解,让学生了解CC08交换机的构造。 四.实验步骤 CC08交换机是采用全数字三级控制方式。无阻塞全时分交换系统。语音信号在整个过程中在实现全数字化。同时为满足实验方对模拟信号认识的要求,也可以根据用户需要配置模拟中继板。 实验维护终端通过局域网(LAN)方式和交换机BAM后管理服务器通信,完成对程控交换机的设置、数据修改、监视等来达到用户管理的目的。 1.实验平台数字程控交换系统总体配置如图1所示: 图1 2.C&C08的硬件层次结构 C&C08在硬件上具有模块化的层次结构,整个硬件系统可分为以下4个等级: (1)单板 单板是C&C08数字程控交换系统的硬件基础,是实现交换系统功能的基本组成单元。 (2)功能机框 当安装有特定母板的机框插入多种功能单板时就构成了功能机框,如SM中的主控框、用户框、中继框等。 (3)模块 单个功能机框或多个功能机框的组合就构成了不同类别的模块,如交换模块SM由主控框、用户框(或中继框)等构成。 (4)交换系统 不同的模块按需要组合在一起就构成了具有丰富功能和接口的交换系统。

交换系统 功能机框功能机框模块模块 单板 单板单板 功能机框 模块 交换系统 ASL+DRV+TSS+PWX+母板SLB 用户框 用户框+主控框 USM USM/TSM/UTM+AM/CM C&C08 C&C08的硬件结构示意图 这种模块化的层次结构具有以下优点: (1)便于系统的安装、扩容和新设备的增加。 (2)通过更换或增加功能单板,可灵活适应不同信令系统的要求,处理多种网上协议。 (3)通过增加功能机框或功能模块,可方便地引入新功能、新技术,扩展系统的应用领域。 3.程控交换实验平台配置,外形结构如图2所示: 中继框------ 时钟框--- ---用户框 主控框--- BAM后管理服务器--- 图2 五.实验报告要求 1.画出CC08交换机硬件结构示意图 答:CC08交换机硬件结构示意图如图3所示:

697f交换机功能性能测试方法

交换机功能性能测试方法 注:本文档没有描述,但应当包括的其它测试如下,这些测试仅需简单配置,测试时若需使用以太网电口,可依次选择标识为100Base-Tx 1、2、……16的端口(管理配置使用名称ethernet 1、ethernet 2、……ethernet 16),若需使用以太网光口,依次选择标识为1000Base-X 25、26的端口(管理配置使用名称gigabitethernet 1、gigabitethernet 2),以实际所需数量为准。测试时若需使交换机不接地,只需连接电源+、-端口,电源PE悬空,接地端子悬空;若需使交换机接地,需连接电源+、-端口,电源PE接地,接地端子接地,电源能适应交流和直流220V电压,正负极可以互换,为可靠起见,使用直流电压测试时,正极接电源+端口,负极接电源-端口。 “6.2电源影响性测试” “6.3温度影响” “6.5.1交换机吞吐量测试” “6.5.2转发速率” “6.5.5时延” “6.5.6帧丢失” “6.5.7背靠背帧” “以太网光接口测试” “6.6功耗消耗测试” “6.7绝缘性能测试” “6.8耐湿热性能测试”

“6.9机械性能测试” “6.10电磁兼容测试” 按“6.4功能检查”要求,本文档包括的测试项目包括“网络风暴抑制”(测试标准5.3.4,本文档第1章)、“镜像”(测试标准5.3.7,本文档第2章)。 按“6.5性能测试”要求,本文档包括的测试项目包括“地址缓存能力”(测试标准6.5.3,本文档第3章)、“地址学习能力”(测试标准6.5.4,本文档第4章)、虚拟局域网(测试标准6.5.8,本文档第5章)、环网恢复时间(测试标准6.5.9本文档第6章)、队列优先级(测试标准,本文档第7章)。 第1章广播风暴、组播风暴、未知单播风暴抑制测试(参考ADESA_PIRL_RateLimit.tcc配置文件) 1.1测试接线 使用测试仪器的端口为P1、P2;使用交换机的端口为ethernet 1、ethernet 2。测试仪器的P1口接交换机ethernet 1 端口,测试仪器的P2口接交换机ethernet 2端口。 1.2 建流 建立主机:P1口建立1个主机为Host 1。 添加数据流: 建立广播数据流,命名为BC,帧长64字节,目标MAC地址FF:FF:FF:FF:FF:FF,源MAC地址为Host 1的MAC地址,Rx Port设为P2; 建立组播数据流,命名为MC,帧长64字节,目标MAC地址为任意组播MAC地址,源MAC地址为Host 1的MAC地址,Rx Port设为P2;

计算机网络实验报告一交换机端口配置

实验一交换机端口汇聚实验 班级:1421302 学号:201420130315 姓名:谢英明 一、实验目的 掌握交换机端口汇聚的原理及配置方法,理解同一个网络与不同网络主机之间的区别。 二、实验设备 交换机2台,PC机4台。 三、实验拓扑图 四、实验步骤 1)配置各台交换机: 1.SwitchA配置代码: sys Enter system view, return to user view with Ctrl+Z. [Quidway]sysname SwitchA [SwitchA]interface ethernet0/1 [SwitchA-Ethernet0/1]duplex full [SwitchA-Ethernet0/1]speed 100 [SwitchA-Ethernet0/1]port link-type trunk [SwitchA-Ethernet0/1]port trunk permit vlan all [SwitchA-Ethernet0/1]quit [SwitchA]interface ethernet0/2 [SwitchA-Ethernet0/2]int e0/2 [SwitchA-Ethernet0/2]duplex full [SwitchA-Ethernet0/2]speed 100 [SwitchA-Ethernet0/2]port link-type trunk [SwitchA-Ethernet0/2]port trunk permit vlan all

[SwitchA-Ethernet0/2]quit [SwitchA]link-aggregation ethernet0/1 to ethernet0/2 both [SwitchA] 2)SwitchB配置代码: sysname SwitchB Enter system view, return to user view with Ctrl+Z. [Quidway]sysname SwitchB [SwitchB]interface ethernet0/1 [SwitchB-Ethernet0/1]duplex full [SwitchB-Ethernet0/1]speed 100 [SwitchB-Ethernet0/1]port link-type trunk [SwitchB-Ethernet0/1]port trunk permit vlan all [SwitchB-Ethernet0/1]int e0/2 [SwitchB-Ethernet0/2]duplex full [SwitchB-Ethernet0/2]speed 100 [SwitchB-Ethernet0/2]port link-type trunk [SwitchB-Ethernet0/2]port trunk permit vlan all [SwitchB-Ethernet0/2]quit [SwitchB]link-aggregation ethernet0/1 to ethernet0/2 both 2)设置各个主机的IP地址: 双击小电脑1配置代码如下: login:root password:linux [root@PCA root]#ifconfig eth0 10.65.1.1 netmask 255.255.0.0 小电脑2配置代码: login:root password:linux [root@PCA root]#ifconfig eth0 10.65.1.2 netmask 255.255.0.0 五、实验结果及分析 1、小电脑1和2输入下列代码: Ping 10.65.1.2 ;Ping 10.65.1.1 得到如下实验结果图:

相关文档
相关文档 最新文档