文档库 最新最全的文档下载
当前位置:文档库 › 多路输出程控恒流源设计

多路输出程控恒流源设计

多路输出程控恒流源设计
多路输出程控恒流源设计

多路输出程控恒流源设计

来源:电子设计工程作者:张薿文吴云峰胥嫏岳松刘

恒流源是能够向负载提供恒定电流的电源。现代电子技术的广泛应用,促进了对恒流源的需求。在LED照明应用中,LED对电流的敏感度高,因此,性能良好的恒流源可以极大地提高LED的使用寿命,本文主要介绍了一种多路输出程控恒流源系统的设计和实现。该恒流源每一路输出电流在O~3.5 A可选,可满足多种使用需求。

1 程控恒流源电路设计

该系统采用3路恒流源并联输出结构,每路电流输出大小可以独立控制,并由自己独立反馈控制回路,能自行稳定其输出电流。电流输出形式多样,可以3路同时工作,每路输出电流大小保持独立;在长时间工作时,也可以3路分时工作,以避免电路元件工作在长时间、大电流状态下疲劳性损坏。此外,多路电流并联输出结构,可以在单路烧毁的情况下使用余下通道,从而不至于影响整个系统。同时,采取每通道模拟部分单独成PCB板,可以适应通道扩展要求。

本文所提出的程控恒流源是以单片机为核心,通过与电压电流转换电路相结合的方法,实现电流可预置、可连续调节的

功能,该系统主要包括两大部分:数控模块和直流电源模块。本设计的系统结构框图如图1所示。

1.1 直流电源模块的设计

该恒流源采用Buck电路,前端采用电源模块输入,电路简单,易于控制。Buck电路是应用很广泛的降压电路,主电路由不受控整流管、电感、开关管和滤波电容组成。其输入侧由开关管的通断实现对输入电压的斩波;输出侧由电感、电容组成二阶滤波网络,可以减小输出电压、电流纹波。

图2中,当开关管导通,整流管截止时,忽略开关管的导通压降,电感L两端的电位为VIN和输出电压VO,且近似保持不变,故电感电流线性增加,此时在电感中储存能量。若电容C两端的电压比输出电压略低,则电源还需为电容充电,在电容中储存一定的能量。此过程负载消耗的能量由电源提供。一旦开关管变为截止,整流管导通,电感L中的磁场将改变其两端的电压极性,以保持其电流方向不变。忽略整流管

上的压降,电感L两端的电位变为零和VO且近似不变,电感L中的电流线性下降,其中储存的能量提供给负载。同时,当VO有所下降时,电容C也为负载RL提供部分能量。可见,这一过程负载RL消耗的能量由电感L和电容C提供。总之,Buck变换器就是用电感L和电容C作为储能组件,将能量以离散的形式由输入传到输出。其中,控制芯片提供反馈控制用以实现恒流输出。

Buck调整器可工作于连续和不连续模式下,但是Buck型输出滤波器的拓补会在不连续模式下出现问题,因此,对该滤波器的拓补,电感选择应保证直到输出最小规定电流时,电感电流也保持连续。直流电流等于电感电流斜坡峰峰值一半时对应临界连续,所以

其中,Vin是输入电压,Vout为输出电压,fs是开关频率,因为该电路对纹波要求高,选择了L较大,为10 mH。

滤波电容C的选择取决于纹波电压的大小,而纹波大小又由电容ESR和电感电流纹波△IL决定,所以要选取合适的COUT,以最小化电压纹波和负载瞬态值。通常情况下,电容的取值可由以下公式获得:

Ion是输出电流,Vor是纹波电压。

1.2 程控模块设计

XCl64CM片机是德国SIEMENS公司推出的增强型16位单片机,其结构新、性能强、编程简单、适应性强。该单片机能提供精度为8位或10位,集成采样和保持电路的模数转换器(ADC);拥有PWM产生模块,在不同的工作模式下可灵活产生PWM信号或记录事件,使恒流源电路简化,利于电路控制。XCl64CM含2个高速同步串行接口,支持高达20 Mb /s(模块工作时钟为40 MHz)的全双工和半双工串行同步通信。

XCl64CM最大的优点就是:内部CCU单元使电源的外部硬件电路大大简化,其强大的运算能力可以完成如电压采样信号处理更为有效复杂的算法,非常适应于电源功率变换领域。

程控模块主要由包括LED数字显示、编码开关、串口通信等功能的单片机系统组成。模块的主要功能是按给定的电流值,提供调节输出电流所需的PWM波。

程控模块采用编码开关输入方式,设置给定的电流值并通过LED数码管显示,该系统也可通过RS232串口进行远程控制电流设置与通道输出。单片机经过运算,调节输出PWM信号的占空比,实现对恒流源输出电流的控制和精确调节。

显示电路采用普通4位数码管实时显示,用芯片MAX7219驱动数码管。MAX7219是一个高性能的多位LED显示驱动器,可同时驱动8位共阴极LED或64个独立的LED。

MAX7219仅需3个串行端口DIN、CLK、LOAD实现与单片机的通信。

1.3 信号采样调理电路

信号采集调理模块包括采样电路、信号调理电路和过电流保护电路。测试回路的电流进入信号采集和调理电路,在信号采集和调理电路中对电流信号通过电阻采样,进行I/V转换变成满足A/D输入范围的电压信号。过流保护电路在电路故障时启动。

信号采集通过电阻分压的方式采集输出电压,通过后端电阻的I/V转换,可以采集实际的输出电流。采集的模拟电压,经放大器LM358,输入单片机的AD输入口,与基准电压相比较,用PI算法控制PWM的脉冲宽度,调整占空比,实现恒流输出,电路如图3所示。

在电流输出端接上采样电阻,由电流输出端采集到的经分压处理后得到采样反馈信号,信号经由运放后送入单片机。单片机ADC模块对信号进行A/D转换,获得的电流值送入LED显示。

1.4 PWM驱动电路

XCl64CM系列中的几款产品具有捕获比较单元

6(CAPCOM6),该单元由带有3路捕获/比较通道的定时器T12和带有1路比较通道的定时器T13组成。T12的各通道既能独立产生PWM信号或接受捕获信号,也可共同产生驱动交流电机或逆变器的控制信号序列。

在该电路中采用了MC34152,该器件是双转换高速驱动器,专门设计用于连接低电流数字电路与功率MOSFET,具有低输入电流,可以与互补型金属氧化物半导体(CMOS)和晶体管-晶体管逻辑(TTL)电路相容,并且具有完全适合于驱动功率MOSFET的2个大电流推挽输出。它还包含滞后的欠压锁定以防止在低电源电压情况下发生误动作。具体框图如图4所示。

从图4中可以看到,引脚2、4为信号输入端,引脚5,7

为同相输出端,每个推挽电路驱动输出端的输出和吸收电流能够达到1.5 A。产生的PWM信号用光耦隔离,隔离电压冲击及噪声串扰串口通信电路。

2 系统软件设计

多通道恒流源系统软件共分为5个部分:初始化程序;通道电流设定、显示程序;电流闭环PI控制;过流检测关断程序。图5是控制软件系统的整体结构。

单片机上电后先经过初始化程序完成各控制单元的初始化配置,初始化设置之后,程序进入模式选择,主程序在判断模式后,检测编码开关输入或远程串口输入,获得电流设定数据,通过单片机对输入数据进行处理,此时数码管显示设定电流值,此时,单片机再根据设定值,对应改变PWM波占空比,在电路工作过程中,一直对输出电流进行检测,通过PI调节方式,使输出电流与设定电流一致,控制输出电流恒流。软件实现闭环控制,当电流超过最大值时,系统进入中断服务程序。

3 测试结果

测试结果如表1所示。

测试数据表明,在0~3 000mA范围内,输出电流值与设定电流值误差较小,其变化均在允许范围内。说明恒流源的电源容量充足,由数控模块控制的恒流源模块线性良好,精度较高。

在实验时,当电流超出允许范围,电路能迅速关断保护,说明电路保护措施良好,软硬件都工作正常。

4 结论

该恒流源在实际测试中,恒流控制性能表现出色,达到了设计要求。

实验证明,利用XCl64CM的强大捕获比较单元和AD单元简化了硬件电路,用多级保护隔离,提高了系统的抗干扰能力,过流保护迅速可靠,稳定性、重复性较好,并具有操作方便,显示直观等特点,使整个测试系统的工作性能达到了令人满意的水平。

可调恒流源设计

设计要求;设计一可调恒流源电路,输出电流范围2mA~20mA,最小刻度0.5mA,波动小 于0.1 mA 可调恒流源设计 摘要 本系统以直流电流源为核心,MC34063为主控制器,通过电位器来设置直流电源的输出电流,并可由数码管显示实际输出电流值和电流设定值。本系统由单片机程控输出数字信号,经过D/A转换器(AD0804)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转变后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数据形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。 关键字:MC34063,恒流源,单片机,A/D

Adjustable constant current source design Abstract In this system the DC source is center and MC34063 is main controller, output current of DC power can be set by a potentiometer which step level reaches 1mA, while the real output current and the set value can be displayed by LED. In the system, the digitally programmable signal from SCM is converted to analog value by DAC (AD0804), then the analog value which is isolated and amplified by operational amplifiers, is sent to the base electrode of power transistor, so an adjustable output current can be available with the base electrode voltage of power transistor. On the other hand, The constant current source can be monitored by the system real-timely, its work process is that output current is converted voltage, then its analog value is converted to digital value by ADC, finally the digital value as a feedback loop is processed by so that output current is more stable, so a stable voltage-controlled constant current power is designed.. Key wards:MC34063, constant current source, single chip microcomputer, A/D

数控恒流源的设计与制作最终版

编号 毕业设计 (2013 届本科) 题目:数控恒流源的设计与制作 学院:物理与机电工程学院 专业:电子信息科学与技术 作者姓名: 指导教师:职称: 完成日期:2013 年月日 二〇一三年六月

目录 河西学院本科生毕业论文(设计)诚信声明 (1) 河西学院本科生毕业论文(设计)开题报告 (2) 摘要 (5) Abstract (5) 1 绪论 (6) 1.1恒流源的意义及研究价值 (6) 1.2恒流源的发展历程 (6) 1.2.1 电真空器件恒流源的诞生 (6) 1.2.2 晶体管恒流源的产生和分类 (6) 1.2.3 集成电路恒流源的出现和种类 (6) 1.3数控恒流源的研究现状和发展趋势 (7) 2 系统设计 (8) 2.1设计要求 (8) 2.1.1 题目要求 (8) 2.2 总体设计方案 (8) 2.2.1 设计思路 (8) 2.2.2 方案论证与比较 (8) 2.2.3 系统组成 (11) 3 单元电路设计 (11) 3.1 单片机控制电路 (11) 3.2 A/D接口电路 (12) 3.3 D/A接口电路 (13) 3.4 恒流源电路 (13) 3.5 LCD显示电路 (14) 3.6 系统电源电路 (15) 4 软件设计 (16) 4.1主程序 (16) 4.2时基中断服务子程序 (17) 4.3 A/D转换程序 (18) 5 系统的抗干扰设计 (18) 5.1 硬件抗干扰设计 (18) 5.2 软件抗干扰设计 (18) 6 系统测试 (19) 6.1 数控恒流源实物图 (19) 6.2 测试使用的仪器 (19) 6.3 测试方法 (19) 6.4 测试数据及结果分析 (19) 7 结束语 (22) 参考文献 (23) 致谢 (24) 附录 (25) 河西学院本科生毕业论文(设计)题目审批表 (32)

几种简单恒流源电路1

几种简单的恒流源电路 恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。 1.由7805组成的恒流电路,电路图如下图1所示: 电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以 这个电路在精度要求有些高的场合不适用。 2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R,他的恒流会更好,另外他是低压差稳 压IC。 摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。人机接口采用4×4键盘及LCD液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。 关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻 一、方案论证 根据题目要求,下面对整个系统的方案进行论证。 方案一:采用开关电源的恒流源 采用开关电源的恒流源电路如图1.1所示。当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则 SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。 图 1.1 采用开关电源的恒流源 优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。 缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。 方案二:采用集成稳压器构成的开关恒流源 系统电路构成如图1.2所示。MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为: ,式中为MC7805的静态电流,小于10mA。当较小即输出电流较大时,可以忽略,当负载电阻 变化时,MC7805改变自身压差来维持通过负载的电流不变。

(数控加工)数控恒流源系统设计

(数控加工)数控恒流源系统 设计

毕业设计 题目: 学院名称:班级:学生姓名:学号:指导教师:教师职称:

20 年06月13

一:概述 1.1选题背景和意义 电源为保障系统的安全性与稳定性都起到有至关重要的作用,本篇我们主要研究恒流源。而恒流电源由于它体积特别小、损耗相对低、而效率较高、还有它简洁的电路都比较受欢迎,在我们平时用的计算机设备、通信设备,仪器仪表上面,还有航空航天上面通信设备等都需要恒流源系统。近年来电子信息的产业是发展相当快的,恒流电源也更多的被运用到我们生活中,因此,对恒流电源的研究就显得更有意义以及价值。 数控恒流源技术是一种对实践性要求很高的工程技术,它存在与各个行业中,我们在日常会经常看到。电源技术还和电气电子、控制理论等一些其它科学领域相互交叉融合,促进了现在信息技术和电源技术的发展。这也预示着在系统上面对电源技术的要求更高。普通的电源系统在工作时候容易产生误差,这样会对整个系统的精确度产生影响,更严重的是会带来很多严重的后果。世界各国为了解决这个问题便对电源产品制定了不同要求和一系列产品精度标准,只要达到要求达到标准后才可以进入市场。经济全球化的发展让电源产品流通更加方便,但是必须满足国际标准才可以有通行证。数控电源发展的比较晚,从八十年代才开始,那个时候电力电子的理论就开始建立。电力电子理论为今后的电源产品的发展奠定了很好的理论基础,随之,数控电流源技术得到了快速蓬勃的发展。但是市场上的很多产品还是输出精度低,带负载能力较差,体积相对大等缺点。当然这也给了数控电流源的发展指明方向就是不断完善上面的缺点不足。数控直流电流源对精度的要求会越来越高。单片机,新的控制理论,这些都为精确数控电源的发展提供基础。从组成上,数控电流源分为器件、主电路和控制电路三部分。

最简单地恒流源LED驱动电路

WMZD系列专门为LED照明做温度补偿的电阻,采用热敏电阻补偿法的LED恒流源,具有电路简洁,可靠性好,组合方便,经济实用,适用各种LED头灯,日光灯,路灯;车船灯,太阳能LED庭院灯;LED显示屏等对恒流的需求。是专门针对LED照明出现的由于温度引起的LED PN结电压VF下降,即-2mV/℃,称为PN结的负温效应。该特性在发光应用上是个致命的缺陷,直接影响到LED器件的发光效率、发光亮度、发光色度。比如,常温25℃时LED最佳工作电流20mA,当环境温度升高到85℃时,PN结电压VF下降,工作电流急剧增加到35mA~37mA,此时电流的增加并不会产生亮度的增加,称为亮度饱和。更为严重的是,温度的上升,引起光谱波长的偏移,造成色差。如长时工作在此高温区还将引起器件老化,发光亮度逐步衰减。同样,当环境温度下降至-40℃时,结电压VF上升,最佳工作电流将从20mA减小到8mA~10mA,发光亮度也随电流的减少而降低,达不到应用场所所需的照度。 为了避免上述特性带来的不足,一般在LED灯的相关产品上,通常采用如下措施:1.将LED装在散热板上,或风机风冷降温。2.LED采用恒流源的供电方式,不因LED随温度上升引起使回生电流增加,防止PN结恶性升温。或这两种方法并用。实践证明,这两种方法用于大功率LED灯(如广告背景灯、街灯)。确实是行之有效的措施。但当LED 灯进入寻常百姓家就碰到如下问题了:散热板和风冷能否集成在一个普通灯头的空间内;采用集成电路或诸多元器件组成的恒流源电路,它的寿命不取于LED,而取决整个系统的某块“短板”;有没有吸引眼球的价格。用热敏电阻补偿法来解决LED恒流源问题,既经济又实用。 我公司采用具有正温度系数的热敏电阻(+2mV/℃)与负温度特性的LED(-2mV/℃)串联,互补成一个温度系数极小电阻型负载。一旦工作电压确定后,串联回路中的电流,将不会随温度变化而变化,通俗地讲,当LED随温度升高电流增加时,热敏电阻也随温度升高电阻变大,阻止了回路电流上升,当LED 随温度下降电流减小时,热敏电阻也随温度下降电阻变小,阻止了回路电流的减少,如匹配得当,当环境温度在-40℃-85℃范围内变化时,LED的最佳工作电流不会明显变化,见图1电流曲线Ⅱ。 2:应用: 从图1可见,采用热敏电阻温度补偿方法与采用集成电路等元件组成的恒源相比,热敏电阻温度补偿法只用1个热敏电阻元件就可解决LED恒流源问题,其价格、体积、寿命等优势不言而喻。我们采用的

数控恒流源设计报告加程序(doc 37页)

数控恒流源设计报告加程序(doc 37页)

数控恒流源 设计报告 背景 数控恒流源是单片机运用数字控制技术控制恒流源的一种设计方案。 当前,数字化数控恒流源的应用,随着电子技术的发展使用范围越来越广,在电子测量仪器、激光、传感技术、超导、现代通信等高新技术领域,恒流源都被广泛应用,且发展前景较为良好。同时,也不仅局限于此。电子领域,数控恒压技术已经很成熟,但是恒流方面特别是数控恒流的技术是有待发展,高性能的数控

设计方案 本设计本设计是基于单片机控制的直流恒流源, 分为以下几个组成部分: 单片机控制系统、A/D和D/A转换模块、电源模块、恒流源模块、负载及键盘液晶显示模块, 系统框图如图所示。 系统框图 用430单片机作为整机的控制单元,通过改变D/A转换器的输入数字量来改变输出电压值,从而间接地改变压控恒流源的输出电流大小。为了能够使系统具备检测实际输出电流值的大小,可以将电流转换成电压,并经过A/D 转换器进行模数转换,用单片机实时对电压进

行采样,与输入预期值比较,并通过430单片机进行进行数据处理微调输出,提高精度实时显示。 第一章恒流电路 数控直流电流源可以采用电流输出型D/A转换器来实现,单由于其输出电流的幅值一般在uA 数量级,因此需要进行电流放大若干倍才能达到所需要的要求电流值,电路实现很困难。若选择电压输出型DAC,再通过V-I转换电路变成与之成比例的电流信号,则电路实现相对简单,因此设计直流电源时常采用该种方案实现,在这种方案中,V/I转换电路设计是关键。通常的V/I 转换有两种方式,一种是负载共地的方式,一种是负载共电源的方式。我们选用的是负载共地的方式,因为有很多电路负载在连接的时候需要进行共地。

6种最常用恒流源电路的分析与比较

恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路: 类型1: 特征:使用运放,高精度 输出电流:Iout=Vref/Rs

类型2: 特征:使用并联稳压器,简单且高精度 输出电流:Iout=Vref/Rs 检测电压:根据Vref不同(1.25V或2.5V) 类型3: 特征:使用晶体管,简单,低精度 输出电流:Iout=Vbe/Rs 检测电压:约0.6V

类型4: 特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs 检测电压:约0.1V~0.6V

类型5: 特征:使用JEFT,超低噪声 输出电流:由JEFT决定 检测电压:与JEFT有关 其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压 Vs(Vs=Rs×Iout)相等,如图5所示, 图5 注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差 若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管

图6 Is=Iout-I G 类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄 类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度 类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽 类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管” 以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

王有康的数控恒流源的设计

数 控 恒 流 源 的 设 计 姓名:王有康 学号:311108001621 指导老师:张新良 所在学院:电气工程与自动化学院

目录 一. 摘要 (3) 二.任务要求 (4) 三.系统框图 (5) 四.电路设计 (6) 4.1直流稳压电路 (6) 4.2恒流源电路 (7) 4.3主控电路模块 (9) 4.4 AD转换模块 (9) 4.5 DA转换模块 (10) 五. 软件部分 (12) 六.结论 (15) 七.体会及总结 (15) 附录一元件清单 (16) 附录二参考文献 (17)

一、摘要 设计利用集成运放、场效应管对电流放大与单片机的自动控制来实现数控直流电流源。系统有控制模块与恒流源模块组成。控制模块使用STC89C51结合按键与1602液晶显示,实现对恒流源的数控和预设值的显示。恒流源模块采用UA741与IRFZ44N组成的反馈放大电路实现对电流的放大。控制到恒流源的信号转换采用DAC0832来实现;实测显示模块有ADC0804组成的显示电路来显示。并使用自制电源进行供电我希望通过这次设计能够学会发现。分析和解决工程实践问题的技能和方法,将所学知识综合应用于工程实践中,培养出严谨的科学态度和一定的实践技能、良好的工程意识。 关键词:STC89C51,恒流源,ADC0804,DAC0832,UA741,闭环控制。

二、任务要求 设计并制作以DC-DC变换器为核心的数控恒流电源,电路框图如图1所示。 图1 电路框图 要求: 在输入电压U i为15V/DC(波动范围12V~18V)及电阻负载条件下,使电源满足: (1)输出电流I o可调范围:200mA~2000mA;最大输出电压U omax:10V; (2)U i从12V变到18V时,电流调整率S I ≤4%(I o=1000mA,负载为5Ω的条件下测试); (3)改变负载电阻,输出电压在10V以内变化时,负载调整率S R≤4%(U i=15V, I o=1000mA,负载在1Ω~5Ω条件下测试); (4)输出噪声纹波电流≤30mA(U i =15V,U o=10V,I o=2000mA); (5)整机效率≥70%(U i=15V,U o=10V,I o=2000mA); (6) 具有输出电流的测量和数字显示功能; (7) 其它;

程控高效可调恒流源

程控高效可调恒流源 发表时间:2016-05-11T17:08:14.920Z 来源:《教育学》2016年3月总第97期作者:周宝宏[导读] 安徽师范大学物理与电子信息工程学院本文采用高性能STC单片机作为控制器,通过ADC芯片采样电流,显示当前电流。 安徽师范大学物理与电子信息工程学院安徽芜湖241000 摘要:设计了一种新型恒流源,利用基于TL494芯片的开关电源电路,配以高精ADC芯片ADS1256和DAC芯片TLC5615,实现了单片机控制下的步进输出;具有调整速度快,输出精度准确,输出效率较高的优点。 关键词:恒流源单片机步进调整一、引言 本文采用高性能STC单片机作为控制器,通过ADC芯片采样电流,显示当前电流。通过单片机控制DA芯片输出电压来调节开关电源芯片的反馈,达到恒流源电流大小可调节的功能。当负载变化时,利用开关电源芯片电路动态调整输出,从而实现恒流。 二、结构与功能 1.整体结构。恒流源整体结构由单片机控制电路、TL494开关电源电路、ADC电流采样电路、DAC输出控制电路组成。基本原理是对原有的开关电源电路,通过采样电流反馈,当负载变化时动态调节输出,实现恒流。再通过MCU控制DA芯片输出电压来调节开关电源芯片的反馈,达到调节恒流源的电流大小的功能。系统结构如图1。 图1.恒流源结构 2.MCU电路。STC12C5A60S2是STC生产的单时钟/机器周期(1T)的单片机,是高速、低功耗、超强抗干扰的新一代8051单片机;指令代码完全兼容传统8051,但速度快8-12倍,完全满足本设计需要。 3.开关电源电路。TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于桥式单端正激双管式、半、全桥式开关电源。集成了全部的脉宽调制电路。片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。内置误差放大器。内置5V参考基准电压源。可调整死区时间。内置功率晶体管可提供500mA的驱动能力。推或拉两种输出方式(如图2)。 4.DAC输出控制电路。LC5615为美国德州仪器公司1999 年推出的产品,是具有串行接口的数模转换器,其输出为电压型,最大输出电压是基准电压值的两倍。带有上电复位功能,即把DAC寄存器复位至全零。性能比早期电流型输出的DAC要好。只需要通过3根串行总线就可以完成10位数据的串行输入。

最新压控恒流源电路设计资料

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127 进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图8.15 所示。其中,运算放大器U3 是一个反相加法器,一路输入为控制信号V1,另一路输入为运放U1 的输出反馈,R8 是U3 的反馈电阻。用达林顿管TIP122 和TIP127 组成推挽式电路,两管轮流导通。U2 是电压跟随器,输入阻抗高,基本没有分流,因此流经R2 的电流全部流入负载RL。U1 是反相放大器,取R14=R11 时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图8.15 恒流源部分电路 若U3 的输入电压为Vin,根据叠加原理,有

由U2 的电压跟随特性和U1 的反相特性,有 代入得到 即流经R7 的电流完全由输入控制电压Vin 决定 由于U2 的输入端不取电流,流经负载RL 的电流完全由输入控制电压Vin 决定,实现了压控直流电流源的功能。由于R7 中流过的电流就是恒流源的输出电流,按照题目要求,输出的直流电流需要达到2A,这里采用康锰铜电阻丝作为电阻R7。 2压控恒流源电路设计 压控恒流源是系统的重要组成部分,它的功能是用电压来控制电流的变化,由于系统对输出电流大小和精度的要求比较高,所以选好压控恒流源电路显得特别重要。采用如下电路:电路原理图如图8.5 所示。该恒流源电路由运算放大器、大功率场效应管Q1、采样电阻R2、负载电阻RL 等组成。

研究基于Proteus的数控恒流源的仿真

研究基于Proteus的数控恒流源的仿真

基于Proteus的数控恒流源仿真研究 0 引言 在测试计量、半导体性能测试等许多工业和科学实验领域都会用到恒流源,研究并设计一款智能化的高精度恒流源具有十分广泛的应用价值。但在一个电子产品研制过程中,必须反复进行设计、试制和调试,而实物试制和调试是一项费时和费力的工作,往往是事倍功半,导致系统开发周期长,成本高。随着大规模集成电路和计算机的迅速发展,计算机仿真技术彻底改变了以往电子系统设计中完全依靠人工进行参数计算、电路实验、实物试制和系统调试的传统设计方法,利用EDA 仿真软件,对已存在的系统或设想中的不同设计方案在计算机上进行仿真分析,同时与实物试制和调试相结合,从而优化元件参数,提高系统性能,最大限度地降低了设计成本,缩短了系统研制周期。Proteus 是一款功能强大的系统设计辅助类EDA仿真软件,采用该软件对数控恒流源进行设计、分析、研究和

实验,可以达到研制和开发实际电子产品的目的。 本文研究采用Proteus 仿真软件,利用单片机技术进行数控恒流源开发的方法。 1 系统概述 单片机技术的普及使电子产品进入了智能化时代,以单片机为核心的数控恒流源整体设计方案如图1.本系统主要包括矩阵键盘输入模块、数控模块、恒流电路模块、电流采样模块、串口通信模块、PC 监控界面。设计输出电流范围20~ 2 000 mA, 步进2 mA. 图1 数控恒流源系统结构

该系统采用矩阵键盘作为人机接口,从键盘输入设定电流,单片机读取设定值,显示在LCD 上,进行相应的数据处理后,将控制信号送给D/ A, 输出相应的电压值,再通过V/ I 转换将该电压转换为相应的输出电流提供给负载,取样电路将实际输出电流转换为电压通过A/ D 转换和数据处理 显示在LCD 上,LCD 上同时显示设定电流值和采样值,以便进行比较以及相应的控制和调试。 2 硬件设计 2. 1 数控部分设计 单片机、矩阵键盘和D/ A 转换电路构成典型的数控单元电路,采用10 位的串行D/A 转换芯片TLC5615 进行数模转换。 独立按键编程简单,但占用I/ O 口资源,不适合在按键较多的场合应用。本设计中需要用到14 个功能按键,包括0~ 9 共10 个数字键、"取消"、"确认"以及"步进加减"按键,在这种情况下如果用独立按键显然太浪费I/ O口资源,为此我们引入

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计 2009-09-22 09:26 随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!详情咨询https://www.wendangku.net/doc/2c3588034.html, 第一类、lm317恒流源电路图 图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。可见LM317的恒流效果较好。 对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改进》一文,均采用7805。78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改进。 LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差(VI-Vo)的范围。 78××与LM317内部均有限流、过热保护功能,后者还有安全工作区保护功能。78××不允许GND端悬空,否则器件极易损坏。LM317即使ADJ端悬空,各种保护功能仍然

高精度宽范围恒流源设计

高精度宽范围恒流源设计 吴茂成 (苏州大学物理科学与技术学院,江苏苏州215006) 摘要:设计了一种由基准电压源、集成运算放大器及复合管等组成的高精度恒流源电路,其输出电流范围为1 A~1A。详细分析了该电路的工作原理,公式推导证明了设计的正确性,并对实际应用中元器件的选取进行了说明。对所设计恒流源电路的性能进行了测试,测试结果表明:该电路精度高、稳定性好,输出电流精度相对误差的最大值为0.152%,输出电流稳定性误差的最大值为0.047%。 关键词:恒流源;高精度;运算放大器;反馈 中图分类号:T M933 文献标识码:B文章编号:1001-1390-(2011)01-0064-03 D esi gn of a H i gh-precision W i de-range Constant-current Source WU M ao-cheng (Depart m ent o f Physics Sc i e nce and Techno logy,Soocho w Un i v ersity,Suzhou215006,Ji a ngsu,Ch i n a) A bstract:A w i d e-range high-precisi o n constant-current source i s presented,wh ic h is m a i n l y co m prised o f a vo lt age reference,so m e operational a mp lifiers and a darli n g ton transistor.The range of the circu itry s output curren t va l u e is fro m1 A to1A.The w orking pr i n ciple o f the designed constant-current circu itry is ana l y zed i n details and deduced m athe m atica lly,and the se lective ru les o f the practica l e le m ents are ill u m i n ated.The perfor m ance o f the designed con stant-current source is tested,and the resu lts i n dicate t h at the circu itry cou l d generate a high-prec ision steady cur ren.t The m ax i m al re lati v e error of precisi o n and m ax i m al error o f stab ility of the ou t p ut current are0.152%and0. 047%respecti v e l y. K ey words:constant-current source,h i g h-prec ision,operati o na l a m plifier,feedback 0 引 言 恒流源是指能够向负载提供恒定电流的电源,在金属薄膜电阻率测量、金属丝杨氏模量测量、磁阻效应、光电效应以及光电池特性测量等大学物理实验中应用广泛。目前市场上较成熟的恒流源产品的输出虽然可达毫安培到百安培量级,但通常并不能完全满足于具体的实验应用需求,对输出电流大小、稳定度及精度等指标有特殊要求的恒流源电路通常仍需要自行研制[1-4]。 本文介绍一种由基准电压源、集成运算放大器及复合管等组成的高精度恒流源电路,其输出电流范围为1 A~1A,精度高,稳定性好。通过简单的元器件参数调整或电路并联等设计后,即可满足多数大学物理实验应用电路的需求。 1 电路设计1.1 工作原理 所设计的高精度恒流源电路,如图1所示。由该原理图可知,整个恒流源电路包括基准电压源V ref、阻抗变换器A1、电压放大器A2与A3、电流放大器Q1~Q3、精密采样电阻R N1~R N7以及反馈信号电压跟随器A4等部分。其中,V r ef为5V基准电压源,Q2、Q3组成复合管,以便输出较大的电流,S1~S7为输出电流切换开关。 本恒流源电路的核心设计原理是:通过负载电压反馈,在高精度采样电阻上产生恒定的压降,则与该精密采样电阻相串联的支路中就可以得到恒定的输出电流。 具体的工作过程简述如下:设开关S1~S7中某一路接通,当负载电阻R x变大时,其上瞬间压降V x随之增大,则运算放大器A3的同相输入端与反相输入端之间的压差减小,输出电压V2小于基准电压V ref, 64

基于单片机的数控恒流源设计-----硬件设计

2.硬件设计 经初步分析设计要求,得出总体电路由以下几部分组成:电源模块,MCU微控制器、键盘、显示模块、D/A转换模块、恒流源模块、数据采集模块,以下就各电路模块给出设计方案。 2.1 MCU控制方案 采用单片机作为控制模块核心。单片机最小系统简单,容易制作PCB,算术功能强,软件编程灵活、可以通过ISP方式将程序快速下载到芯片,方便的实现程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。 利用STC89C52单片机将电流步进值或设定值通过换算由D/A转换,驱动恒流源电路实现电流输出。输出电流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。 2.4 键盘设计方案 单片机输入设备通常有键盘、拨码开关、触摸液晶屏等,也可以采用红外遥控的方法进行输入。鉴于本设计的输入设备主要用于设定电流,采用键盘作为输入设备。 单片机常用的键盘有全编码键盘和非编码键盘两种。全编码键盘能由硬件逻辑自动提供与被按键对应的编码,如BCD码键盘、ASCII码键盘等。价格一般较高,故一般单片机应用系统中比较少采用。非白尼玛式键盘分为独立式键盘和矩阵式键盘,在硬件上只提供通、断两种状态,其他工作都靠软件来完成,经济适用,在单片机系统中使用的较多。 方案1.独立式键盘 独立式按键是直接用I/O口线构成的单个按键电路。每个独立式按键单独占用一根I/O口线,每根I/O口线的工作状态不会影响其他I/O口线的工作状态,是一种简单的键盘结构。当有任何一个按键按下时,与之相连的输入数据线即被置为逻辑“0”。而平时该数据线上保持为逻辑“1”,单片机程序中只要通过查询与键盘相连的I/O引脚位即可方便地实现按键处理。独立式按键键盘电路配置灵活,硬件结构简单,但每个按键必须占用一个I/O口线,在按键数较多时,I/O 口线浪费较大。对于此次的数控电流源系统的设计,要求键盘能够方便的置入电

基于单片机的恒流源.doc

随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,发展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。基于此,人们对数控恒定电流器件的需要越来越迫切。 电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。电力电子技术是电能的最佳应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出 了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的发展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的发展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的发展提供了一个良好的基础。在以后的一段时间里,数控电源技术有了长足的发展。但其产品存在数控程度达不到要求、分辨率不高、

功率密度比较低、可靠性较差的缺点。因此数控电源主要的发展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的发展提供了有利的条件。新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V 的数控电源,功率密度达到每立方英寸50W的数控电源。从组成上,数控电源可分成器件、主电路与控制等三部分。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。数字化智能电源是针对传统电源的不足设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。 当今社会,数控恒压技术已经很成熟,但是恒流源方面特别是数控恒流源的技术菜刚刚起步有待发展,高性能的数控横流器件的开发和应用存在巨大的发展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境变化,并且有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要稳定度小功率横流源的领域。

数控恒流源的设计与制作

数控恒流源的设计与制作 一,解析课题 设计并制作一个数控恒流源电路,数控恒流源电路原理图如下图所示。数控恒流源是指在给定的数字量控制下,负载电阻阻值在一定范围内调节变化时输出电流恒定不变,改变控制数字量,输出恒定电流不随负载改变。 二,设计原理 四,单元电路元器件选择 (1)计数器 采用74HC161计数器。74HC161的主要功能:1,异步清零功能:当CLR 的反为零时,不论有无时钟脉冲CLK和其他信号输入,计数器被清零,即Qd~Qa都为0。2,同步并行置数功能:当CLR的反=1,LOAD的反=0时,在输入时钟脉冲CLK上升沿的作用下,并行输入的数据dcba被置入计数器,即Qd~Qa=dcba。3,计数功能:当LOAD的反=CLR的反=ENP=ENT=1,当CLK端输入计数脉冲时,计数器进行二进制加法计数4,保持功能:当LOAD的反=CLR 的反=1时,且ENP和ENT中有”0“时,则计数器保持原来状态不变。 (2)驱动译码器 采用74HC4511芯片。74HC4511将输入BCD标准代码变换成驱动七段数码管所需的码信号,其中四线A~D为BCD码输入端,高电平有效,A为低位输入端,D为高位端,七段a~g输出高电平以驱动共阴极数码管发光。LE为锁存控制端,高电平时能够锁存输入的BCD码。LT为灯测试反相控制端,BI为消隐反相控制端。 (3)数模转换器 DAC0832是采样频率为8位的D/A转换芯片,集成电路内有两级输入寄存器,使DAC0832芯片具备双缓冲、单缓冲和直通三种输入方式,以便适于各种电路的需要(如要求多路D/A异步输入、同步转换等)。DAC0832中有两级锁存器,第一级锁存器称为输入寄存器,它的锁存信号为ILE;第二級锁存器称为DAC 寄存器,它的锁存信号为传输控制信号。因为有两级锁存器,DAC0832可以工作在双缓冲器方式,即在输出模拟信号的同时采集下一个数字量,这样能有效地提高转换速度。此外,两级锁存器还可以在多个D/A转换器同时工作时,利用第二级锁存信号来实现多个转换器同步输出。ILE为高电平、WR1 和CS为低电平时,LE1为高电平,输入寄存器的输出跟随输入而变化;此后,当WR1 由低变高时,LE1为低电平,资料被锁存到输入寄存器中,这时的输入寄存器的输出端不再跟随输入资料的变化而变化。对第二级锁存器来说,WR2和XFER

压控恒流源电路设计

压控恒流源电路设计 Last updated on the afternoon of January 3, 2021

3、电流源模块的选择方案 方案一:由晶体管构成镜像恒流源 一缺点在于,集电极最大输出电流约为几百毫安,而题目要求输出电流为200~2000mA,因此由晶体管构成的恒流源不适合采用。 方案二:由运算放大器构成恒流电路 运算放大器构成的恒流电路摆脱了晶体管恒流电路受限于工艺参数的缺点。但是只由运放构成的恒流电路,输出电流同样只能达到几十毫安,远远不能满足设计要求,因此必须加上扩流电路。采用运算放大器加上扩流管构成恒流电路,既能利用运算放大器准确的特性,输出又能达到要求。该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。 方案三:由运算放大器加上扩流管构成恒流电路 采用高精度运算放大器OP07,更能增加其准确的性能;采用达林顿管TP127进行扩流,具有很大的扩流能力,两者结合,可以实现比较精确的恒流电路。 鉴于上面分析,本设计采用方案三。 (3)恒流源电路的设计 恒流源电路如图所示。其中,运算放大器U3是一个反相加法器,一路输入为控制信号 V1,另一路输入为运放U1的输出反馈,R8是U3的反馈电阻。用达林顿管TIP122和TIP127组成推挽式电路,两管轮流导通。U2是电压跟随器,输入阻抗高,基本没有分流,因此流经R2的电流全部流入负载RL。U1是反相放大器,取R14=R11时,放大 倍数为-1,即构成反相器。 针对运算放大器输出电流小的不足,该电路加了扩流电路。采 图恒流源部分电路 若U3的输入电压为Vin,根据叠加原理,有

数控直流恒流源

数控恒流源设计与总结报告 摘要:本设计以89C52为主控器件,采用了高共模抑制比低温漂的运算放大器OP07和大功率场效应管IRF640构成恒流源,通过12位A/D、D/A转换芯片,完成了单片机对输出电流的实时检测和实时控制,控制界面直观、简洁,具有良好的人机交互性能,人机接口采用4*4键盘及LCD液晶显示器。该系统电流输出范围为20mA~2000mA的数控直流电流源。该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。 关键词:89C52 恒流源AD DA

1 系统设计 设计并制作数控直流电流源。输入交流200~240V,50Hz;输出直流电压≤10V。其原理示意图如下所示。 图1.1 数控直流电流源原理示意图 1.1设计要求 题目要求设计并制作数控直流电流源。输入交流200~240V,50Hz;输出直流电压≤10V。其要求如下: 1.1.1 基本要求 (1)输出电流范围:200mA~2000mA; (2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA; (3)具有“+”、“-”步进调整功能,步进≤10mA; (4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA; (5)纹波电流≤2mA; (6)自制电源。 1.1.2 发挥部分 (1)输出电流范围为20mA~2000mA,步进1mA; (2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字; (3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA; (4)纹波电流≤0.2mA; (5)其他。

相关文档