文档库 最新最全的文档下载
当前位置:文档库 › 第4章(1)超导体.

第4章(1)超导体.

铁基高温超导体研究进展

物理四38卷(2009年)9期 h t t p :∕∕w w w.w u l i .a c .c n 铁基超导体专题 铁基高温超导体研究进展* 陈仙辉? (中国科学技术大学物理系 合肥微尺度物质科学国家实验室 合肥 230026 )摘 要 最近,由于在铁基L n (O ,F )F e A s 化合物及其相关化合物中发现具有高于40K 的超导电性,层状的铁基化合物引起了凝聚态物理学界很大的兴趣和关注.在随后的研究中发现,在该类材料中最高超导临界温度可达到55K.这些重要的发现使得人们又重新对高温超导体的探索产生了极大的兴趣,并且为研究高温超导的机理提供了新的一类材料.文章主要介绍了作者所在组在新型铁基超导体方面的最新研究进展,包括:(1)铁基超导材料探索研究;(2) 铁基超导体的单晶制备及物性研究;(3)铁基超导体的电子相图及自旋密度波(S DW )和超导共存研究;(4)同位素交换对超导转变和S DW 转变的效应.最后,在已完成的工作基础上提出了一些今后的研究方向和发展前景.关键词 铁基超导体,自旋密度波,相图,结构相变 N e w i r o n -p n i c t i d e s u p e r c o n d u c t o r s C H E N X i a n - H u i ? (H e f e iN a t i o n a lL a b o r a t o r y f o rP h y s i c a l S c i e n c e a tM i c r o s c a l e a n dD e p a r t m e n t o f P h y s i c s ,U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y o f C h i n a ,H e f e i 230026,C h i n a )A b s t r a c t T h ed i s c o v e r y o f s u p e r c o n d u c t i v i t y w i t hac r i t i c a l t e m p e r a t u r e (T c )h i g h e r t h a n40Ki nt h e i r o na r s e n i d eL n (O ,F )F e A s h a s d r a w nm u c h i n t e r e s t i n c o n d e n s e dm a t t e r p h y s i c s .L a t e r d i s c o v e r i e s ,i n c l u -d i n g t h e e n h a n c e m e n t o f T c u p t o 55K ,h a s e v o k e d i n t e n s e e x c i t e m e n t i n t h e p i l g r i m a g e t o w a r d s t h e u n d e r -s t a n d i n g o f t h em e c h a n i s mo f h i g hT c s u p e r c o n d u c t i v i t y ,w h i l e p r o v i d i n g a b r a n d n e wf a m i l y o fm a t e r i a l s t o a d d r e s s t h i s i s s u e .I n t h i s r e v i e ww e p r e s e n t o u r g r o u p 'sm a j o r r e s e a r c h o n n e w i r o n b a s e d s u p e r c o n d u c t o r s ,i n c l u d i n g :(1)o u r i n i t i a l i n v e s t i g a t i o n s ;(2)t h e s y n t h e s i s o f i r o n a r s e n i d e s i n g l e c r y s t a l s a n d t h e c h a r a c t e r -i z a t i o no f i t s p h y s i c a l p r o p e r t i e s ;(3)t h e e l e c t r o n i c p h a s e d i a g r a mo f i r o n b a s e d s u p e r c o n d u c t o r s a n d t h e c o -e x i s t e n c eb e t w e e n s p i n d e n s i t y w a v e s a n d s u p e r c o n d u c t i v i t y ;(4)t h e e f f e c t o f i s o t o p e e x c h a n g e o n s p i n d e n -s i t y w a v e s a n d s u p e r c o n d u c t i n g t r a n s i t i o n s .T o f i n i s h ,w e p r o p o s e p o s s i b l e f u t u r e d i r e c t i o n s i n t h i s f i e l d .K e y w o r d s i r o n - p n i c t i d e s u p e r c o n d u c t o r ,s p i nd e n s i t y w a v e (S DW ),p h a s e d i a g r a m ,s t r u c t u r a l t r a n s i t i o n * 国家自然科学基金二 国家重点基础研究发展计划(批准号:2006C B 601001,2006C B 922005 )和中国科学院资助项目2009-07-15收到 ? E m a i l :c h e n x h @u s t c .e d u .c n 1 引言 1986年,I B M 研究实验室的物理学家B e d n o r z (柏诺兹)和M ül l e r (缪勒)发现了临界温度为35K (零下238.15℃)的镧钡铜氧超导体[1]. 这一突破性发现导致了一系列铜氧化物高温超导体的发现.自那以后,铜基高温超导电性及其机理成为凝聚态物理的研究热点.然而直至今日,铜基高温超导机制仍未解决,这使得高温超导成为当今凝聚态物理学中最大的谜团之一.因此科学家们都希望在铜基超导材料以外再找到新的高温超导材料,能够从不同的 角度去研究高温超导机制,最终解决高温超导的机制问题. 最近,由于在铁基L a O 1-x F x F e A s (x =0.05 0.12)化合物中发现有26K 的超导电性[2] , 层状的Z r C u S i A s 型结构的L n O MP n (L n =L a ,P r ,C e ,S m ;M =F e ,C o ,N i ,R u 和P n =P 和A s )化合物引起了科学家很大的兴趣和关注[3,4] .2008年3月, 四 906四

超导体材料

超导体材料 超导体的定义 1911年,荷兰发明氦液化器的昂尼斯〔H.K.Onnes)偶然发现,在液氦温度(4.2K)下,汞的电阻突然消失,这种现象被称为超导。但是,象汞这样金属的超导状态在很弱的磁场中就会被破坏。进一步的研究表明,要成为超导状态,温度丁,磁场强度H和电流密度J都必须分别处于临界温度T c,临界磁场强度H c和临界电流密度J c以下。如图1所示,在T-H-J 坐标空间中有一个临界面,其内部就是超导状态。临界条件下具有超导性的物质称为超导材料或超导体。 图 1 超导状态的T-H-J临界面(区面内:超导状态;曲面外:正常状态) 【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】 超导体的应用 50年代后期,发现超导状态的温度提高,而且发现丁能产生强磁场的银及钒的合金和化合物,促使超导现象的应用登上了科技舞台。由于电阻近于0Ω,在超导体内流动的电流将没有损耗.这样,很细的导线就可以通过很强的电流,可产生很强的磁场。问题是它必须在液氦温度下工作,液氮的价格、供应和使用方式使得它的普遍应用受到了严格的限制。即使如此,超导磁体仍大量被使用于加速器、聚变装置、核磁共振和磁分析等仪器上。例如美国费密实验室用了1000多个超导磁体,每年的被氮费用高达500万美元,但因此而节省的电力为18500万美元;美国于1990年建成的周长为83km的超级质子对撞机使用10000个超导磁体,每年可节省电力6亿美元。【唐小真,杨宏秀,丁马太.材料化学导论[M].高等教育出社,1997.】超导核磁共振层析仪能给出人体任一部位的剖面图.其分辨本领远远超过x射线或超声层祈仪.是现代高级医院重要的诊断设备之一。 超导技术在医疗上可用于外科手术。例如导管牵引术,将导管插入血管后,靠强磁体引导到脑部等血管瘤部位后,将磁性胶体注入血管,靠强磁体引导到肿瘤前提供血管定位,使给养阻塞,从而使肿瘤萎缩死亡。【杨兴钰.材料化学导论[M].武汉:湖北科学技术出版社,2003.】利用超导体送电的超导电缆已经出现,利用超导体储存电能的超导储能器可在瞬间释放出极强的电能。这种储能器为激光技术提供了储存条件。它可将强电流存储在超导线圈之中,然后启动开关,一瞬间便会释放出巨能,从而发出强大的激光。 用超导体做的超导磁体,可以得到极强的磁场。因为超导线圈没有电阻,超导磁体可以比普通电磁体轻得多:几千克超导磁体抵得上几十吨常规磁体产生的磁场这将给电力工业带来一系列的变革,发电机会因使用超导体而提高输出功率几十倍、上百倍;已试制出来的

铁基高温超导体的研究进展及展望

2008年 第53卷 第19期: 2265 ~ 2273 https://www.wendangku.net/doc/2c3604190.html, https://www.wendangku.net/doc/2c3604190.html, 2265 《中国科学》杂志社 SCIENCE IN CHINA PRESS 评 述 铁基高温超导体的研究进展及展望 方磊, 闻海虎* 中国科学院物理研究所超导国家重点实验室, 北京 100190 * 联系人, E-mail: hhwen@https://www.wendangku.net/doc/2c3604190.html, 2008-07-21收稿, 2008-09-03接受 摘要 自从2008年2月末F 掺杂的LaFeAsO 被报道有26 K 的超导电性后, 基于此体系材料的超导转变温度在短短几个月中被迅速地提高到55 K, 很多新超导体被发现, 同时人们对具有更高临界转变温度的新超导材料充满希望. 本文简要地回顾了这种体系中材料的探索、制备以及设计, 另外在理论和实验上对其超导机理的认识也给予了介绍和总结. 最后基于目前的实验数据, 对铁基超导体和铜氧化物高温超导体的重要物理参数进行了比较, 同时展望了这种新超导体的应用前景. 关键词 铁基超导体 超导转变温度 ZrCuSiAs 结构配对对称性 超导是一种宏观量子现象, 费米面上动量相反的电子配成对, 同时建立长程的位相相干进而发生凝聚, 其结果是超导体在临界温度下电阻的消失(零电阻)和对磁力线的排斥(完全抗磁性). 在正常金属中, 电子在一个充满各种振动的背景中运动, 最普通的是晶格的振动. 晶格的振动模可以被一种称为“声子”的元激发进行描述. 电子和声子碰撞后损失了动能进而导致能量的损耗. 这也就是正常金属在有限温度下电阻的来源. 然而在零温极限下所有的振动模式都停止了(不计量子涨落), 所以一个干净的系统中能量的损耗和电阻率都是为零的. 对于一个超导体而言, 费米面上的电子两两吸引形成束缚对, 这种束缚的电子对被称为库珀对. 库珀对服从玻色统计, 在临界温度(T c )下发生凝聚. 这种凝聚态具有很长的相干长度, 因而对晶格振动导致的局域散射不敏感, 所以输运上并不损耗能量, 电阻率可以在较高温度(T c 以下)保持为零. 与此同时, Ⅱ类超导体具有在很高的磁场下承载巨大电流密度的优越性能, 人们因此对高临界温度的新超导体充满了期望. 人类寻找新超导体的历史已经持续将近100年, 在最初的几十年中, 新超导体的探索主要集中在单元素材料和多元素合金上. 然而这些材料的超导转变温度不超过23 K(Nb 3Ge)[1]. 一个重大的突破发生 在1986年底, 在IBM Zurich 工作的Bednorz 和 Muller [2]发现铜氧化物LaBaCuO 的超导转变温度高于30 K. 自此寻找更高T c 的超导体的浪潮席卷全世界, 在短短的几年中, 铜氧化物超导转变温度被提升到134 K(常压)和164 K(高压). 然而铜氧化物超导体的相干长度非常短, 各向异性度很高, 又因为是陶瓷, 所以材质很脆, 这些不利因素都妨碍了它在工业上大规模的应用. 所以, 超导界的科学家们一直希望发现另外一种非铜氧基的高温超导体, 并且这种超导体具备更优异的性质. 转机发生在2008年的2月末, 日本东京工业学院Hosono 教授的研究小组发现在母体材料LaFeAsO 中掺杂F 元素可以实现26 K 的超导电性[3]. 此类母体材料的研究历史可以追溯到1974年美国杜邦公司Johnson 等人[4]在寻找新的功能材料中的工作. 随后, 一个德国的研究组合成了系列的具有同样ZrCuSiAs 结构的新材料[5]. 这些新材料被取名为四元磷氧化物LnOMPn(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; M=Mn, Fe, Co, Ni; Pn=P, As). 图1是LaFeAsO 的基本结构. 这个体系空间群为P4/nmm, 具有四方的层状结构, 在c 方向上以—(LnO)2-(MP)2-(LnO)2—形式交替堆砌, 一个单胞中有两个分子LnOMP. 对于母体材料而言, 层和层之间电荷是平衡的, 例如,

高温超导体及其研究近况

高温超导体及其研究近况 姓名:高卓班级:材料化学09-1 学号:200901130805 所谓超导,是指在一定温度、压力下,一些金属合金和化合物的电阻突然为零的性质.利用此次性质做成的材料称为超导材料. 超导材料按其化学组成可分为:元素超导体,合金超导体,化合物超导体。近年来,由于具有较高临界温度的氧化物超导体的出现,有人把临界温度Tc达到液氮温度(77K)以上的超导材料称为高温超导体,上述元素超导体,合金超导体,化合物超导体均属低温超导体。以下就高温超导体作一个简要介绍。 一材料特点 自1964年发现第一个超导体氧化物SrTiO3以来,至今已发现数十种氧化物超导体。这些氧化物超导体具有如下共同的特征:(1)超导温度相对而言比较高,但载流子浓度低;(2)临界温度Tc随组分成单调变化,且在某一组分时会过渡到绝缘态;(3)在Tc以上温度区,往往呈现类似半导体的电阻-温度关系;(4)Tc和其他超导参量对无需程度敏感。 高温超导体在结构和物性方面具有以下特征;(1)晶体结构具有很强的地维特点,三个晶格常数往往相差3-4倍;(2)输运系数(电导率、热导率等)具有明显的各向异性;(3)磁场穿透深度远大于相干长度,是第二类超导体;(4)载流子浓度低,且多为空穴型导电;(5)同位素效应不显著;(6)迈斯纳效应不完全;(7)隧道实验表明能隙存在,且为库柏型配对。氧化物超导体的这些特征,引起人们的兴趣和关注。 二发展趋势 目前,在高温超导研究领域中,各国科学家正着重进行三个方面的探索,一是继续提高Tc,争取获得室温超导体;二是寻找适合高温超导的微观机理;三是加紧进行高温超导材料与器件的研制,进一步提高材料的Jc和Tc,改善各种性能,降低成本,以适用实用化的要求。 三国内外发展现状 超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE 在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方

铁基超导体

铁基超导体 对于现代人来说,超导已经不再是一件什么神秘的事情了,普通的中学生就已经知道了所谓的超导现象:当导体的温度降到一个临界温度时电阻会突然变为零。处于超导状态的导体称之为超导体。超导体除了电阻为零的特殊性质之外,人们后来又发现了它的另一个神奇的性质——完全抗磁性,也就是说超导体内的磁感应强度为零,把原来存在于体内的磁场也完全“排挤”出去。这一现象也被称为“迈斯纳效应”。正是由于超导体的这一性质,而铁基材料通常具有铁磁性,因此被认为最不具备成为高温超导材料的条件。但最近的科研结果却打破了这一传统的束缚,铁基超导材料成为了高温超导研究领域的一个“重大进展”。 铁基超导体的发现历程 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,美国科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点,超导体的临界温度也不断“飙升”,在短短几年中,铜氧化合物的超导临界转变温度就被提高到134K(常压)和164K(高压)。然而直至今日,对于铜基超导材料的高温超导机制,物理学界仍未形成一致看法,这也使得高温超导成为当今凝聚态物理学中最大的谜团之一。因此很多科学家都希望在铜基超导材料以外再找到新的高温超导材料,从而能够使高温超导机制更加明朗。

2008年2月23日,日本科学技术振兴机构和东京工业大学联合发布公报称,东京工业大学教授Hosono的研究小组合成了氟掺杂钐氧铁砷化合物。该化合物是一种由绝缘的氧化镧层和导电的砷铁层交错层叠而成的结晶化合物。纯粹的这种物质没有超导性能,但如果把化合物中的一部分氧离子转换成氟离子,它就开始表现出超导性,并且在26K(零下247摄氏度)时具有超导特性。其实在2006和2007年Hideo Hosono小组就已经分别报道在LaFePO 和LaNiPO 材料中发现转变温度为2到7K的 超导电性。但这一次却立刻引发 了人们对这一体系的强烈关注 (下图为LaFeAsO的晶体结构)。 3月14日,中科院物理所闻海虎, 在镧氧铁砷 (LaOFeAs) 材料中用二价金属替换三价的La,在空穴型掺杂中取得重要进展,临界温度达到25K。3月25日,中国科技大学陈仙辉领导的科研小组又报告,氟掺杂钐氧铁砷化合物在临界温度43开尔文(零下230.15℃)时也变成超导体。3月28日,中国科学院物理研究所赵忠贤领导的科研小组报告,氟掺杂镨氧铁砷化合物的高温超导临界温度可达52开尔文(零下221.15℃)。4月13日该科研小组又有新发现:氟掺杂钐氧铁砷化合物假如在压力环境下产生作用,其超导临界温度可进一步提升至55开尔文(零下218.15℃,将这场追求铁基高临界温度的竞争推向高潮,并保持着目前为止铁基超导体的临界温度最高纪录。 新的超导机制有望取得突破

铁基超导体材料

[键入公司名称] 铁基超导体材料[键入文档副标题] 吕鸿燕 14园林本2 1407220221

铁基超导体材料 以赵忠贤、陈仙辉、王楠林、闻海虎、方忠为代表的中国科学院物理研究所和中国科学技术大学研究团队因为在“40K以上铁基高温超导体的发现及若干基本物理性质研究”方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。 超导,全称超导电性,是20世纪最伟大的科学发现之一,指的是某些材料在温度降低到某一临界温度,或超导转变温度以下时,电阻突然消失的现象。具备这种特性的材料称为超导体。 超导是物理世界中最奇妙的现象之一。正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而低于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。 通常的低温超导材料中,电子是通过晶格各结点上的正离子振动而结合在一起的。但大多数的物理学家都认为,这一电子对结合机制并不能解释临界温度最高可达138开尔文(零下135.15℃)的铜基材料超导现象。每一种铜基超导材料都是由层状的“铜-氧”面组成,其中的电子是如何成对的,仍是未解难题。 在超导研究的历史上,已经有10人获得了5次诺贝尔奖,其科学重要性不言而喻。目前,超导的机理以及全新超导体的探索是物理学界最重要的前沿问题之一。它仿佛是镶嵌在山巅的一颗璀璨明珠,吸引着全世界无数的物理学家甘愿为之攀登终生。同时,超导在科学研究、信息通讯、工业加工、能源存储、交通运输、生物医学乃至航空航天等领域均有重大的应用前景,受到人们的广泛关注。 继铜基超导材料之后,日本和中国科学家最近相继报告发现了一类新的高温超导材料——铁基超导材料。美国《科学》杂志网站报道说,物理学界认为这是高温超导研究领域的一个“重大进展”。 高温超导是指材料在某个相对较高的临界温度,电阻突降至零。1986年,科学家发现了第一种高温超导材料——镧钡铜氧化物。自那以后,铜基超导材料成为全世界物理学家的研究热点。

铁基超导体研究取得重要进展

铁基超导体研究取得重要进展 [本刊讯]近日,中国科学技术大学合肥微尺度物质科学国家实验室、中国科学院强耦合量子材料物理实验室的陈仙辉教授研究组在铁基超导研究领域取得了重大进展,成功发现了一种新的铁基超导材料(Li0.8Fe0.2)OHFeSe,其超导转变温度高达40开以上,并与美国国家标准技术研究所中子研究中心的黄清镇博士以及中科大吴涛教授等几个研究组合作,确定了该新材料的晶体结构并发现超导电性和反铁磁共存。相关研究成果在线发表在12月15日的Nature Materials上。 铁基高温超导体是目前凝聚态物理领域的研究热点,其机理还没有得到完全理解,FeSe类超导体以其诸多独特的性质被认为是研究铁基超导机理的理想材料体系。尤其是近期报道的生长于SrTiO3衬底上的FeSe单层薄膜的零电阻转变温度高达100开以上,更加激起了科学家对于这一体系的浓厚兴趣。然而,对于FeSe类超导材料,目前研究较为广泛的AxFe2Se2(A=K,Rb,Cs)体系存在严重的相分离,反铁磁绝缘相与超导相的共生导致该类材料的结构与性质非常复杂,从而使得研究其内在的物理机制变得非常困难。而FeSe 单层薄膜以及通过液氨等低温液相插层方法合成的Lix(NH2)y(NH3)1-yFe2Se2等化合物在空气中极不稳定,无法深入研究其物理性质。为了能够深入探究铁基高温超导的物理机制,亟需寻找到新的具有高的超导转变温度且空气稳定。并适合物理测量的FeSe类超导材料。 陈仙辉研究组首次利用水热反应方法成功发现了一种新的FeSe类超导材料(Li0.8Fe0.2)OHFeSe,超导转变温度高达40开以上。通过结合X射线衍射。中子散射和核磁共振三种技术手段精确确定了该新材料的晶体结构。此外,发现该结构中严重畸变的FeSe4四面体

铁基超导材料制备研究进展

2009年第54卷第5期:557~568《中国科学》杂志社 SCIENCE IN CHINA PRESS 评述 铁基超导材料制备研究进展 马廷灿, 万勇, 姜山 中国科学院国家科学图书馆武汉分馆情报研究部, 武汉 430071 E-mail: matingcan@https://www.wendangku.net/doc/2c3604190.html, 2008-12-24收稿, 2009-01-22接受 摘要超导现象于1911年首次被发现, 此后科学家们一直都在寻找拥有更高临界温度的超导材料, 研究重点也逐渐从金属系物质转到铜氧化物. 目前, 物理学界对高温超导机制仍未形成一致看法, 研究人员希望在铜氧化物超导材料以外再找到新的高温超导材料, 以期从新的途径来破译高温超导机理.2008年初, 日本学者发现了临界温度可以达到26 K的新型超导材料——LaO1?x F x FeAs, 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 随后, 科研人员在这一体系中展开了积极的实验和理论研究. 中国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置. 铁基超导材料的研究正在持续升温, 新的发现层出不穷. 本文按照体系分类, 以时间顺序, 分别对铁基超导材料的四大主要研究体系(“1111”体系、“122”体系、“111”体系和“11”体系)的具体材料制备研究进展进行了分析, 比较全面地介绍了各种铁基超导材料的合成方法及其关键物理参数. 关键词 铁基超导 氧磷族元素化合物临界温度 上临界磁场 固相反应法 自熔法 20世纪最后10年中, 具有ZrCuSiAs结构的稀土过渡金属氧磷族元素化合物陆续被发现, 但研究人员并未发现其中的超导现象[1,2]. 2006年和2007年, 日本东京工业大学前沿合作科学研究中心的细野秀雄教授带领的研究小组(以下简称“细野秀雄小组”)先后发现LaOFeP[3]和LaNiPO[4]在低温下展现出超导电性, 但是由于临界温度皆在10 K以下, 并没有引起特别的关注及兴趣. 2008年1月初, 细野秀雄小组发现在铁基氧磷族元素化合物LaOFeAs中, 将部分氧以掺杂的方式用氟取代, 可使LaO1?x F x FeAs的临界温度达到26 K[5], 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 我国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置: 3月初, 中国科学院物理研究所王楠林研究员领导的研究小组(以下简称“王楠林小组”)很快就合成了LaO0.9F0.1-δFeAs多晶样品, 并测量了基本物理性质[6]; 3月中旬, 中国科学院物理研究所闻海虎研究员领导的研究小组(以下简称“闻海虎小组”)成功合成出第一种空穴掺杂型铁基超导材料——La1?x Sr x OfeAs[7]; 3月25日和3月26日, 中国科学技术大学陈仙辉教授领导的研究小组(以下简称“陈仙辉小组”)[8]和中国科学院物理研究所王楠林小组[9]分别独立发现临界温度超过40 K的超导体; 3月29日, 中国科学院物理研究所赵忠贤院士领导的小组(以下简称“赵忠贤小组”)发现PrO1?x F x FeAs的超导转变温度可达52 K[10]. 4月中旬, 该小组又先后发现在压力环境下合成的SmO1?x F x FeAs[11]和REFeAsO1?δ[12]超导转变温度进一步升至55 K等. 此外, 研究人员也在不断探索新型铁基超导材料的应用. 4月下旬, 中国科学院电工研究所应用超导重点实验室马衍伟研究员领带的研究小组(以下简称“马衍伟小组”)率先成功研制出超导起始转变温度达25 K的LaO1?x F x FeAs线材[13]. 在此基础上, 该小组与闻海虎小组合作又制备出超导起始转变温度高达52 K的SmO1?x F x FeAs线材[14]. 另据报道, 细野秀雄小组已经在新型铁基超导薄膜制作上取得初步成功[15]. 目前, 根据母体化合物的组成比和晶体结构, 新 https://www.wendangku.net/doc/2c3604190.html, https://www.wendangku.net/doc/2c3604190.html,557

铁基超导

铁基超导 超导是物理世界中最奇妙的现象之一。正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而低于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。 传统的解释常规超导体的超导电性的微观理论预言,超导体的最高温度不会超过麦克米兰极限的39K。在以往的研究中,只有1987年发现的铜氧化合物超导体打破了这一极限,被称为高温超导体。最近,在铁基磷族化合物中发现的超导电性其超导临界温度可达55K,同样突破了传统理论预言的麦克米兰极限。这是第一个非铜基的高温超导体,掀起了高温超导研究的又一次热潮。 铁基超导的研究进入了一个空前发展的阶段,各国都在进行这一新材料的研究,铁基超导体薄膜研究进展与铁基超导体大同位素效应就是其中的热点。 从2008年新的铁基高温超导体发现以来,铁基超导薄膜的研究进展相对缓慢。这是因为较难精确控制人们所需要的亚稳相中的多元素配比、以及多种热力学相之间的互相竞争。由于元素配比和不同热力学相竞争所导致的较少量的杂质,在块状材料的合成中有时可以接受,但对低维的薄膜材料却不能允许。迄今已发现四种主要晶体结构的铁基超导体,包括含砷或磷(chalcogens)的1111相、122相、111相,以及含氧硫族元素(pnictogens)的11相。它们都具有超导的Fe-X (X为As、P、Se、S或Te等)层,且前三类超导体中这些层由La-O等隔离层隔开,而超导的11相FeSe、Fe(Se,Te)只有Fe-X层,晶体结构最简单。目前人们只得到了11相的单相、外延、超导薄膜。而对含砷的铁基超导体而言,经过近两年的探索,仍未能得到单相的超导薄膜。 中国科学院物理研究所/北京凝聚态物理国家实验室(筹)超导实验室的曹立 新副研究员带领博士生韩烨、李位勇,与相关科研人员合作,在国际上率先制备出单相的外延FeSe超导薄膜(第十届全国超导薄膜和超导电子器件学术研讨会,大连,2008年10月11日-15日),率先发表文章(Journal of Physics: Condensed Matter 21, 235702, 2009),并申请了国家专利。 此后,他们又系统研究了FeSe 、Fe(Se,Te)以及FeTe薄膜,他们发现FeTe 母体在薄膜状态下超导,转变温度13 K,接近Fe(Se,Te)固溶体所能达到的最高值,远高于FeSe薄膜的超导转变温度。而到目前为止,FeTe块材在常压和高压状态下都没有发现超导。人们普遍认为铁基超导电性与自旋密度波密切相关,实验发现高压下自旋涨落在FeSe中明显增强而且超导转变温度提高到37 K;同时,理论计算表明FeTe比FeSe有更强的自旋涨落并可能有更高的超导转变温度。但是实验上FeTe并没有在高压下观察到预期的现象。曹立新等人注意到,在超导的FeTe薄膜中,晶格在生长平面内不是被压缩,而是被拉伸,类似于一种“负压力效应”。同时他们发现,在非超导的FeTe块材中70 K左右出现的结构和自旋涨落的一级相变,在超导薄膜中被明显弱化。 图1 在4种不同基片上沉积生长的FeTe超导薄膜的X射线衍射图谱,32个薄膜的c-轴晶格常数,以及薄膜中Fe-Te-Fe键角的变化情况。可以看出,超导的FeTe薄膜表现出较小的c-轴和较大的a-轴晶格常数以及显著增大的 Fe-Te-Fe键角。

高温超导体基本特性的测量-物理试验

高温超导体基本特性的测量 1911年,荷兰物理学家昂尼斯(H.K.Onnes)发现,利用液氮把汞冷却到4.2K左右时,水银的电阻率突然有正常的剩余电阻率减小到接近零,以后在其它的一些物质中也发现了这一现象。由于这些超导体的临界温度T C很低,人们称这些需在液氦温区运行的超导体为低温超导体。1986年6月,贝德诺(J.G..Bednorz)和缪勒(K.A.Muler)发现金属氧化物Ba-La-Cu-o 材料具有超导电性,其超导起始转变温度为35K,在13K达到零电阻,这一发现时超导体的研究有了突破性的进展,随后美中科学家分别独立地发现了Y-Ba-Cu-O体系超导体,起始温度92K以上,在液氮温区,以后的十年间,还发现其他系超导体,常压下T C最高达133K,这些T C高于液氮温度的氧化物超导体称为高温超导体。 一、实验目的 1.(利用直流测量法)测量超导体的临界温度; 2.观察磁悬浮现象; 3.了解超导体的两个基本特性—零电阻和迈斯纳效应。 二、实验仪器 测量临界温度和阻值的成套仪器、迈斯纳效应成套仪器、计算机、CASSY传感器 三、实验原理 1.零电阻现象 处于绝对零度的理想的纯金属,其规则排列的原子(晶格)周期场中的电子的状态是完全确定的,因此电阻为零。温度升高时,晶格原子的热振动会引起电子运动状态的变化,即电子的运动受到晶格的散射而出现电阻Ri。然而,通常金属中总是含有杂质的,杂质对电子的散射会造成附加的电阻。在温度很低时,例如在4.2K以下,晶格散射对电阻的贡献趋于零,这时的电阻完全由杂质散射所引起的,我们称之为剩余电阻Rr,它几乎与温度无关。所以总电阻可以近似表达为 R=Ri(T)+Rr (1) 当温度下降到某一确定Tc(临界温度)时,物质的直流电阻率转变为零的现象被称为零电阻效应。临界温度Tc是由物质自身的性质所确定参量。如果样品结构规整且纯度非常高,在一定温度下,物质由常规电阻状态急剧的转变为零电阻状态,称之为超导态。如果材料化学成分不纯或晶体结构不完整等因素的影响,超导材料由常规电阻状态转变为零电阻状态是在一定的温度间隔中发生的。如图1,我们把温度下降过程中电阻温度曲线开始从直线偏离出的温度的温度称为起始转变温度。我们将电阻缓慢地变化部分(常规电阻状态下)拟合成直线Ⅰ,将电阻急剧变化部分拟合成直线Ⅱ,直线Ⅰ与直线Ⅱ的交点所对应的电阻为正常态

高温超导体发展趋势

超导材料具有的高载流能力和低能耗特性,使其可广泛用于能源、 交通、医疗、重大科技工程和现代国防等领域。超导技术是具有巨大 发展潜力的高技术。以铌钛和铌三锡为主的实用低温超导体的研究和 开发起始于20世纪60年代,到70年代开始广泛用于磁体技术。目前已在两方面形成了较大规模的应用。一是重大科技工程方面,主要是高 能物理研究所需的大型粒子加速器,如正在欧洲建造的周长为27km的 大型质子碰撞机LHC,以及热核聚变反应装置,如ITER和LHD等;二是在医疗诊断方面正在广泛应用的核磁共振成像系统MRI和具有较高科学 与应用价值的核磁共振谱仪NMR。 高温超导体自1986年被发现以来,在材料的各个方面,尤其是成 材技术和超导性能方面取得了很大的进展。与此同时,各种应用开发 研究也已广泛展开,并且取得了可喜的成果。HTS材料具有较高的临界 温度(Tc)和上临界磁场(Hc2),从而使超导技术的应用在材料方面 有了更广泛的选择。首先高温超导材料可以使超导技术在液氮温区实 现应用,高Hc2值使高温超导材料成为制造高场磁体(>20T)的理想 选择。近年来,千米长线(带)材的成功制造,已使高温超导材料在 电力能源方面的应用成为现实。这些应用包括:磁体、输电电缆、电 动机、发电机、变压器、故障电流限制器等。用高温超导材料制成的 不同量级(1~20kA)的电流引线已于90年代初实现商品化,并广泛应 用于各种超导磁体系统,使得低温超导磁体可由G-M致冷机冷却,无 需液氦,实现了超导磁体可长时间稳定运行的目标。从目前的发展现 状和趋势,可以清楚地预见,在今后20年内,高温超导技术将在广泛 的领域走向实用化和商品化。 目前已发现的高温超导材料都属于氧化物陶瓷材料,不易加工成 材。同时,很强的各异性和极短的相干长度使得高临界电流密度( Jc)只能在使晶体高度取向的情况下才能实现。在众多的高温超导材 料中,铋锶钙铜氧体系和钇钡铜氧体系最具有实用价值,所以线(带) 材的研究开发主要集中在这两类超导体。超导体的实际应用除了需要 高Jc之外,还需要材料有相当的长度(>1km)和良好的机械性能及热 稳定性。所以同金属材料复合是必由之路。银(银)及其合金由于其 良好的稳定性和塑性,成为合适的高温超导线材基体材料。经过十余 年的研究和开发,高温超导线(带)材已取得重大进展。 铋-2223线(带)材铋-2223超导体具有较高的超导转变温度(Tc~110K)和上临界磁场(Hc2,0~100T)。特别是其层状的晶体 结构导致的片状晶体很容易在应力的作用下沿铜-氧面方向滑移。所 以,利用把铋-2223先驱粉装入银管加工的方法(PIT法),经过拉拔 和轧制加工,就能得到很好的织构。另外,在铋-2223相成相热处理 时,伴随产生的微量液相能够很好地弥合冷加工过程中产生的微裂纹, 从而在很大程度上克服了弱连接的影响。正由于这两个基本特性,使 人们通过控制先驱粉末、加工工艺及热处理技术,成功地制备出了高 Jc(>104A/cm2,77K)长带。 目前世界上已有多家公司在开发和生产铋-2223带材。处于前列

铁基超导体

铁基超导材料制备研究进展 马廷灿, 万勇, 姜山 中国科学院国家科学图书馆武汉分馆情报研究部, 武汉430071 E-mail: matingcan@https://www.wendangku.net/doc/2c3604190.html, 2008-12-24收稿, 2009-01-22接受 摘要超导现象于1911年首次被发现, 此后科学家们一直都在寻找拥有更高临界温度的超导材料, 研究重点也逐渐从金属系物质转到铜氧化物. 目前, 物理学界对高温超导机制仍未形成一致看法, 研究人员希望在铜氧化物超导材料以外再找到新的高温超导材料, 以期从新的途径来破译高温超导机理. 2008年初, 日本学者发现了临界温度可以达到26 K的新型超导材料——LaO1?xFxFeAs, 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 随后, 科研人员在这一体系中展开了积极的实验和理论研究. 中国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置. 铁基超导材料的研究正在持续升温, 新的发现层出不穷. 本文按照体系分类, 以时间顺序, 分别对铁基超导材料的四大主要研究体系(“1111”体系、“122”体系、“111”体系和“11”体系)的具体材料制备研究进展进行了分析, 比较全面地介绍了各种铁基超导材料的合成方法及其关键物理参数. 关键词 铁基超导 氧磷族元素化合物 临界温度 上临界磁场 固相反应法 自熔法 20世纪最后10年中, 具有ZrCuSiAs结构的稀土过渡金属氧磷族元素化合物陆续被发现, 但研究人员并未发现其中的超导现象[1,2]. 2006年和2007年, 日本东京工业大学前沿合作科学研究中心的细野秀雄教授带领的研究小组(以下简称“细野秀雄小组”)先后发现LaOFeP[3]和LaNiPO[4]在低温下展现出超导电性, 但是由于临界温度皆在10 K以下, 并没有引起特别的关注及兴趣. 2008年1月初, 细野秀雄小组发现在铁基氧磷族元素化合物LaOFeAs中, 将部分氧以掺杂的方式用氟取代, 可使La O1?xFxFeAs的临界温度达到26 K[5], 这一突破性进展开启了科学界新一轮的高温超导研究热潮. 我国科研机构, 特别是中国科学院, 迅速开展了卓有成效的研究工作, 在新一轮的高温超导研究热潮中占据了重要位置: 3月初, 中国科学院物理研究所王楠林研究员领导的研究小组(以下简称“王楠林小组”)很快就合成了LaO0.9F0.1-δFeAs多晶样品, 并测量了基本物理性质[6]; 3月中旬, 中国科学院物理研究所闻海虎研究员领导的研究小组(以下简称“闻海虎小组”)成功合成出第一种空穴掺杂型铁基超导材料——La1?xSrxOfeAs[7]; 3月25日和3月26日, 中国科学技术大学陈仙辉教授领导的研究小组(以下简称“陈仙辉小组”)[8]和中国科学院物理研究所王楠林小组[9]分别独立发现临界温度超过40 K的超导体; 3月29日, 中国科学院物理研究所赵忠贤院士领导的小组(以下简称“赵忠贤小组”)发现PrO1?xFxFeAs的超导转变温度可达52 K[10]. 4月中旬, 该小组又先后发现在压力环境下合成的SmO1?xFxFeAs[11]和REFeAsO1?δ[12]超导转变温度进一步升至55 K等. 此外, 研究人员也在不断探索新型铁基超导材料的应用. 4月下旬, 中国科学院电工研究所应用超导重点实验室马衍伟研究员领带的研究小组(以下简称“马衍伟小组”)率先成功研制出超导起始转变温度达25 K的LaO1?xFxFeAs线材[13]. 在此基础上, 该小组与闻海虎小组合作又制备出超导起始转变温度高达52 K的SmO1?xFxFeAs线材[14].

(完整word版)高温超导材料的研究进展

高温超导材料的研究进展 程长飞20091410404 引言 2O世纪8O年代后期高温超导的发现,在全球掀起了一股“超导热”。经过2O多年的研究发展,我国高温超导技术在超导材料技术、超导强电技术和超导弱电技术三个方面取得了重大进展和突破。在众多领域中,超导技术的应用具有非常突出的优点和不可取代的作用。随着高温超导材料和低温制冷技术的迅速发展,使超导技术的应用步伐迅速加快。超导技术在电力、通信、高新技术装备和军事装备等方面的应用也十分令人向往,具有重要的战略意义。 根据第五届国际超导工业峰会预测,高温超导应用技术将在今后5~10年时间达到实用化水平,并将在2010年前后形成较大规模的产业。到2010年,全球超导产业的产值预计将达到260亿美元,到2020年将达到2 400亿美元以上。超导技术将是21世纪具有光明前景的高新技术 一、超导的基本概述和基本原理 1911年发现,但直到1957年,美国科学家巴丁、库珀和施里弗在《物理学评论》提出BCS理论,其微观机理才得到一个令人满意的解释。BCS理论把超导

,库珀对在晶格当中可以无损耗的运动,形成超导电流。在BCS理论提出的同时,博戈留波夫(Bogoliubov)也独立的提出了超导电性的 的博戈留波夫变换至今为人常用。 电子间的直接相互作用是相互排斥的库仑力。如果仅仅存在库仑 直接作用的话,电子不能形成配对。但电子间还存在以晶格振动 正是这种吸引作用导致了“库珀对”的产生。大致上,其机理如下:电 变,形成一个局域的高正电荷区。这个局域的高正电荷区会吸引自旋相反的电子,和原来的电子以一定的结合能相结合配对。在很低的温度下,这个结合能可能高于晶格原子振动的能量,这样,电子对将不会和晶格发生能量交换,也就没有电阻,形成所谓“超导”。 BCS理论而获得1972 BCS理论并无法成功的解释所谓第二 二、高温超导材料概述 对超导现象,BCS 理论给出了比较满意的解释。而在应用方面,超导现象具有很宽敞的应用空间,具有很高的应用价值。到了现代, 人们一直致力于对超导材料的研究。在1968 此时

铁基高温超导体的研究进展及展望

2008年 第53卷 第19期: 2265~2273《中国科学》杂志社 SCIENCE IN CHINA PRESS 评述 铁基高温超导体的研究进展及展望 方磊, 闻海虎* 中国科学院物理研究所超导国家重点实验室, 北京 100190 *联系人, E-mail: hhwen@https://www.wendangku.net/doc/2c3604190.html, 2008-07-21收稿, 2008-09-03接受 摘要自从2008年2月末F掺杂的LaFeAsO被报道有26 K的超导电性后, 基于此体系材料的超导转变温度在短短几个月中被迅速地提高到55 K, 很多新超导体被发现, 同时人们对具有更高临界转变温度的新超导材料充满希望. 本文简要地回顾了这种体系中材料的探索、制备以及设计, 另外在理论和实验上对其超导机理的认识也给予了介绍和总结. 最后基于目前的实验数据, 对铁基超导体和铜氧化物高温超导体的重要物理参数进行了比较, 同时展望了这种新超导体的应用前景. 关键词 铁基超导体 超导转变温度ZrCuSiAs结构配对对称性 超导是一种宏观量子现象, 费米面上动量相反的电子配成对, 同时建立长程的位相相干进而发生凝聚, 其结果是超导体在临界温度下电阻的消失(零电阻)和对磁力线的排斥(完全抗磁性). 在正常金属中, 电子在一个充满各种振动的背景中运动, 最普通的是晶格的振动. 晶格的振动模可以被一种称为“声子”的元激发进行描述. 电子和声子碰撞后损失了动能进而导致能量的损耗. 这也就是正常金属在有限温度下电阻的来源. 然而在零温极限下所有的振动模式都停止了(不计量子涨落), 所以一个干净的系统中能量的损耗和电阻率都是为零的. 对于一个超导体而言, 费米面上的电子两两吸引形成束缚对, 这种束缚的电子对被称为库珀对. 库珀对服从玻色统计, 在临界温度(T c)下发生凝聚. 这种凝聚态具有很长的相干长度, 因而对晶格振动导致的局域散射不敏感, 所以输运上并不损耗能量, 电阻率可以在较高温度(T c以下)保持为零. 与此同时, Ⅱ类超导体具有在很高的磁场下承载巨大电流密度的优越性能, 人们因此对高临界温度的新超导体充满了期望. 人类寻找新超导体的历史已经持续将近100年, 在最初的几十年中, 新超导体的探索主要集中在单元素材料和多元素合金上. 然而这些材料的超导转变温度不超过23 K(Nb3Ge)[1]. 一个重大的突破发生在1986年底, 在IBM Zurich工作的Bednorz和Muller[2]发现铜氧化物LaBaCuO的超导转变温度高于30 K. 自此寻找更高T c的超导体的浪潮席卷全世界, 在短短的几年中, 铜氧化物超导转变温度被提升到134 K(常压)和164 K(高压). 然而铜氧化物超导体的相干长度非常短, 各向异性度很高, 又因为是陶瓷, 所以材质很脆, 这些不利因素都妨碍了它在工业上大规模的应用. 所以, 超导界的科学家们一直希望发现另外一种非铜氧基的高温超导体, 并且这种超导体具备更优异的性质. 转机发生在2008年的2月末, 日本东京工业学院Hosono教授的研究小组发现在母体材料LaFeAsO 中掺杂F元素可以实现26 K的超导电性[3]. 此类母体材料的研究历史可以追溯到1974年美国杜邦公司Johnson等人[4]在寻找新的功能材料中的工作. 随后, 一个德国的研究组合成了系列的具有同样ZrCuSiAs 结构的新材料[5]. 这些新材料被取名为四元磷氧化物LnOMPn(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; M=Mn, Fe, Co, Ni; Pn=P, As). 图1是LaFeAsO的基本结构. 这个体系空间群为P4/nmm, 具有四方的层状结构, 在c方向上以—(LnO)2-(MP)2-(LnO)2—形式交替堆砌, 一个单胞中有两个分子LnOMP. 对于母体材料而言, 层和层之间电荷是平衡的, 例如, (LnO)+1和(MP)?1的电荷是平衡的. 由于四元磷氧化物LnOMPn 中的一些材料在低温下是超导体,因此 https://www.wendangku.net/doc/2c3604190.html, https://www.wendangku.net/doc/2c3604190.html,2265

相关文档