文档库 最新最全的文档下载
当前位置:文档库 › 振动台试验方案设计实例

振动台试验方案设计实例

振动台试验方案设计实例
振动台试验方案设计实例

一、振动台试验方案

1试验方案

1.1工程概况

本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。

本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。

1.2 模拟方案

1、模拟方案选择

动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。

结构动力试验的相似模型大致分为四种:

(1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

很小或材料密度很大,弹模小导致模型浇筑困难,容易损坏;密度大则要求在模型材料中加入大量铅粉之类容重大的掺合物。这对大型建筑动力试验模型是难以办到的。即使弹模或密度满足了相似条件,材料的其他性质如泊松比和阻尼等也难以满足相似关系,所以全相似模型只是一种理想化的模型,在实际工程中很难采用。

(2)用人工质量模拟的弹塑性模型 使用原型材料或其他替代材料制作时,S E 自然等于1或接近于1,若要满足Sa=Sg=1的条件,材料密度需要加大,故采用人工质量。人工质量可以产生适当的重力效应和惯性作用,但不影响结构的刚度、强度和阻尼特性。人工质量若布置得当,可以模拟几何非线性。因此人工质量模型在地震模拟实验中获得广泛应用,但对于大型建筑物,模型几何比(Sl )很小,人工质量将大大超过模型本身的质量,而模型各层空间有限,国内外的绝大多数振动台设备承载能力均难以满足这一要求。因而在模型设计中常加以改进。

(3)忽略重力效应的弹性模型 放弃S a =S g =1的条件,忽略重力效应,会使模型反应失真。在一般情况下,重力引起的结构效应与水平地震作用效应相比是较为次要的,特别是在结构反应处于小变形阶段不发生明显几何非线性的情况下,忽略重力效应不会造成大的误差。由于忽略重力效应的模型中相似比S a >1,即振动台要有较大的出力,而模型的频率则较高,加载和量测设备要在高频状态下工作。这种模型对研究弹性状态下的性能比较合适,但本项试验要求模拟结构在7度大震作用下的反应,结构有可能进入非弹性阶段并产生较大位移。因此不宜采用忽略重力效应的模型。

(4)混合相似模型 使用微粒混凝土材料,采用一定的人工质量尽量减少忽略重力效应的影响。微粒混凝土材料的弹模较原型材料小,而泊松比和阻尼等特性与原型材料相近。

2、模拟方案确定

本试验选用混合相似模型的设计方案是较为理想的。由前述分析可知,结构模型振动台试验的相似关系是根据运动基本方程建立的,相似关系应满足质点运动平衡方程式相似、边界条件相似和运动初始条件相似。相似关系可采用量纲分析法求得。对于结构的地震反应问题,可表述为如下函数关系:

(,,,,,,,,)f l E t u v a g σρω=

式中:σ为结构反应应力,l 为结构构件尺寸,E 为构件的弹性模量,ρ为构件的质量密度,t 为时间,u 为结构反应变位,v 为结构反应速度,a 为结构反应加速度,g 为重力加速度,ω为结构自振圆频率。

取l ,E ,a 三者为基本量,其余各量均可以此为基础按照量纲分析的原理表示为l ,E ,a 的幂次单项式。定义A 在原型结构中的数值为y A ,在模型中的数值为

m A ,那么在模型设计中量A 的相似比为y m A A /S A =。若使模型试验能模拟原

型结构的地震反应,各量的相似比必须满足表1-1中的公式条件。

一般情况下,振动台试验是模型试验,要做到所有物理量完全相似是十分困难的,甚至是不可能的。因此在实际试验中只能要求保证主要的物理量相似,不能要求所有的物理量都严格相似。

根据表1-1(模型/原形=1/35)模型与原型的相似关系,根据振动台的承载能力,同时估算模型重量后,对模型配重进行初步验算。其中弹性模量的相似关系需根据模型材料试块的测试结果加以调整。

表1-1 模型与原型的相似关系(几何比:模型/原型=1/35)

1.3模型设计及模型材料

模型比例选用1/35,依据相似理论进行模型设计。在模型设计、制作过程中与甲方和设计单位进行3~4次讨论和确认。

1)模型混凝土

模型用微粒混凝土制作,材料为水泥沙浆。水泥为425R号硅酸盐水泥,骨料为粗砂和细砂。选用不同配合比使微粒混凝土达到不同的强度等级和弹性模量,以模拟原型C30~C60混凝土。

在模型制作过程中同时浇注规定数量的砂浆立方体试块和棱柱体试块以测定微粒混凝土材料的强度和弹性模量。试块和模型同时养护。材料性能试验在广州大学广东省重点实验室(教育部、科技部共建重点实验室)进行。弹性模量的测定是将棱柱体试块(尺寸70.7mm×70.7mm×240mm)置于10t标准压力试验机上进行重复加载。使用荷载传感器、千分表测荷载和变形,然后绘出应力变形曲线,重复进行加载和卸载,直到曲线的残余变形不再增长为止,加载和量测按照《混凝土结构试验方法标准》(GB5015-92)的要求进行。

2)模型钢筋

模型钢筋采用回火镀锌铁丝。根据刚度条件选用直径为22#-8#等多种规格的回火镀锌铁丝。根据模型和原型配筋率相似的原则进行模型配筋,并满足构造要求。

3)模型型钢

对型钢的模拟采用刚度相似原则,梁柱型钢、型钢混凝土内型钢及支撑型钢(包括工字型、十字型和箱型)用不同厚度的薄钢板(或紫铜)焊接而成,模拟实际工程中不同截面的型钢。

4)模型钢结构

对模型内连杆、梁、柱等钢结构构件,采用刚度相似的原则设计,选用成品钢结构构件(或紫铜构件)加工成形。

5)模型钢管混凝土

模型钢管混凝土采用钢管(或紫铜管)微粒混凝土来制作。钢管(或紫铜管)内灌注微粒混凝土,微粒混凝土中加入膨胀剂以防止钢管(或紫铜管)与混凝土之间离析。根据钢管(或紫铜管)混凝土构件整体刚度相似原则,尽量兼顾模型的强度相似,选择不同壁厚和直径的钢管(或紫铜管)和不同配合比的微粒混凝土。在模型制作前,先进行小比例的构件试验,确定材料的刚度和强度。

6)防屈曲支撑模拟

防屈曲支撑(UBB)初步拟定小震作用下按刚度相似来模拟,大震时考虑换一批UBB,按阻尼相似模拟。具体模拟方案还要与设计方及制作方沟通协商确认。

1.4 测点布置

测点的布置主要考虑测试模型的动力特性、结构的地震反应以及关键部位的受力情况和弹塑性变形情况。因此,需要在适当部位布设加速度传感器、位移传感器及应变片。

1.4.1测点布置原则

1)模型动力特性的测试

由于在振型分析中只需加速度数据,在测点布置上可仅布置加速度传感器。测点主要分布在结构模型两个水平主振型方向上,中间点(A点)主要用于单方向主振型的测试,外围点(F点)主要用于空间扭转振型的测试。

2)模型结构地震反应的测试

为了解结构模型在X、Y、Z三个方向上的地震反应情况,加速度传感器和位移传感器沿结构的三个方向布置。在A点布置加速度传感器及位移传感器。同时为了考虑结构的扭转效应,在F点布置位移传感器。

加速度传感器及位移传感器沿结构高度布置,测点的竖向分布间距以反映结构模型的整体情况为原则。

3)应变测点的布置

应变测点布置在重点观测的柱、梁的杆件上,具体布置根据计算结果,并与设计方商讨确定,监测重点部位的受力情况和弹塑性变形情况。

1.4.2测点布置方案

结构测点的平面及竖向布置图见图1-6、1-7。模态测试及地震反应测试用加速度传感器测点布置方案见表1-2,共有74个通道。

应变测点布置在结构复杂连接、转换桁架、主要受力构件、以及防屈曲支撑构件等处。具体布置方案将根据计算结果与设计方商讨后确定。

1.5 试验工况及顺序

在进行结构地震反应试验之前,先进行结构的模态测试,分别在X、Y、Z 三个方向输入白噪声,测定结构震前的动力特性,为了保证模型在弹性变形范围内,白噪声的加速度幅值采用0. 05g。模态测试工况见表1-3。

表1-3 模态测定试验工况

在每个地震水准试验前后,各输入一次白噪声用以测定结构动力特性的变化情况。

在多遇地震作用下,分别按甲方提供的人工波1、天然波1、天然波2三个地震波进行X向、Y向和Z向的单向输入,以便用来与按《建筑抗震设计规范》弹性计算的结果进行比较和验证。然后再进行最危险方向74度方向输入和X+Y+Z三向输入。模型试验工况及顺序见表1-4。

在设防烈度地震作用下,分别进行X向和Y向单向输入,以便与结构动力弹塑性时程分析结果进行比较。然后进行X+Y+Z三向输入。模型试验工况及顺序见表1-5。

在罕遇地震作用下,根据前面的实验选用最不利地震波,分别进行X向和Y向单向输入和X+Y+Z三向输入,以便与结构动力弹塑性时程分析结果进行比较。模型试验工况及顺序见表。

表1-2 多遇地震试验工况及顺序

公路标准振动台法实验装置试验方法

公路标准振动台法实验装置试验方法 摘要:振动台法实验装置分为公路标准和水利标准,其中水利标准是我公司成熟产品,用于测定粗颗粒土的相对密度即无粘性土,公路标准用于测定无粘性自由排水粗料土、巨料土、(包括堆石料)等。 公路标准振动台法实验装置试验方法(干土法): 1、充分搅拌烘干试样,即使其颗粒分离程度尽可能小;然后大致分成三份。测定并记录空试筒质量。 2、用小铲或漏斗将任一份试样徐徐装入试筒,并注意使颗粒分离程度最小(装填宜使振毕密实后的试样等于或略低于筒高的1/3)抹平试样表面。然后可用橡皮锤或类似物敲击几次试筒壁,使试料下沉。 3、放置合适的加重底板于试料表面,轻轻转动几下,使加重底板与试样表面密合一致。卸下加重底板把手。 4、将试筒固定于振动台面上,装上套筒,并与试筒紧密固定,将合适的加重块置于加重底板上,其上部尽量不与套筒内壁接触。 5、设定振动台在振动频率50Hz下的垂直振动双振幅为0.5mm;或在振动频率60Hz下的垂直双振幅为0.35mm。振动试筒及试样等,在50Hz下振动10min,在60Hz下振动8min。振毕卸去加重块及加重底板。 6、按本规程2—5步骤进行第二层、第三层试料振动压实。但第三层振毕加重底板不再立即卸去。 7、卸去套筒,然后检查加重底板是否与试样表面密合一致,即按压加重底板边缘,看其是否翘起,若翘起则宜在试验报告中注明。 8、将百分表架支杆插入每个试筒导向瓦套中;刷净试筒顶沿面上及加重底板上位于试筒导向瓦两侧测量位置所积落的细粒土,并尽量避免将这些细粒土刷进试筒内,然后分别测读并记录试筒导向瓦每侧试筒顶沿面(中心线处)各三个百分表读数,共12个读数(其平均值即为终了百分表读数Rf)。 9、卸去加重底板,并从振动台面上卸下试筒。在此过程中,尽可能避免加重底板上及试筒沿面上落积的细粒土进入试筒里。如这些细粒土质量超过试样总质量的0.2%,应测定其质量并注明试验报告中。 10、在合适的台称上测定并记录试筒及试样总质量,扣除空试筒质量即为试样质量,或仔细地将试筒里试样全部倒入已知质量的盘中称量。计算最大干密度. 11、重复1—10步骤,直至获得一致的最大干密度值(最好在2%内)。如果发现产生过分的颗粒破碎或者是有棱角的石渣、堆石料或风化弱岩石料,则宜尽量制备足够数量代表性试样,以避免单个试样重复使用。 湿土法,结果整理、压实指标计算请参照相关规范。

药物临床试验方案设计SOP

方案设计(Protocol design)-临床试验操作流程 一、I期临床试验方案设计要点 I期临床试验方案应包括依次进行的三部分,即单次给药耐受性试验方案、单次给药药代动力学试验方案、连续给药药代动力学试验方案。 I期临床试验方案应包括以下内容: ?首页 ?试验药物简介,包括中文名、国际非专利药名(INN)、结构式、分子式、分子量、理化性质、药理作用与作用机制、临床前药理与毒理研究结果、初步临床试验结果; ?研究目的; ?试验样品,包括样品名称、编号、制剂规格、制备单位及制备日期、批号、有效期、给药途径、储存条件、样品数量并附药检报告单; ?受试者选择,包括志愿受纳入标准、排除标准、入选人数及登记表; ?筛选前受试者签署知情同意书; ?试验设计与研究方法(要点见后); ?观察指标(见后); ?数据处理与统计分析; ?总结报告; ?末页。 1、单次给药耐受性试验设计与研究方法要点 ?一般采用无对照开放试验,必要时设安慰剂对照组进行随机双盲对照试验; ?最小初试剂量按Blackwell改良法计算并参考同类药物临床用量进行估算(见李家泰主编《临床药理学》第二版 1998:298); ?最大剂量组的确定(相当于或略高于常用临床剂量的高限); ?剂量组常设5个单次给药的剂量组,最小与最大剂量之间设3组,剂量与临床接近的组人数8~10人,其余各组每组5~6人。由最小剂量组开始逐组进行试验,在确前一个剂量组安全耐受前提下开始下一个剂量,每人只接受一个剂量,不得在同一受试者中在单决给药耐受性试验时进行剂量递增连续试验; ?方案设计时需对试验药物可能出现的不良反应有充分的认识和估计,方案应包括处理意外的条件与措施; ?与试验方案同时设计好病例报告表(Case Report form CRF)、试验流程图(Chart)等。 2、单次给药药代动力学试验设计与研究方法要点 ?剂量选择:选择单次给药耐受性试验中全组受试者均能耐受的高、中、低3个剂量,其中,中剂量应与准备进行临床Ⅱ期试验的剂量相同或接近,3个剂量之间应呈等比或等差关系; ?受试者选择:选择符合入选标准的8~10名健康男性青年志愿者,筛选前签署知情同意书; ?试验设计采用三交叉拉丁方设计,全部受试者随机进入3个试验组,每组受试者每次试验时分别接受不同剂量的试验药,3次试验后,每名受试者均按拉丁方设计的顺序

电磁航天器地面实验

3.航天器地面实验研究现状 航天器地面实验作为验证航天器关键技术可行性的关键技术手段一直受到研究人员的重点关注错误!未找到引用源。-错误!未找到引用源。。可以说航天器地面实验技术是伴随航天器发展同步发展的,早在1959年美国Army Ballistic Missile Agency 成功研制三自由度气浮平台用以模拟空间航天器姿态变化,标志着航天器地面实验成为航天器研制过程中的有效手段,由于该气浮平台最早用于航天器地面实验故其具有里程碑式的重要意义。目前几乎所有的航天器在发射之前都需要进行大量的地面实验用以确保其任务的顺利完成。下面将从航天器地面实验发展以及电磁航天器地面实验两方面介绍航天器地面实验的发展。 3.1 航天器地面实验 在航天器地面实验的开展过程中,所面临最大的问题为抵消地面实验环境中的重力影响,为此研究人员提出落塔实验、失重飞机实验、气浮平台实验以及液浮平台实验等多种地面实验方法错误!未找到引用源。。下面将分别介绍上述地面实验方法及其在航天器实验中的应用情况。 (1)落塔实验 落塔实验通过在微重力塔(井)中执行自由落体运动从而产生微重力实验环境。目前美国、日本、德国、中国等都建立了自己的落塔实验系统,并纷纷开展了大量的微重力实验用以开展微重力环境下理化科学、材料科学、生命科学等基础学科的研究。 A.美国落塔实验系统 美国国家航天局拥有多套落塔、落井实验系统,其中具有代表性的包括路易斯研究中心145m落井以及马歇尔飞行中心的100m微重力落塔。易斯研究中心145m落井总高度155m,有效实验高度143m,1966年建成。最初用于太空组件和流体系统在微重力环境下的研究与开发,该落井系统目前依然正在为世界各地的研究服务,并用于开发和测试飞行实物硬件,设计航天飞机或国际空间站等任务。马歇尔飞行中心的100m微重力落塔总高度101.7m,有效实验高度89m,曾用于开展微重力环境下流体自由液面变化的相关研究错误!未找到引用源。。

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

微小卫星的发展

微星之光 微小卫星的发展 石卫平 潘坚 (中国航天信息中心) 1 定义 □□国际上对小卫星的叫法有很多,如小卫星(Sm allSat),廉价的卫星(Cheap sat),微卫星(M icroSat),超小卫星(M in iSat),纳卫星(N anoSat),皮卫星(P icoSat),等等。美国国防高级研究计划局(DA R PA)则把这些卫星统称之为轻卫星(L igh tSats),美国海军航天司令部称之为SP I N Sat’s(Sin2 gle Pu rpo se Inexpen sive Satellite Sys2 tem s——用途单一的廉价卫星系统),美国空军称之为TA CSat’s(T actical Satel2 lites——战术卫星)。 实际上小卫星在航天事业的早期就有了,卫星发展最初就是从简单小卫星起步的。即使在20世纪70年代和80年代大型航天器占主导地位的时代,亦可发现小卫星的身影。从20世纪80年代中期开始,世界航天界兴起了发展小卫星的热潮。随着对小卫星认识的不断加深,人们意识到仅仅以重量作为划分小卫星的依据是不够的,必须引入“功能密度”的概念。功能密度是指卫星每千克重量所能提供的功能。例如,每千克太阳电池提供100W功率,就比每千克太阳电池提供20W功率提高了4倍功能密度。按照功能密度划分,小卫星可分为简单小卫星和现代小卫星两种。我们现在通常说的小卫星是指现代小卫星。 对于小卫星的分类有许多版本,比较典型的有以下两种。美国航空航天公司(A ero sp ace)在1993年对小卫星、微卫星和纳卫星做了以下定义:小卫星是一种可用常规运载器发射的航天器,质量为10~500kg;微卫星定义为所有的系统和子系统都全面体现了微型制造技术,并可实现一种实用功能,质量为011~10kg;纳卫星是一种尺寸减小到最低限度的微卫星,其功能有赖于一种分布式星座结构来实现,质量小于011kg。不过目前更流行的卫星分类方法是英国萨瑞大学提出来的(如表1),本文将采用这种分类方法。 表1 卫星的分类名 称质量(含燃料) kg 大卫星(L argeSat)>1000 中卫星(M ediSat)500~1000 超小卫星(M iniSat)100~500 微卫星(M icroSat)10~100 纳卫星(N anoSat)1~10皮卫星(P icoSat)011~1飞卫星(Fem toSat)<011 小卫星(Sm allSat)

某建筑振动台试验方案设计

、振动台试验方案 1 试验方案 1.1 工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒” 结构体系,主要由4个核心筒、钢骨混凝土(SRC外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑 (UBB构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4 o 本工程的自振周期约为6.44 秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2 个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1 、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据 Buckingham的n定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1 )弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的 应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1 (S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在 Sa=Sg=1的条件下,要满足Sa=SE/S l S P=1,即S=S E/S p必须使模型材料的弹模很小或材

微小卫星课后答案

《宇航技术的发展与微小卫星》课程期末考试作业要求 简答题: 1.飞行器在自由空间与惯性空间(在轨)的运动与控制有什 么不同? 在自由空间中,力改变方向后,速度改变且沿此方向运动; 在惯性空间中,外力使卫星速度改变后,不会按照切线方向,而是沿曲线进入另一个轨道。 2.卫星的轨道根据所在轨道高度不一样一般分为哪几种,对 地遥感卫星一般选取什么轨道? 按轨道高度分类:低地球轨道、中地球轨道、高地球轨道。 对地遥感卫星一般为低地球轨道的太阳同步轨道。 3.卫星主要有哪些功能系统组成,为了适应空间环境,一般 要做哪些地面试验? 功能系统:位置与姿态控制系统、天线系统、转发器系统、遥测指令系统、电源系统、温控系统、入轨和推进系统。 地面试验:电磁兼容性试验,振动试验,声试验,旋转平衡试验,磁试验,热真空试验,热平衡试验,热循环试验,粒子辐照试验,紫外辐照试验。 4.为什么微小卫星是卫星技术发展的重要方向,它有哪些特 点? (1)与大卫星相比,功能较单一,也因此易引发航天装 备思路的改革;

(2)是各国航天装备体系建设的重要方向之一; (3)与其它种类的卫星相比,微小卫星是未来攻防的主 要手段; (4)微小卫星的发展是微纳米技术发展的重要牵引,也是微纳米 技术发展的重要方向。 特点:体积小,质量轻,新技术含量高、研制周期短、研制经费低,且可以进一步组网,以分布式的星座形成“虚拟大卫星”。5.目前我国已开发通讯、遥感、定位导航、科学试验系列的 卫星,这些卫星的应用对国民经济繁荣与国家安全有那些影响,试举例说明,并对其未来发展趋势进行展望。 中国返回式遥感卫星拍摄的数万米地物照片和其它卫星获得的地物信息,为国家进行国土规划和宏观经济决策提供了重要依据;中国已建成能接收各类(光电型、雷达型)资源卫星数据的遥感卫星地面站,利用该站发布的数据,各部委和各省市在资源调查、环境监测、国土整治和规划、土地利用和普查、农作物估产、地质勘探、重大灾害评估等方面做了大量有成效的工作;气象卫星,为中国的天气预报工作提供了大量的实时云图,尤其是气象卫星系统的业务运行,大大提高了灾害性天气预报的准确率,每年减少经济损失几十亿元;卫星导航定位在我国的应用迅速发展,毫无疑问,智能交通是一个大规模的潜在市场,卫星导航技术已经广泛应用在测绘的各个方面,GPS的应用必

临床试验方案模板(修订版).doc

临床批件号:XXXXXXXX XXXXXX用于镇痛的Ⅱ期临床试验方案 临床研究组长单位:XXXXXXXXXXXXXXX 临床研究负责人:XXXX 临床研究参加单位: XXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXXXXXX 申报单位:XXXXXXXXXX 试验负责人:XXXX

1.研究题目 XXXX与XXXX对照治疗术后疼痛和癌性疼痛疗效和安全性的多中心、随机双盲、平行对照临床试验 2.研究背景 XXXX为全合成强效镇痛药,化学名为XXXXXXXXXXXXX。其结构和药理活性与XXX相似。由XXX公司研制,于1957年上市(商品名:XXXX)。国外临床前研究认为,XX与XX同属于XX受体激动剂。其镇痛强度约为XX的4倍,XXXX12-50倍,用药后15-30分钟起效,1小时血药浓度达峰值。半衰期比XX长,因而作用时间也较长,长期用药后,体内有一定的蓄积作用。其毒副作用与XX相似,依赖性潜力与XX 相当。可能的不良反应有:XXXXXXXXXXXXXXXXX等,这些反应发生率均较低,且随用药时间延长会逐渐减轻和消失,或于停药后消失。 本品由XXXXXXXXXX研制,现经国家食品药品监督管理局批准XXXXX)进行II 期临床试验研究,由XXXXXXXXXXXX(国家药品临床研究基地)为临床研究负责单位,XXXXXXXX、XXXXXXXX和XXXXXXXXX为参加单位。 3.研究目的 考察XXXXXXXXX临床镇痛的有效性和安全性。 4.申报单位和研究单位 申报单位:XXXXXXXXXXXX 地址:XXXXXXXXXXXX 试验负责人:XXX:xxxxxxxxxxx E-mail: xxxxxxxxxxxxx 临床监查员:XXX:xxxxxxxxxxx E-mail:xxxxxxxxxxxxx XXX:xxxxxxxxxxx E-mail:xxxxxxxxxxx 临床研究组长单位:XXXXXXXXXXXXXX 地址:XXXXXXXXXXXX 试验负责人:XXXX:电话:xxxxxxxxx E-mail:xxxxxxxxxxx 参加单位: XXXXXXXXXXX 试验负责人:XXXXXX XXXXXXXXXXX 试验负责人:XXXXXX XXXXXXXXXXX 试验负责人:XXXXXX 5. 试验设计 采用多中心、随机双盲、平行对照试验设计。 6. 病例选择

微小卫星发射场测试流程优化研究

微小卫星发射场测试流程优化研究 摘要近年来,微小卫星发展迅速,呈现百花齐放态势,快速响应的微小卫星批量化组网,可以更快速、更经济的获得传统大卫星的效能,成为商业航天的首选途径。本文依托某型号卫星,开展微小卫星快速测试技术研究,梳理卫星地面测试项目和内容,优化裁剪测试项目,总结提炼一套微小卫星典型测试流程,用于指导后续地面测试。 关键词快速测试流程优化 1 引言 近年来,全球小卫星特别是微纳卫星的研制发射进入到爆发式增长阶段,卫星发射数量急剧增加,应用领域快速扩展,在需求牵引下,微小卫星发射数量快速增长,发射场设施设备和资源调配难度加大。目前,微小卫星仍然沿用科研试验卫星时的流程设计方法,其发射场测试周期一般为5天至60天,快速响应卫星主要任务在于应对突发事件,达到快速集成、测试、发射和在轨应用的目的,一般要求卫星整星射前快速测试与射前状态设置时间不大于1小时。本文对传统测试流程、方法和技术进行改进,研究一套快速测试方法能够缩短卫星研制周期、降低研制成本。 2 常规卫星测试流程

传统卫星发射场测试流程项目多、耗时长,主要原因为出厂测试与发射场测试完全分割,为保证卫星在轨期间的可靠性,需要在发射场重复完成出厂测试的绝大部分内容。以某型号微小卫星为例,若完成全部测试,充分保证卫星的可靠性,其流程如下: 2.1 测试目的 整星电测的目的是为了确保卫星在轨工作的正确性,因此需要检验卫星电气性能和参数指标是否符合设计要求以及各组件在整星条件下能否完成规定的功能;同时,为了保证测控系统与数据传输的可靠性,需要检查指令通道传递的可靠性、准确性和数据通道传递的可靠性、准确性;此外,为了保证卫星能够与火箭及地面测试设备连接正确,需要检查卫星内外接口匹配的正确性;最后,在地面测试前,为保证测试能够顺利进行,需要检查星上软件、地面软件、测量参数定义和测试文件的正确性以及卫星电气设计的正确性、合理性、匹配性及接地系统的正确性。根据以上电性能测试目的,由此可确定测试项目如后。 2.2 测试流程 在地面测试前要进行一系列的准备和状态检查,包括测试文件、测试环境、测试设备、整星测试状态与技安检查。微小卫星电性能测试包括卫星各分系统测试、系统综合测试和整星地面模飞测试。卫星电性能测试流程如图1所示。

振动台模型试验

01 建筑结构的整体模型模拟地震振动台试验研究,从模型的设计制作、确定试验方案、进行试验前的准备工作、到最后实施试验和对试验报告数据进行处理,整个过程历时较长、环节较多。显然,预先了解和把握振动台试验的总体过程,做到有目的、有计划、有方法,才能较顺利地完成该项工作。介绍将会按照以下顺序依此进行: 1 模型制作 2 试验方案 3 试验前的准备 4 实施试验 5 试验报告 6 试验备份 02 1 模型制作 振动台试验模型的制作,在获得足够的原型结构资料后,至少需要把握这样几个关键环节: (1)依据试验目的,选用试验材料; (2)熟读图纸,确定相似关系; (3)进行模型刚性底座的设计; (4)根据模型选用材料性能,计算模型相应的构件配筋; (5)绘制模型施工图; (6)进行模型的施工。 对上述各条的设计原则以及注意事项等,分述如下。 1.1 选用模型材料 模型试验首先应明确试验目的,然后根据原型结构特点选择模型的类型以及使用材料。比如,试验是为了验证新型结构设计方法和参数的正确性时,研究范围只局限在结构的弹性阶段,则可采用弹性模型。弹性模型的制作材料不必与原型结构材料完全相似,只需在满足结构刚度分布和质量分布相似的基础上,保证模型材料在试验过程中具有完全的弹性性质,有时用有机玻璃制作的高层或超高层模型就属于这一类。另一方面,如果试验的目的是探讨原型结构在不同水准地震作用下结构的抗震性能时,通常要采用强度模型。强度模型的准确与否取决于模型与原型材料在整个弹塑性性能方面的相似程度,微粒混凝土整体结构模型通常属于这一类。以上分析也显现了模型相似设计的重要性。 在强度模型中,对钢筋混凝土部分的模拟多由微粒混凝土、镀锌铁丝和镀锌丝网制成,其物理特性主要由微粒混凝土来决定,有时也采用细石混凝土直接模拟原型混凝土材料,水泥砂浆模型主要是用来模拟钢筋混凝土板壳等薄壁结构,石膏砂浆制作的模型,它的主要优点是固化快,但力学性能受湿度影响较大;模拟钢结构的材料可采用铜材、白铁皮,有时也直接利用钢材。总之,模型材料的选用要综合就近取材及经费等因素,同时要注意强度、弹性模量的换算等。 1.2 模型相似设计 把握大型模型振动台试验,最关键的是正确的确定模型结构与原型结构之间的相似关系。目前常用的相似关系确定方法有方程分析法和量纲分析法两种,它们之间的区别是显而易见的:当待求问题的函数方程式为已知时,各相似常数之间满足的相似条件可由方程式分析得出;量纲分析法的原理是著名的相似定理:相似物理现象的π数相等;个物理参数、个基本量纲可确定()个nkkn[$#8722]π数。当待考察问题的规律尚未完全掌握、没有明确的函数关系式时,多用到这种方法。高层建筑结构模拟地震振动台试验研究中包含诸多的物理量,各物理量之间无法写出明确的函数关系,故多采用量纲分析法。 量纲分析法从理论上来说,先要确定相似条件(π数),然后由可控相似常数,推导其余的相似常数,完成相似设计。在实际设计中,由于π数的取法有着一定的任意性,而且当参与物理过程的物理量较多时,可组成的数也很多,将线性方程组全部计算出来比较麻烦;另一方面,若要全部满足与这些π数相应的相

临床试验设计方案

临床科研试验计划书 题目:吸烟对胃溃疡患者的血液流变学影响的研究 (一)立题依据: 胃溃疡是人类消化系统的常见病、多发病,是机体炎症细胞被激活,释放过多的致炎因子所引发的炎症反应【1】。人们通常把胃溃疡看成不要紧的“小毛病”,事实上,老年胃溃疡患者的癌变率为3~5%,中青年为0.5~2%,尤其是近幽门口的溃疡、反复迁延的慢性溃疡最容易癌变,所以胃溃疡的治疗不能忽视。一直以来,人们认为,幽门螺杆菌感染、非甾体类抗炎药(如,阿司匹林)导致胃黏膜损伤以及寒冷、精神紧张、吃酸辣甜腻食物过多等引起的胃酸分泌过多是引起胃溃疡的主要原因,但近期的一些动物实验研究指出,吸烟可以影响血管内皮依赖的血管收缩舒张功能,可影响胃粘膜的血液循环,可能与胃溃疡的发生及迁延不愈有关【2.3】。国内外关于吸烟与胃溃疡的关系的临床研究很少,并且存在着样本含量较少,评价不够全面等缺陷,需要进一步深入的研究。 参考文献: [1]陈灏珠.内科学[M].第4版.北京:人民卫生出版社,2006:349—360. [2]李昌俊,郑瑶,李玉鑫,任辉,陈春,连建学.被动吸烟对兰索拉唑作用于小鼠 胃溃疡模型的干预作用[J].医学论坛杂志。2008:29(4) [3]张雪萍,吕明明,李霞,孙海基.尼古丁对药物性胃溃疡影响的实验研究[J].食品与药品.2011:13(1) (二)研究目的: 通过对吸烟与不吸烟的胃溃疡患者的血液流变学指标的观察,旨在了解吸烟对胃溃疡患者的血液流变学的影响,从而对预测吸烟对胃溃疡发生发展的影响提供一定的依据。 (三)研究对象 1、样本含量估计: 采用单纯随机抽样的样本含量估算公式n=[uα2π(1-π)]/δ2计算样本量,式中: n: 样本量;uα: I型错误概率α = 0.05时的u值;π: 吸烟导致的血液流变学变化的发生率;δ: 容许误差 此处δ取0.03,同时据文献调查,吸烟导致的血液流变学变化的发生率约为30%,代入公式得:n=[uα2π(1-π)]/δ2=[1.962×0.30×(1-0.3)]/ 0.032 =896人。另外,为减少失访误差,在此基础上再增加20%,则约需观察1075例。 2、诊断标准:采用1994 年国家中医药管理局颁布《胃溃疡诊断标准》: 慢性病程,周期性发作,常与季节变化、精神因素、饮食不当有关;或长期服用能致溃疡的药物如阿司匹林等。 上腹隐痛、灼痛或钝痛,服用碱性药物后缓解。典型胃溃疡常于剑突下偏左,好发于餐后半小时到1~2小时,痛常伴反酸嗳气。 基础泌酸量及最大泌酸量测定有助诊断。胃溃疡的基础泌酸量正常或稍低,但不应为游离酸缺乏。 溃疡活动期大便隐血阳性。 X线钡餐检查可见龛影及粘膜皱襞集中等直接征象。单纯局部压痛,激惹变形等间接征象仅作参考。 胃镜检查,可于胃部见圆或椭圆、底部平整、边缘整齐的溃疡。根据溃疡面所见,可分为:

药物临床试验方案设计规范标准

药物临床试验方案设计规范 版本号 1.0 页数9页 起草人起草日期年月日审核人审核日期年月日批准人批准日期年月日颁布日期年月日起效日期年月日 威海市立医院 药物临床试验机构

药物临床试验方案设计规范 临床试验方案叙述试验的背景、理论基础和目的,试验设计、方法和组织,包括统计学考虑、试验执行和完成的条件。因此临床试验方案的设计应包含以上内容明确具体描述。临床试验方案是临床试验的主要文件,应由研究者(Investigator)与申办者(Sponsor)在临床试验开始前共同讨论制定。方案必须由参加临床试验的主要研究者及申办者签章并注明日期。临床试验方案必须报伦理委员会审批后方能实施。临床试验中,若确有需要,可按规定程序对试验方案作修正。 一、目的 建立试验方案设计和制订的标准操作规程,确保试验方案的规范性与可行性。 二、范围 所有由本院牵头或协助参加的新药临床试验。 三、内容 1 方案封面 1)方案的首页上方应注明“××药×期临床试验方案”。 2)临床试验的题目。 3)试验方案版本编号、版本日期和CFDA批准临床试验的批准文号。 4)申办者单位名称、临床研究的负责单位、试验方案的设计者、统计分析单位与负责人、方案的制定和修改时间。 2 目录 对整个方案标题建立索引目录,以便于研究者查阅。 3 方案摘要 内容包括试验研究题目、试验目的、药物的名称、入选标准、病例数、给药方案(药物分组的用法用量、疗程)、有效性评价(主要、次要指标)、安全性评价指标、试验进 度安排等。 4 缩略语表 对试验方案内容中所涉及到的专业术语的缩略语提取解释。 5 试验研究流程图 6研究者、申办者和监查员对本试验声明与签字 7方案正文 1)试验背景 叙述研究药物的研究背景、组成、适应病症、非临床研究中有潜在意义(疗效性和

振动试验台技术方案

注:一下内容仅供参考。如有雷同,纯属巧合。 振动试验台技术方案 本技术方案是依据要求方提出的振动试验台主要技术参数和标准GB/T8419-2007、GB/T18707.1-2002编制,用于对工程机械座椅、工程机械车灯以及其它零部件进行振动试验的液压振动台系统。详细介绍如下: 一、液压振动台系统的构成和原理方框图 液压振动台系统由液压振动台(含振动台体、台面、电液伺服阀等)、液压油源和管路系统、油源电控、模拟和数字控制系统等几部分构成。 液压振动台系统原理方框图如下。 图 1 液压振动台系统原理方框图

二、液压振动台的设计 液压振动台包括振动台体、台面、伺服阀、传感器及连接过渡等部分,作为执行元件直接带动控制对象动作。 1、要求的主要技术参数 1.1 频率范围:0.5~200Hz 1.2 加速度:0~ 2.5g 1.3 振幅:0~±160 mm 1.4 有效负载:0~400 kg, 1.5 台面大小:1米x 1米 2、最大功能曲线的设计估算 2.1 按规范的PSD设计 可以认为是窄带随机,且是多个试验曲线,我们可以取它们的包络作为评估依据。 表1: EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 EM9 Freq 2 2.25 2.25 2.25 3.25 8.5 3.25 3.75 4.5 1.33 RMS 1.39 1.75 1.48 0.82 1.42 1.39 1.82 0.87

图2 根据表1和图2,最大速度发生在EM2,按3∑准则,此处的速度为:0.372m/Sec。但按振幅160mm(O-P),则等速度与等位移段交越频率为:0.37Hz。而主要技术指标中指定下限频率为0.5Hz,这样一来,160mm(o-P)的行程则浪费。 2.2 按行程、速度和加速度设计 依据标准GB/T8419-2007中5.1条《注:在EM1和EM2的情况下,振动器能够产生振幅最少为±7.5cm,频率为2Hz的模拟正弦振动(见5.4.1)》。此时的速度要达到0.94m/s。 按振幅160mm(O-P),则等速度与等位移段交越频率为:0.94Hz;按最大加速度2.5g,则等速度与等加速度段交越频率为:4.18Hz。均在要求的工作频率范围内。 2.3 最大功能曲线 综上所述,按照最大行程±160mm,最大速度0.94m/s,最大加速度2.5g和要求的工作频率,最大功能曲线如图3。 频率(Hz) 0.5 0.94 2 4.19 150 200 位移(mm) 160 160 75 35 0.028 0.0038 速度(m/s) 0.5 0.94 0.94 0.94 0.026 0.0048 加速度(g) 0.32 0.56 1.2 2.5 2.5 0.62

02临床试验的方案设计

临床试验方案设计 一、定义: 试验方案(Protocol):叙述试验的背景、理论基础和目的,以及试验设计、方法和组织,包括统计学考虑、试验执行和完成的条件。方案必须由参加试验的主要研究者、研究机构和申办者签章并注明日期。 二、GCP第四章有关试验方案的叙述 第十六条临床试验开始前应制定试验方案,该方案由研究者与申办者共同商定并签字,报伦理委员会审批后实施。 第十七条临床试验方案应包括以下内容: (一)试验题目; (二)试验目的,试验背景,临床前研究中有临床意义的发现和与该试验有关的临床试验结果、已知对人体的可能危险与受益,及试验药物存在人种差异的可能; (三)申办者的名称和地址,进行试验的场所,研究者的姓名、资格和地址; (四)试验设计的类型,随机化分组方法及设盲的水平; (五)受试者的入选标准,排除标准和剔除标准,选择受试者的步骤,受试者分配的方法; (六)根据统计学原理计算要达到试验预期目的所需的病例数; (七)试验用药品的剂型、剂量、给药途径、给药方法、给药次数、疗程和有关合并用药的规定,以及对包装和标签的说明; (八)拟进行临床和实验室检查的项目、测定的次数和药代动力学分析等; (九)试验用药品的登记与使用记录、递送、分发方式及储藏条件; (十)临床观察、随访和保证受试者依从性的措施; (十一)中止临床试验的标准,结束临床试验的规定; (十二)疗效评定标准,包括评定参数的方法、观察时间、记录与分析; (十三)受试者的编码、随机数字表及病例报告表的保存手续; (十四)不良事件的记录要求和严重不良事件的报告方法、处理措施、随访的方式、时间和转归;

(十五)试验用药品编码的建立和保存,揭盲方法和紧急情况下破盲的规定; (十六)统计分析计划,统计分析数据集的定义和选择; (十七)数据管理和数据可溯源性的规定; (十八)临床试验的质量控制与质量保证; (十九)试验相关的伦理学; (二十)临床试验预期的进度和完成日期; (二十一)试验结束后的随访和医疗措施; (二十二)各方承担的职责及其他有关规定; (二十三)参考文献。 第十八条临床试验中,若确有需要,可以按规定程序对试验方案作修正。三、临床试验方案设计的重要性 (1)是临床试验的主要文件 (2)是实施GCP的重要环节 (3)是伦理审核的重点内容 (4)是进行研究、监查、稽查的重要依据 (5)是对药品进行有效性、安全性评价的可靠保证 四、临床试验方案设计的原则 (一)临床试验方案设计中必须设立对照组 1.目的和意义: 目的:比较新药与对照药治疗结果的差别有无统计学意义 意义:判断受试者治疗前后的变化是试验药物,而不是其它因素入如病情的自然发展或受试者机体内环境的变化所引起。但两组病人其它条件必须均衡。2.对照试验的类型:平行对照试验和交叉对照试验 (1)平行对照试验 优点:组间可比性强,各种干扰因素可因随机分配而平衡; 结果及结论较可靠,常与随机、盲法结合,具有说服力。 缺点:需消耗较大的人力、物力和时间

天基空间目标探测技术探讨

收稿日期:2005-06-01; 收修改稿日期:2005-09-07 天基空间目标探测技术探讨 谭莹 (武汉大学电子信息学院,武汉430079) 摘 要 天基空间目标探测系统可以在太空中近距离地对空间目标进行监视、跟踪和 识别,因而成为当前研究的热点。文章分析了国内外天基空间目标探测技术研究概况,对其发展趋势进行了探讨。 主题词 空间目标 天基监视跟踪系统 探测 1 引 言 目前国际上使用的空间目标的观测设备主要都是地面设备。地面观测设备由于不受体积和质量等限制,可以采用大口径天线来得到很高的空间分辨率,以及以很大的发射功率来获得很远的观测距离,所以仍然是目前空间目标观测的有力武器。但是地面设备也有其局限性,除了受仪器本身发展的限制外,观测过程中还受到大气传播抖动、蒙气差、电离闪烁等因素的影响,而且观测信号在大气中的衰减使其频率只能在较低的频率范围内选择,使得对小尺度的目标以及目标细节的观测受到限制。目前对于中小尺度的空间碎片在地面观测还是盲区,利用天基观测设备则可以有效地解决这些问题。而且对于高轨道上的空间目标的观测,利用天基探测设备更加有效,特别是对于对地观测有重要意义的地球同步轨道。随着微小卫星技术的发展,灵活多样的小卫星也为天基探测在大范围开展提供了支持,降低了天基观测的门槛[1]。 下面介绍国内外天基空间目标探测技术研究概况。 2 天基空间目标监视系统发展现状 为了克服地基系统的各种缺点,美国等航天大国部署了天基空间目标监视系统[2,3] 。该系统包 括一个专用天基传感器。它被称为天基可视传感器(S BV ,Space Based V isible )[4]。S BV 传感器在 1996年由弹道导弹防御组织(BMDO ,Ballistic m issile Defense Office )发射的中程空间实验(MSX,M id 2course Space Ex peri m ent )卫星运送至轨道。MSX 卫星的遥感器波长为016 μm ~26μm ,覆盖紫外到超长波红外谱段,另外还装有CCD 可见光遥感器。该卫星发射于1996年,用于跟踪导弹,完成原定使命后被用来加强“地基空间侦察系统”。 图1是安装在MSX 卫星上的天基可见光传感器,这是第一个天基空间探测传感器,由美国麻省理工学院林肯实验室设计和完成[5~10]。 美国正在研制的天基空间目标监视(S BSS,Space 2Based Space Surveillance )系统是美国为提高对空间目标监视、跟踪和识别能力,增强对空间战场态势的实时感知能力而研制的支持空间型天战武器装备。美国希望S BV 能够坚持到第一颗S BSS 卫星开始在太空中运转。5 2006年第3期 空间电子技术S PAC E ELEC TRON I C TECHNOLO GY

振动台试验终极版

一、前言 模拟地震振动台可以很好地再现地震过程和进行人工地震波的试验,它是在试验室中研究结构地震反应和破坏机理的最直接方法,这种设备还可用于研究结构动力特性、设备抗震性能以及检验结构抗震措施等内容。另外它在原子能反应堆、海洋结构工程、水工结构、桥梁工程等方面也都发挥了重要的作用,而且其应用的领域仍在不断地扩大。模拟地震振动台试验方法是目前抗震研究中的重要手段之一。 20世纪70年代以来,为进行结构的地震模拟试验,国内外先后建立起了一些大型的模拟地震振动台。模拟地震振动台与先进的测试仪器及数据采集分析系统配合,使结构动力试验的水平得到了很大的发展与提高,并极大地促进了结构抗震研究的发展。 二、常用振动台及特点 振动台可产生交变的位移,其频率与振幅均可在一定范围内调节。振动台是传递运动的激振设备。振动台一般包括振动台台体、监控系统和辅助设备等。常见的振动台分为三类,每类特点如下: 1、机械式振动台。所使用的频率范围为1~100Hz,最大振幅±20mm,最大推力100kN,价格比较便宜,振动波形为正弦,操作程序简单。 2、电磁式振动台。使用的频率范围较宽,从直流到近10000Hz,最大振幅±50mm,最大 推力200kN,几乎能对全部功能进行高精度控制,振动波形为正弦、三角、矩形、随机,只有极低的失真和噪声,尺寸相对较大。 3、电液式振动台。使用的频率范围为直流到近2000Hz,最大振幅±500mm,最大推力 6000kN,振动波形为正弦、三角、矩形、随机,可做大冲程试验,与输出力(功率)相比,尺寸相对较小。 4、电动式振动台。是目前使用最广泛的一种振动设备。它的频率范围宽,小型振动台频率 范围为0~10kHz,大型振动台频率范围为0~2kHz,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。原理:是根据电磁感应原理设置的,当通电导体处的恒定磁场中将受到力的作用,半导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。组成部分:基本上由驱动线圈及运动部件、运动部件悬挂及导向装置、励磁及消磁单元、台体及支承装置。 三、组成及工作原理 地震模拟振动台的组成和工作原理 1.振动台台体结构 振动台台面是有一定尺寸的平板结构,其尺寸的规模由结构模型的最大尺寸来决定。台体自重和台身结构是与承载试件的重量及使用频率范围有关。一般振动台都采用钢结构,控制方便、经济而又能满足频率范围要求,模型重量和台身重量之比以不大于2为宜。振动台必须安装在质量很大的基础上,基础的重量一般为可动部分重量或激振力的10~20倍以上,这样可以改善系统的高频特性,并可以减小对周围建筑和其他设备的影响。 2.液压驱动和动力系统

北京一号小卫星MTF在轨测量与图像复原

北京一号小卫星M TF 在轨测量与图像复原 吴昀昭,宫鹏 (中国科学院遥感应用研究所;遥感科学国家重点实验室,北京100101) 摘要:卫星调制传递函数(M TF )的在轨测试是监测卫星平台及其遥感器在轨运行情况和性能衰减程度的有效手段。本文针对北京一号小卫星多光谱相机,研究利用边缘地物法进行M TF 在轨监测,并基于M TF 测试结果,采用维纳滤波法对北京一号小卫星多光谱图像进行复原。结果表明NW 向和N E 向两个方向的M TF 差别不大,在这两个方向上L SF 的半带宽分别为3.75和4.35个像元。根据所计算得到的M TF 值对图像进行复原可以明显提高北京一号小卫星图像清晰度以及边界信息。 关键词:调制传递函数;M TF ;图像复原;北京一号小卫星;DMC 中图分类号:P237.9 文献标识码:A 文章编号:1000-3177(2007)91-0049-05 收稿日期:2006-11-23 修订日期:2006-12-28 基金项目:中国博士后科学基金(20060390537)和中科院百人计划项目资助;中国科学院王宽诚博士后工作奖励基金。 作者简介:吴昀昭(1977~),男,山东济宁人,中科院博士后,研究方向为遥感地球化学。 1 引 言 小卫星具有“快、好、省”的特点,从20世纪80 年代中期开始,世界航天界兴起了发展小卫星的热 潮[1]。北京一号小卫星于2005年10月27日在俄 罗斯普列谢斯克(Pleset sk )卫星发射场成功发射。 小卫星重166.4kg 、轨道高度686km 、中分辨率遥感 器为32m 多光谱,幅宽600km ,高分辨率遥感器为 4m 全色,幅宽24km ,卫星具有侧摆功能。北京市拥有对该卫星的完全自主控制权,作为灾害监测星座(DMC )的组成部分,其数据产品将为2008年奥运会、环境监测、城市规划等服务。任何摄影系统在进行影像获取时都会产生亮度模糊现象。调制传递函数(M TF )是一个客观评价光学系统成像质量的标准,克服了诸如星点检验、分辨率、几何像差等传统像质检验方法的不足。发射前传感器的M TF 可以在实验室精确测量,但由于发射过程中的振动及从空气进入真空的变化,会使得传感器重新聚焦,另外又受大气M TF 的影响,会使它的M TF 发生衰减[2]。M TF 的在轨监测与评 价是传感器辐射特性定量化的重要部分,有助于监 测卫星运行状况,也可对卫星特别是传感器的寿命 进行预估。此外,M TF 在轨测量也可为后继传感 器的优化设计、研制及测试提供必要信息。从卫星 传回的遥感图像上获取卫星传感器的M TF 的变化 情况是国际上一个非常活跃的研究课题,目前提出 了高分辨率图像法、点源法、边缘地物法及线性地物测量法等[3~5]。除上述外,M TF 还可用来对遥感图像进行复原/补偿(M TFC )。对退化的模糊图像进行复原是遥感图像处理中的一个热点和难点。北京一号小卫星多光谱波段与TM 相应波段设置一样,而且空间分辨率也近似,然而通过视觉对比发现,北京一号小卫星较之TM 影像要模糊。通过对北京一号卫星影像复原,有助于提高图像质量,增强图像细节,从 而提高图像应用能力。目前有许多算法可以在空间 域对图像进行复原[6]。其他的复原方法是在频率域 进行[7]。从实际应用角度来说,空域方法简单。但 由于许多情况下点扩散函数是奇异矩阵,使得难以 直接在空间域进行复原。通过在频率域中进行滤波 是经典且行之有效的方法[8~10]。 本文采用边缘地物法对北京一号卫星M TF 进 行在轨测量,并在此基础上利用维纳滤波法对退化 图像进行复原。无论是M TF 的估算还是图像复 原,非常关键的一步是精确获取线扩展函数(L SF ), 它是以后M TF 估算以及图像复原的基础。2 理论与方法2.1 M TF 在轨测量2.1.1理论对于理想的光学系统,其线扩展函数L SF 没有退化,数学上可由delta 函数描述。定义如下的阶9 4

相关文档
相关文档 最新文档