文档库 最新最全的文档下载
当前位置:文档库 › 不等式(组)的字母取值范围的确定方法作业

不等式(组)的字母取值范围的确定方法作业

不等式(组)的字母取值范围的确定方法作业
不等式(组)的字母取值范围的确定方法作业

专题的一个练习,请认真完成!

1. 若不等式组

3. 若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )

A .0

B .1

C .2

D .3 4. 已知不等式组的解集为x>2,则( ) A. B. C. D.

5. 已知方程组的解x 、y 满足2x+y ≥0,则m 的取值范围是 ( ) A.m ≥-4/3 B.m ≥4/3 C.m ≥1 D.-4/3≤m ≤1

6.关于x 的不等式组???x +

152>x -3

2x +23<x +a

只有4个整数解,则a 的取值范围是( ) A. -5≤a ≤-143 B. -5≤a <-143 C. -5<a ≤-143 D. -5<a <-143

8. 已知关于的不等式组无解,则的取值范围是( ) A. B. C. D.

9. 若不等式组有解,则m 的取值范围是______. 11.如果关于的不等式和的解集相同,则的值为______.

12. 已知关于x 的不等式组有五个整数解,这五个整数是________,a 的取值范围是______。

13.若3x -5<0,且y=7-6x ,那么y 的范围是什么?

2113x x a

-?>???>?2a <2a =2a >2a ≤2231y x m y x m -=??+=+?

x 21x x x a -??

,,a 1a ≤-12a -<

-??>?,≤x (1)5a x a -<+24x

321x a x -≥??->-?

???>≤

14.已知关于x 、y 的方程组的解是一对正数。

(1)试确定m 的取值范围;(2)化简

15.已右关于,的方程组 当取何值时,这个方程组的解大于,不小于.

提高训练

1.不等式0103≤-x 的正整数解是___________.

2.2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a

3.若不等式组???>

x a x 的解集是空集,则a 、b 的大小关系是_______________

4.若1-=a a

,则a 只能是( )

A .1-≤a

B .0

C .1-≥a

D .0≤a

5.关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是 ( )

A .3>a

B .3≤a

C .3

D .3≥a

6.已知关于x 、y 的方程组?

??=-=+m y x y x 212. (1)求这个方程组的解;

(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.

221

243x y m x y m +=+??-=-?312

m m -+-x y 212x y x y m +=??-=?,.m x 1y 1-

7.已知方程组

321

21

x y m

x y m

+=+

?

?

+=-

?

,m为何值时,x>y?

最终版不等式的字母取值范围的确定方法.doc

精选 不等式的字母取值范围的确定方法 . 4.如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A.a<0 B .a<一l C .a>l D .a>一l 5.不等式a ≤x ≤3只有5个整数解,则a 的范围是 6.已知关于x 的不等式x -2a <3的最大整数解是-5,求a 的取值范围. 7.已知不等式13 a x ->的每一个解都是x <3的解,求a 的取值范围。 8.如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l 9.已知a 、b 为常数,若ax+b>0的解集为x<13 ,则bx -a<0的解集为( ) A 、x>-3 B 、x<-3 C 、x>3 D 、x<3 10.已知关于x 的不等式x-2a >4的解是正数,则a 的范围是 ; 已知关于x 的不等式x-a <3的解是负数,则a 的范围是 . 11.如果关于x 的不等式(1)5a x a -<+和24x <的解集相同,则a 的值为______.若不等 式 132 x a x a --->的解集与x <6的解集相同,则a 的取值范围_____. 12.若不等式(2k+1)x<2k+1的解集是x >1,则k 的范围是 。 13.已知不等式4x -a ≤0,只有四个正整数解,那么正数a 的取值范围是 14.若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是( ) A .1<a ≤7 B .a ≤7 C .a <1或a ≥7 D .a=7 15.已知关于x 的不等式2x -a >3的解是正数,求a 的取值范围 16.若不等式x <a 只有4个正整数解,则a 的取值范围是 。

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

求一元一次不等式(组)中字母参数取值范围专题(作业)教学提纲

精品文档 精品文档 求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253-??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>?? >?x x a 的解集为>x a 则a 的取值范围是_______ 17、若不等式组3>?? ≥?x x a 的解集为3>x ,则a 的取值范围是_______

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

求一元一次不等式(组)中字母参数取值范围专题(作业)

求字母参数取值范围专题(作业) 易错点:字母的取值能不能取到临界点,可以用检验法 一、 逆用不等式组的解集求字母的值 1、若不等式组3>??>?x x m 的解集为5>x 则m=_______ 2、若不等式组1253 -??-?? ?? ≤?x x a 无解,则a 的取值范围_______ 7、若不等式组3≥?? ≤?x x a 无解,则a 的取值范围是_______ 8、若不等式组无解,则a 的取值范围是 _________ . 9、若不等式 无解,化简|3﹣a|+|a ﹣2|= _________ . 10、若不等式组 无解,则a _________ b (用“>”、“=”、“<”填空). 11、如果不等式组 无解,则不等式2x+2<mx+m 的解集是 _________ . 12、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a , b 的有序数对(a ,b )共有 _____ 个. 常考例题:13、已知不等式组?????>>-a x x 1513的解集为x >2,则a 的取值范围_______ 变式训练:14、已知不等式组?????≥>-a x x 1513的解集为x >2,则a 的取值范围_______ 15、若不等式组3>?? >?x x a 的解集为3>x 则a 的取值范围是_______ 16、若不等式组3>?? >?x x a 的解集为>x a 则a 的取值范围是_______ 17、若不等式组3>??≥?x x a 的解集为3>x ,则a 的取值范围是_______ 18、已知a ,b 是实数,若不等式(2a ﹣b )x+3a ﹣4b <0的解是 ,则不等式(a ﹣4b )x+2a ﹣3b >0的解是 _________ .

专题三角形中的最值与取值范围问题

专题 三角形中的最值与取值范围问题 三角形中的边与角的最值与取值范围问题,是复习过程中的难点,在高考中考查形式灵活,常常在知识的交汇点处命题,与函数、几何、不等式等知识结合在一起。我们知道三角形只要满足三个条件,那么这个三角形就基本唯一确定了,而少于三个条件时,有些边角周长面积就可以变化,从而就有了求这些量的取值范围问题。这类问题的实质是将几何问题转化为代数问题,求解主要是充分运用三角形的内角和定理,正余弦定理,面积公式,基本不等式,三角恒等变形,三角函数的图像和性质来进行解题,非常综合,是解三角形中的难点问题。下面对这类问题的解法做下探讨。 类型一:已知一角+对边 例题1:在?ABC 中,A=60°, (1)ABC ?面积的最大值; (2)b c +的取值范围; (3)2b c +的最大值; (4)BC 边上高的最大值。 类型二:已知一角+边的等量关系 例题2:在?ABC 中,A=60°,1b c +=,求 (1)ABC S ?的最大值; (2)a 的取值范围; (3)周长的取值范围。 类型三:已知一角+面积 例题3:在?ABC 中,A=60°,ABC S ?= (1)b c +的最小值; (2)a 的最小值。 (3)周长的最小值。 (4) 112b c +的最小值。 类型四:已知角的等量关系 例题4:在?ABC 中,A=2B ,则c b 的取值范围为

变式:在锐角?ABC 中,A=2B ,则c b 的取值范围为 类型五:已知两边,求面积的最值 例题5:在?ABC 中,已知1,2AB BC ==,求 (1)ABC S ?的最大值; (2)角C 的取值范围。 类型六:已知一边+另两边的等量关系 例题6:在?ABC 中,已知6,10BC AB AC =+ =,求ABC S ?的最大值。 变式:在?ABC 中,已知6,BC AC ==,求ABC S ?的最大值。 类型七:三边的等量关系 例题7:在?ABC 中,角A ,B ,C 所对的边分别为a,b,c,若2222a b c +=,求cos C 的最小值。

求参数取值范围一般方法

求参数取值范围一般方法 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 例2、已知(],1x ∈-∞时,不等式()21240x x a a ++-?>恒成立,求a 的取值范围。 1.若不等式x 2+ax+1≥0,对于一切x ∈[0, 2 1]都成立,则a 的最小值是__ 2.设124()lg ,3 x x a f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。 3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例1、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 例2:若不等式02)1()1(2 >+-+-x m x m 的解集是R ,求m 的范围。 例3.关于x 的不等式0622<+++m m mx x 在[]20,上恒成立,求实数m 的取值范围. 变式:若函数m m mx x y 622+++=在[]20,上有最小值16,求实数m 的值. 1.已知752+->x x x a a 0(>a 且)1≠a ,求x 的取值范围. 2.求函数)(log 2x x y a -=的单调区间.

高中数学专题复习含参不等式与参变量的取值范围

含参不等式与参变量的取值范围 一、选择题 1. 已知方程1||+=ax x 有一负根且无正根,则实数a 的取值范围是 A. a >-1 B. a=1 C. a ≥1 D. a ≤1 2. 设)(1 x f -是函数1)((2 1)(>-= -a a a x f x x 的反函数,则使1)(1 >-x f 成立的x 的取值范围是 ) ,.[) ,21.() 21,.() ,21.(222+∞---∞+∞-a D a a a C a a B a a A 3. 在R 上定义运算○×:x ○×y=x(1–y),若不等式(x –a )○×(x + a)<1对任意实数x 成立 2 1 23.2 3 21.20.11.<<- <<- <<<<-a D a C a B a A 的取值范围是 恒成立,则时,不等式(当的取值范围是,则实数的解集为若不等式的取值范围是 都有意义,则对已知函数的取值范围是 值,则)上有最大 ,在(存在,且,若,其中已知的取值范围是 数有且仅有三个解,则实若设的取值范围是 有解,则实数若不等式可以是的取值范围的充分条件,则是若集合a x x x D C B A a R x a x a D C B A a x x x x f b D b C b B b A b x f x f b a x a x b x x b ax x f D C B A a x x f x x f x a x f m D m C m B m A m m x x b D b C b B b A b B A a a b x x B x x x A a a a x x log )1)2,1(.10)2,.(),2()2,.(]2,2.()2,2.(4)2(2)2(.9)21,161.()21,321.[]21,641.[)21,1281.[)2 1 ,0()log (log )(.81 0.1.12 1 .1.11)()(lim 0,0)1,0(] 0,1()(.7] 1,.(),1.[)2,.(]2,1.[)()0)(1() 0(3)(.62 .2 .1 .1 .|3||5|.521.13.20.02."""1"},|||{},01 1 |{.422220<-∈-∞+∞--∞--<-+-∈+-=≤<≥≤<>->>??? ??∈---∈+=-∞+∞-∞=? ??>-≤-=≥>≥><-+-<≤--<<-≤<<≤-≠=<-=<+-=→- φ

不等式(组)中参数范围的求法

不等式(组)中参数范围的求法 一. 利用不等式的性质求解 例1 已知关于x 的不等式5)1(>-x a 的解集为a x -<15,则a 的取值范围为( ) (A )0>a (B ) 1>a (C ) 0a 故选(B ) 例2 如果关于x 的不等式(2a -b)x +a -5b>0的解集为x< 107,求关于x 的不等式ax>b 的解集。 解析:由不等式(2a -b)x +a -5b>0的解集为x<107 ,可知: 2a -b<0,且 51027b a a b -=-,得b=35 a 。 结合2a -b<0,b=35 a ,可知b<0,a<0。 则ax> b 的解集为x<35。 评注:这道题的内涵极为丰富,它牵涉到不等式的基本性质,不等式的解的意义,不等式的求解,它将式的的恒等变形、不等式、方程融合在一起,以不等式为背景,形成了一道精巧的小综合题。 例3若满足不等式513)2(3≤---≤a x a 的x 必满足53≤≤x ,则a 的取值范围是 ( ) (A )2>a (B ) 2a 时, 2 63243-+≤≤-+a a x a a 由题意,得52 632433≤-+≤≤-+≤a a x a a 解之,得8≥a 当2=a 时,不等式无解 当2

不等式中字母的取值范围

不等式中字母的取值范围 习题 一,根据不等式的解集确定字母取值范围 例l 、如果关于x 的不等式(a+1)x>a+1.的解集为x<1,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l 解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B . 练习一:根据性质: 1、已知a ,b 是常数,不等式ax+b >0, 当 时,不等式的解集是x >a b - ; 当 时,不等式的解集是x <a b -。 2、若ax <a-1的解集是x <a a 1-,则a 3、若(a+1)x >a+1的解集是x <1,则a 4、若(m-1)x >m-1的解集是x <1,则m 5、若关于x 的不等式x-m ≥-1的解集如图所示,则m 。 练习二:综合拓展: 1、已知三角形的三边长分别为6,x-2,4,则x 的取值范围是 分析: 2、若()04232 =--+-a x y y ,且x 为负数,则a 分析: 练:若()0332=++++m y x x ,且y 为负数,则m 3、如果x x +=+11,2323--=+x x ,则x 的取值范围是

分析: 练:如果1212-=-x x ,x x 3553-=-,则x 的取值范围是 练习三:与方程(组)的解有关: 1、已知y=2x-3,要是y ≥x ,求x 的取值范围 2、若关于x 的方程3x+3k=2的解是正数,则k 练:①当k 取何值时,关于x 的方程1)(3k 2-2 1+-=k x x 的解是负数 ②关于x 的方程3x+2n=2的解是非负数,则n ③当k 为何值时,关于x 的方程3x=5-4k 的解小于-3 二,根据不等式组的解集确定字母取值范围 例2、不等式组???>≤

(全)基本不等式应用,利用基本不等式求最值的技巧,题型分析

基本不等式应用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

初一不等式习题及答案汇编

更多精品文档 初一数学不等式习题 一、填空:(每小题2分,共32分) 1.若a<0,下列式子不成立的是 ( ) A.-a+2<3-a B.a+23a 2. 若a 、b 、c 是三角形三边的长,则代数式a 2 + b 2 —c 2 —2ab 的值 ( ). A.大于0 B.小于0 C.大于或等于0 D.小于或等于0 3.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ( ) A.3>m> 12 B.3>m>-12 C.112>m>-12 D.12>m>-11 2 4.若方程35x a -=26b x -的解是非负数,则a 与b 的关系是 ( ) A.a ≤56b B.a ≥56b C.a ≥-56b D.a ≥528 b 5.下列不等式中,与不等式2x+3 ≤7有相同解集的是 ( ) A. 1+ 22x -≥3x B. 722x - -2 3x -≥2(x+1) C. 3x -2(2)3x -≤6 D.1-13x -≤12 x - 6.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ( ) A.m ≤-1 B.m<-1 C.m ≥1 D.m>1. 7.若方程组31 33 x y k x y +=+?? +=? 的解、满足01x y <+<,则k 的取值范围是 ( ) A .40k -<< B. 10k -<< C.08k << D. 4k >- 8.设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P ,若a >b >c ,则M 与P 的大 小关系是( ). A. M = P B. M > P C. M < P D. 不确定 二、填空:(每小题2.5分,共40分) 9.若不等式21 23 x a x b -? 的解集为 11x -<<,那么(3)(3)a b -+的值等于 . 10. 不等式 5121216415 x x x -+->- 的负整数解的积是 . 11. 代数式|x-1|-|x+4|- 5 的最大值为 . 12. 不等式3(x +1)≥5 x -2,则|2x -5| =________. 13. 若关于x 的方程5x -2m =-4-x 解在1和10之间,则m 的取值为___________. 14. 不等式|x |>3的解集为_______________. 三、解答题:(各题的分值见题后,共78分) 15.解列不等式,并把解集在数轴上表示出来。(每小题5分,共10分) (1)3812x x --+≥ 2(10)7x - (2)5723x x --≥1- 35 4 x - 16.解下列不等式组(每小题6分,共12分) (1)11123 2(3)3(2)0x x x x ?->-???---

不等式(组)的字母取值范围.

不等式字母范围的确定练习一 1.写出不等式组的解集 (1)???≥>22x x (2)???<<22x x (3)???≥≤22x x (4)???≤>2 2x x 变式1:若a<2, 请确定下列不等式组的解集 (1)???≥>a x x 2 (2)???<a x x 2 变式2:(1)若不等式组???≥>a x x 2的解集是2>x ,则a 的取值范围为 (2)若不等式组???≥≤a x x 2的解集 时2≤≤x a ,则a 的取值范围为 (3)若不等式组?? ?≥≤a x x 2无解,则a 的取值范围为 2.若不等式组???≤>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式1:若不等式组? ??<>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式2:关于x 的不等式组010x a x ->?? ->?,只有3个整数解,则a 的取值范围是 ; 3.若不等式组12x x m <≤??>?有解,则m 的取值范围是( ).A .m<2 B .m≥2 C .m<1 D .1≤m<2 4. 不等式a ≤x ≤3只有5个整数解,则a 的范围是 5、已知a b <<0,那么下列不等式组中有解的是 ( )A .???<>b x a x B .???-<->b x a x C .???-<>b x a x D .???>-a x x 1无解,则a 的取值范围是( )A .a ≤1 B .a ≥1 C . a <1 D .a >1 7、已知关于x 的不等式组? ??--0x 230a x >>的整数解共有5个,求a 的取值范围。 8. 已知关于x 的不等式x -2a <3的最大整数解是-5,求a 的取值范围. 9. 已知不等式13 a x ->的每一个解都是x <3的解,求a 的取值范围。

不等式(组)的字母取值范围的确定方法

不等式(组)的字母取值范围的确定方法 一、根据不等式(组)的解集确定字母取值范围 例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l 解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B . 例2、已知不等式组15 3x a x a <+??有四个整数解,则a 的取值范围是 . 分析:由题意,可得原不等式组的解为8-b x a x 122的整数解只有5、6。求a 和b 解:解不等式组得?? ? ??-<+>212b x a x ,借助于数轴,如图2知:2+a 只能在4与5之间。 21-b 只能在6与7之间. ∴4≤2+a<5, 6<2 1 -b ≤7, ∴2≤a<3, 13一l B .m>l C .m<一1 D .m<1 解:(1)十(2)得,3(x+y)=2+2m ,∴x+y = 223 m +<0.∴m<一l ,故选C . 例6、(江苏省南通市2007年)已知2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围. 图1 a 5 a+3 1 图2

初中数学求一类参数取值范围的三种方法学法指导

初中数学求一类参数取值范围的三种方法学法指导 贾海英 求一次不等式或不等式组中参数的取值范围,近年来在各地中考试卷中都有出现。从卷面上看,同学们丢分现象较严重下面举例介绍三种方法,供大家学习时参考。 一、利用不等式的性质求解 例1. 已知关于x 的不等式5x )a 1(>-的解集为a 15x -<,则a 的取值范围是( ) A. 0a > B. 1a > C. 0a < D. 1a < 解:对照已知解集,发现不等式的两边同除以a 1-以后,不等号的方向改变了,由此可知0a 1<-,即1a >,故选B 。 例2. 若满足不等式51a 3x )2a (3≤---≤的x 必满足5x 3≤≤,则a 的取值范围是( ) A. 2a > B. a a < C. 8a ≥ D. 8a ≤ 解:原不等式可化为???+≤-+≥-6a 3x )2a (4a 3x )2a ( 当2a >时, 2 a 6a 3x 2a 4a 3-+≤≤-+ 由题意,得52 a 6a 32a 4a 33≤-+≤-+≤ 解之,得8a ≥ 当2a =时,不等式组无解 当2a <时,2 a 4a 3x 2a 6a 3-+≤≤-+ 由题意,得52 a 4a 32a 6a 33≤-+≤-+≤ 此不等式无解 综上所述,8a ≥,故选C 。 二、根据解集的特性求解 例3. 若关于x 的不等式0a x 2≤-的正整数解是1、2、3,则a 的取值范围是( ) A. 6a ≥ B. 6a ≤ C. 8a 6<≤ D. 8a 6≤< 解:3是满足此不等式的最大正整数,将x=3代入0a x 2≤-,得6a ≥ 4不是此不等式的解,将4x =代入后不成立,即0/a 42≤-?,故8\a ≥,即8a <。 综上所述,8a 6<≤,故选C 。 例4. 已知不等式组?????<-+≤+3x 2a x )2x (3a 5x 2有解,且每一个解x 均不在4x 1≤≤-范围内,则a 的取值范围是( ) A. 3a 2<< B. 2a 3 1 a >-≤或

不等式中的取值范围求法

不等式中的取值范围求法 不等式是高中数学的重要内容,与各部分联系紧密,是历年高考的命题重点,在考查不等式的命题中以求取值范围问题居多,解决此类问题的方法体现了等价转换、函数与方程、分类讨论、数形结合等数学思想。 1、 不等式的性质法 利用不等式的基本性质,注意性质运用的前提条件。 例1:已知 f x ax c f f ()()()=--≤≤--≤≤2411125,且,,试求f ()3的取值范围。 解:由(1)(2)4f a c f a c =-??=-? 解得[][]1(2)(1)31(2)4(1)3a f f c f f ?=-????=-?? ∴=-= ?--≤≤∴-≤?≤-≤≤-∴≤-?≤∴-+≤?-≤+-≤≤f a c f f f f f f f f f ()()()()()()()()()()3983253 112583832403 41153531203 8353832531403203 1320ΘΘ,, ,即 评:解此类题常见的错误是:依题意得

-≤-≤--≤-≤41 11452a c a c ()() 用(1)(2)进行加减消元,得 03173≤≤≤≤a c ,() 由f a c f ()()397327=--≤≤得 其错误原因在于由(1)(2)得(3)时,不是等价变形,使范围越加越大。 2、 转换主元法 确定题目中的主元,化归成初等函数求解。此方法通常化为一次函数。 例2:若不等式 2x -1>m(x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围。 解:原不等式化为 (x 2-1)m -(2x -1)<0 记f(m)= (x 2-1)m -(2x -1) (-2≤m ≤2) 根据题意有:?????<=<=01)-(2x -1)-2(x f(2)01)-(2x -1)--2(x f(-2)22 即:?????<->+0 1-2x 2x 03-2x 2x 22 解得2 31x 271+<<+- 所以x 的取值范围为 3、化归二次函数法 根据题目要求,构造二次函数,结合二次函数实根分布等相关知识,求出参数取值范围。

不等式(组)的字母取值范围的确定方法

不等式(组)的字母取值范围的确定方法 近年来各地中考、竞赛试题中,经常出现已知不等式(组)的解集,确定其中字母的取值范围的问题,下面举例说明字母取值范围的确定方法,供同学们学习时参考. 一、根据不等式(组)的解集确定字母取值范围 例l 、如果关于x 的不等式(a+1)x>2a+2.的解集为x<2,则a 的取值范围是 ( ) A .a<0 B .a<一l C .a>l D .a>一l 解:将原不等式与其解集进行比较,发现在不等式的变形过程中运用了不等式的基本性质3,因此有a+l<0,得a<一1,故选B . 例2、已知不等式组153 x a x a <+??有四个整数解,则a 的取值范围是 . 分析:由题意,可得原不等式组的解为8-b x a x 122的整数解只有5、6。求a 和b 的范围. 解:解不等式组得?? ???-<+>212b x a x ,借助于数轴,如图2知: 2+a 只能在4与5之间。2 1-b 只能在6与7之间. ∴4≤2+a<5 6<2 1-b ≤7 ∴2≤a<3, 13一l B .m>l C .m<一1 D .m<1 分析:本题可先解方程组求出x 、y ,再代入x+y<0,转化为关于m 的不等式求解;也可以整体思考,将两方程相加,求出x+y 与m 的关系,再由x+y<0转化为m 的不等式求解. 图 1 图2

基本不等式与最值

基本不等式与最值 ——不等式补充材料 2015.4.25 一. 基本不等式及其变形和推论 1. (,0,)2 a b a b a b +≤>=当且仅当时取"=" 2. 变形:,0,)a b a b a b +≥>=当且仅当时取"=" 3. 2a b +≤≤(,0,)a b a b >=当且仅当时取"=" ②22 2()22 a b a b ab ++≤≤(,,)a b R a b ∈=当且仅当时取"=" 二. 核心原理 和定积最(值),积定和最(值), 三. 经典例题 类型1:无条件求最值 例1 设01,x <<求(1)y x x =-的最大值。(答案: 14) 变式1-1:设30,2x <<求(32)y x x =-的最大值。(答案:98 ) 变式1-2:当01x ≤≤,求函数y =的最大值。(答案: 12) 例2 设0,x >求1y x x =+的最小值。(答案:2) 变式2-1:设0,x ≠求1y x x =+的取值范围。(答案:(][),22,-∞-?+∞) 变式2-2:求函数1(2)2 y x x x =+>-的最小值。(答案:4) 变式2-3:求函数22914y x x =++的最小值。(答案:114 ) 变式2-4:设1,x >-求函数(2)(5)1 x x y x ++=+的最小值。(答案:9) 例3 设,0x y >,求: ①1 1()()x y x y ++的最小值;(答案:4)

②12()()x y x y ++ 的最小值;(答案:3+ 例4 正数,a b 满足3ab a b =++,求: ① ab 的最小值;(答案:9) ② a b +的最小值(答案:6). 例50a b >>,求: ①216() a b a b +-的最小值;(答案:16) ②2 16()b a b a -? 的最大值(答案:4)。 类型2:有条件求最值 例1设,0x y >,41x y +=, ① 求xy 的最大值;(答案:116 ) 变式:求lg lg x y +的最大值(答案:lg 4-)。 ② 求 11x y +的最小值。(答案:9) 例2 设lg lg 2x y +=, ① 求x y +的最小值;(答案:20) ② 求11x y +的最小值;(答案:15 ) ③ 求lg lg x y ?的最大值。(答案:1) 例3设,0x y >,且411x y +=, ① 求xy 的最小值;(答案:16) 变式:求lg lg x y +的最小值;(答案:lg16)

基本不等式在最值问题中的应用归纳

不等式中最值问题全梳理 教师专用(2020.8.23) 题型一 基本不等式与函数相结合的最值问题 例题1 若方程 ln x m =有两个不等的实根1x 和2x ,则22 12x x +的取值范围是( ) A .()1,+∞ B . ) +∞ C . ()2,+∞ D .()0,1 【分析】由方程可得两个实数根的关系,再利用不等式求解范围. 【解析】因为 ln x m =两个不等的实根是1x 和2x ,不妨令()()120,1,1,x x ∈∈+∞,12,Inx m Inx m =-= 故可得()120In x x =,解得211x x = ,则22 12x x + =212112x x +>=,故选:C. 【小结】本题考查对数函数的性质,涉及均值不等式的使用,属基础题. 例题2 2291 sin cos αα +的最小值为( ) A .2 B .16 C .8 D .12 【分析】利用22sin cos 1αα+=将 22 91sin cos αα +变为积为定值的形式后,根据基本不等式可求得最小值. 【解析】∵2 2 sin cos 1αα+=,∴()22 2222 9191sin cos sin cos sin cos αααααα ??+=++ ??? 2222 sin 9cos 1010616cos sin αααα=+++=,当且仅当23sin 4α=,2 1cos 4α=时“=”成立,故22 91 sin cos αα +的最小值为16. 【小结】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最 值,属于基础题. 例题3 已知函数y =log a x +1(a >0且a ≠1)图象恒过定点A ,若点A 在直线x m +y n -4=0(m >0,n >0)上,则 m +n 的最小值为________. 【解析】由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∴1m +1 n =4,

相关文档 最新文档