文档库 最新最全的文档下载
当前位置:文档库 › ABAQUS+计算+动刚度+详细说明

ABAQUS+计算+动刚度+详细说明

ABAQUS+计算+动刚度+详细说明
ABAQUS+计算+动刚度+详细说明

结构的刚度计算

建筑力学行动导向教学案例教案提纲

模块六:静定结构的位移计算及刚度校核 6.1.1 杆系结构的位移 杆系结构在荷载或其它因素作用下,会发生变形。由于变形,结构上各点的位置将会移动,杆件的横载面会转动,这些移动和转动称为结构的位移。 图6-1 刚架的绝对位移图6-2刚架的相对位移 我们将以上线位移、角位移及相对位移统称为广义位移。 除荷载外,温度改变、支座移动、材料收缩、制造误差等因素,也将会引起位移,如图11.3(a) 和图11.3(b)所示。 图6-3其他因素引起的位移 6.1.2 计算位移的目的 在工程设计和施工过程中,结构的位移计算是很重要的,概括地说,计算位移的目的有以下三个方面: 1、验算结构刚度。即验算结构的位移是否超过允许的位移限制值。 2、为超静定结构的计算打基础。在计算超静定结构内力时,除利用静力平衡条件外,还 需要考虑变形协调条件,因此需计算结构的位移。 3、在结构的制作、架设、养护过程中,有时需要预先知道结构的变形情况,以便采取一 定的施工措施,因而也需要进行位移计算。 建筑力学中计算位移的一般方法是以虚功原理为基础的。本章先介绍虚功原理,然后讨论在荷载等外界因素的影响下静定结构的位移计算方法。 6.2.构件的变形与刚度校核 6.2.1轴心拉压变形 一、纵向变形 1、拉压杆的位移:等直杆在轴向外力作用下,发生变形,会引起杆上某点处在空间位 置的改变,即产生了位移△l。 2、计算公式

N N F F l l dx dx dx E EA EA σ ε?====??? 图6-4轴心受拉变形 EA l F l N =?—— EA 称为杆的拉压刚度 (4-2) 上式只适用于在杆长为l 长度N 、E 、A 均为常值的情况下, 即在杆为l 长度内变形是均匀的情况 [例6.2-1]某变截面方形柱受荷情况如图6-5所示,F=40KN 上柱高3m 边长为240mm,下柱高4m 边长为370mm ,E=0.03×105 Mpa 。试求:该柱顶面A 的位移。 解:1.绘内力图 图6-5 二、横向变形 1、横向变形 (公式6-1) 2.横向变形因数或泊松比 (公式6-2) 【例6.2-2】 一矩形截面钢杆,其截面尺寸b ×h =3mm ×80mm ,材料的E =200GPa 。经拉伸试验测得:在纵向100mm 的长度内,杆伸长了0.05mm ,在横向60mm 的高度内杆的尺寸缩小了0.0093mm ,试求:⑴ 该钢材的泊松比;⑵ 杆件所受的轴向拉力F P 。 解:(1)求泊松比。 求杆的纵向线应比ε 求杆的横向线应变ε′ 求泊松比μ (2)计算杆受到的轴向拉力 由虎克定律σ=ε·E 计算图示杆件在F P 作用下任一横截面上的正应力 σ=ε·E =5×10-4×200×103=100MPa 333 3 52522.4010310120104100.03102400.03103701.86BC BC AB AB AB BC AB BC N l N l l l l EA EA ?=?+?=+-???-???=+ ????=-求变形: a a d -1=?a a ?-= 'εε εν' =νεε-='4105100 05 .0-?==?= l l ε4 '1055.160 0093.0-?-=-=?=a a ε31.010 51055.14 4 '=??-==--εεμA F N = σ

专业ABAQUS有限元建模经验笔记

基于ABAQUS的有限元分析和应用 第一章绪论 1.有限元分析包括下列步骤: 2.为了将试验数据转换为输入文件,分析者必须清楚在程序中所应用的和由实验人员提供的材料数据的应力和应变的度量。 3.ABAQUS建模需注意以下内容: 4.对于许多包含过程仿真的大变形问题和破坏分析,选择合适的网格描述是非常重要的,需要认识网格畸变的影响,在选择网格时必须牢牢记住不同类型网格描述的优点。 第二章ABAQUS基础 1.一个分析模型至少要包含如下的信息:离散化的几何形体、单元截面属性、材料数据、载荷和边界条件、分析类型和输出要求。 ①离散化的几何形体:模型中所有的单元和节点的集合称为网格。 ②载荷和边界条件: 2.功能模块: (1)Assembly(装配):一个ABAQUS模型只能包含一个装配件。 (2)Interaction(相互作用):相互作用与分析步有关,这意味着用户必须规定相互作用是在哪些分析步中起作用。 (3)Load(载荷):载荷和边界条件与分析步有关,这意味着用户指定载荷和边界条件是在哪些分析步中起作用。 (4)Job(作业):多个模型和运算可以同时被提交并进行监控。 3.量纲系统 ABAQUS没有固定的量纲系统,所有的输入数据必须指定一致性的量纲系统,常用的一致性量纲系统如下:

4.建模要点 (1)创建部件:设定新部件的大致尺寸的原则必须是与最终模型的最大尺寸同一量级。(2)用户应当总是以一定的时间间隔保存模型数据(例如,在每次切换功能模块时)。(3)定义装配: 在模型视区左下角的三向坐标系标出了观察模型的方位。在视区中的第2个三向坐标系标出了坐标原点和整体坐标系的方向(X,Y和Z轴)。 (4)设置分析过程: (5)在模型上施加边界条件和荷载: 用户必须指定载荷和边界条件是在哪个或哪些分析步中起作用。 所有指定在初始步中的力学边界条件必须赋值为零,该条件是在ABAQUS/CAE中自动强加的。 在许多情况下,需要的约束方向并不一定与整体坐标方向对齐,此时用户可定义一个局部坐标系以施加边界条件。 在ABAQUS中,术语载荷通常代表从初始状态开始引起结构响应发生变化的各种因素,包括:集中力、压力、非零边界条件、体力、温度(与材料热膨胀同时定义)。

结构设计之刚度比详解

第三章 刚度比 2014.7.16 一、定义: 刚度比是指结构竖向不同楼层的侧向刚度比值。 二、计算公式: ⑴规范要求: ①、②《抗震规范》第3.4.2和3.4.3条及《高规》第3.5.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ③《高规》第E.0.2条规定当转换层设置在第2层以上时,按本规程式(3.5.2-1)计算的转换层与其相邻上层的侧向刚度比不应小于0.6。 ④《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 框架:i 1i 1i i △△++=V V γ ;其他(框剪、剪…):1 i i i 1i 1i i h h +++?=△△V V γ 详见《高规》P15 ⑶应用范围: ①《抗震规范》第3.4.2和3.4.3条用来判断竖向不规则 ②《高规》第3.5.2条规定的工程刚度比计算。用来避免竖向不规则 ③《高规》第E.0.2条用来计算转换层在二层以上时的侧向刚度比 ④《抗震规范》第6.1.14条规定的工程的刚度比的计算方法1。用于判断地下室顶板能否作为上部结构的嵌固端。 注:SATWE 软件在进行“地震剪力与地震层间位移比”的计算时“地下室信息”中的“回填土对地下室约束相对刚度比”里的值填“0”; 2、按剪切刚度计算 ⑴规范要求: ①《高规》第E.0.1条规定:当转换层设置在1、2层时,可近似采用转换层与其相邻上层结构的等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应小于0.4,抗震设计时γ不应小于0.5。 ②《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 1 22211h h ?=A G A G γ 详见《高规》P177 ⑶应用范围: ①《高规》第E.0.1条用来计算转换层在一二层时的侧向刚度比 ②《抗震规范》第6.1.14条规定的工程的刚度比的计算方法2。用于判断地下室顶板能否作为上部结构的嵌固端。 3、按剪弯刚度计算 ⑴规范要求: ①《高规》第E.0.3条规定:当转换层设置在第二层以上时,尚宜采用图E 所示的计算模型按公式(E.0.3)计算转换层下部结构与上部结构的等效侧向刚度比γe 2。γe 2宜接近1,非抗震设计时γe 不应小于0.5,抗震设计时γe 不应小于0.8。 ⑵计算公式: 2 112H H △△=γ 详见《高规》P178

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

第四章扭转的强度与刚度计算.

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

abaqus 有限元分析(齿轮轴)

Abaqus分析报告 (齿轮轴) 名称:Abaqus齿轮轴 姓名: 班级: 学号: 指导教师:

一、简介 所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。 图1.齿轮轴装配结构图 二、模型建立与分析 通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。 1.part 针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。 2.材料属性 材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性 截面类型定义为solid,homogeneous。 4.组装 组装时选择dependent方式。 5.建立分析步 本例用通用分析中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。 边界条件:分别在三个轴径突变处采用固定约束,如图2。 载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。 均布载荷比计算: 矩形键槽数据: 长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm 齿轮数据:= 齿轮分度圆半径:R2 =14.7mm、压力角:20°、 单个齿轮受力面积:S2 ≈72mm2 通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷

支架的有限元分析ABAQUS

支架的线性静力学分析实例:建模和分析计算 在此实例中读者将学习ABAQUS/CAE的以下功能。 1) Sketch功能模块:导人CAD二维图形,绘制线段、圆弧和倒角,添加尺寸,修改平面图,输出平面图。 2) Part功能模块:通过拉伸来创建几何部件,通过切割和倒角未定义几何形状。 3) Property功能模块:定义材料和截面属性。 4) Mesh功能模块:布置种子,分割实体和面,选择单元形状、单元类型、网格划分 技术和算法,生成网格,检验网格质量,通过分割来定义承受载荷的面。 5) Assembly功能模块:创建非独立实体。 6) Step功能模块:创建分析步,设置时间增量步和场变量输出结果。 7) Interaction功能模块:定义分布榈合约束(distributing coupling constraint)。 8) Load功能模块:定义幅值,在不同的分析步中分别施加面载荷和随时间变化的集中力,定义边界条件。 9) Job功能模块:创建分析作业,设置分析作业的参数,提交和运行分析作业,监控运行状态。 10) Visualization功能模块:后处理的各种常用功能。 结构静力学分析(static analysis)是有限元法的基本应用领域,适用于求解惯性及阻尼对结构响应不显著的问题。主要用来分析由于稳态外载荷引起的位移,应力和应变等。本章的静力学分析实例按照ABAQUS工程分析的流程对支架进行线性静力学分析,通过实例基本掌握了分析的流程,同时了解接触的定义。 1.问题描述 所示的支架,一端牢固地焊接在一个大型结构上,支架的圆孔中穿过一个相对较软的杆件,圆孔和杆件用螺纹连接。材料的弹性模量E=2100000MPa,泊松比为0.3。

扭转习题解答

第7章圆轴扭转 主要知识点:(1)圆轴扭转的概念、扭矩和扭矩图; (2)圆轴扭转时的应力和强度计算; (3)圆轴扭转时的变形和刚度计算。 圆轴扭转的概念、扭矩和扭矩图 1.已知圆杆横截面上的扭矩,试画出截面上与T对应的切应力分布图。 解:截面上与T对应的切应力分布图如下: 2.用截面法求下图所示各杆在1-1、2-2、3-3截面上的扭矩。 图7-2 解:a)采用截面法计算扭矩(见图7-2a)。

取1-1截面左侧外力偶矩计算,可得m kN T ?-=-311。 取2-2截面左侧外力偶矩计算,由平衡方程062122=+?-+-T m kN )(,可得m kN T ?=-322。 取3-3截面右侧外力偶矩计算,可得m kN T ?=-133。 b) 采用截面法计算扭矩(见图7-2b )。 取1-1截面左侧外力偶矩计算,可得m kN T ?-=-511。 取2-2截面左侧外力偶矩计算,由平衡方程05522=+?+-T m kN )( ,可得m kN T ?-=-1022。 取3-3截面右侧外力偶矩计算,由平衡方程03333=+?+-T m kN )( ,可得m kN T ?-=-633。 3. 作下图各杆的扭矩图。 解:a)采用截面法计算扭矩(见图7-3a )。取1-1截面左侧外力偶矩计算,可得m kN T ?=-411。取2-2截面右侧外力偶矩计算,可得m kN T ?-=-222。作出扭矩图。 a) b) 图7-3 b) 由力矩平衡方程可得e A M M 2-=(负号表示与图中假设方向相反)。采用截面法计算 扭矩(见图7-3b )。取1-1截面左侧外力偶矩计算,可得e M T 211-=-。取2-2截面右侧外力偶矩计算,可得e M T -=-22。作出扭矩图。 圆轴扭转时的应力和强度计算 4. 实心圆轴和空心轴通过牙嵌离合器而连接,如图所示。已知轴的转速n =100r/min ,传递的功率P=7.5kW ,材料的许用应力][τ=40MP a ,试通过计算确定 (1) 采用实心轴时,直径d 1和的大小; (2) 采用内外径比值为1/2的空心轴时,外径D 2的大小。 解:计算外力偶矩,作用在轴上的外力偶矩: m N m N n P T ?=??==716100 5.795509550 (1)采用实心轴时,直径d 1的大小应满足下式:

ABAQUS+计算+动刚度+详细说明

F(ω)=F0×sin(ωt) 输入激励力 当使用abaqus-steady-state daynmics modal, 其中20-1000即为激励力的最低频率和最高频率。

开始模态和结束模态要覆盖上图所示的激励力的最低频率和最高频率,选择直接阻尼,即每阶模态的临界阻尼比3%,(典型的取值范围在1%-10%)

Ma+cv+kx= F0×sin(ωt) 其中F0是固定的数值(简谐力的幅值),且频率由20Hz 变化到1000Hz 。f ??=πω2 位移阻抗(动刚度):()()() ωωωx F K = ()()t F F ωωsin 0?= 为输入激励力,是一个谐波输入。 ()() θωω+?=t x x sin 0 为输出稳态位移响应,根据振动理论,稳态位 移响应的频率与输入激励力的频率相同,振幅 0x 和相位角θ均取决与系统本身的物理性质(质量,弹簧刚度,阻尼)和激振力的性质(频率与振幅),而与初始条件无关,初始条件仅影响系统的瞬态响应的振幅和初始相位角。 ()ωK ,表示,在某频率下,产生单位位移振幅所需要的激振力幅 值。实际情况下,频率不同,刚度也不同。 假设()ωK =10N/m ,及动刚度在任意频率都是固定的,不随频率的变化而变化(理想情况),即在任意频率激振下,产生1m 单位位移振幅所需要的激振力幅值为10N 。 假设()ωF 的幅值为1 ,()ωK =10N/m ()ωx 的幅值x =()()ωωK F =101 特点:位移响应的幅值与频率没有关系,且是固定值。 由于在abaqus 中可方便的输出某个点的位移,速度,加速度。所以通常以某个点的位移,速度,加速度来表征动刚度的大小。

高层设计 层刚度比的理解与计算方法

(一)地震力与地震层间位移比的理解与应用 ⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ⑵计算公式:Ki=Vi/Δui ⑶应用范围: ①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。 ②可用于判断地下室顶板能否作为上部结构的嵌固端。 (二)剪切刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2.计算公式见《高规》151页。 ②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2.其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。 ⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。 ⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。 (三)剪弯刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe 不应大于2,抗震设计时γe不应大于1.3.计算公式见《高规》151页。 ②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.wendangku.net/doc/2316207627.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

材料的抗弯刚度计算

内支撑的支锚刚度如何计算? 答:桩计算时采用的刚度为分配到每个桩上的刚度。软件计算中自动用交互的“支锚刚度”先除以交互的“水平间距”再乘以“桩间距”(如是地下连续墙乘1),换算成作用在每根桩或者单位宽度墙上的刚度,进行支护构件计算。 在单元计算中需要用户按照如下方法输入,在整体计算中软件可以自动计算。 ①方法一:可以输入按《基坑支护技术规程附录C》方法计算的刚度,此时在“水平间距”栏需输入“桩间距”(如果是地下连续墙输入1)。 《基坑支护技术规程附录C》对水平刚度系数kT计算公式为: 附件: 您所在的用户组无法下载或查看附件 式中: kT ——支撑结构水平刚度系数; ——与支撑松弛有关的系数,取0.8~1.0; E ——支撑构件材料的弹性模量(N/mm2); A ——支撑构件断面面积(m2); L ——支撑构件的受压计算长度(m); s ——支撑的水平间距(m); sa ——计算宽度(m),排桩用桩间距,地下连续墙用1。 ②方法二:可在“支锚的水平间距”和“桩间距”都输入实际的间距,此时交互的支锚刚度就应是整根支撑的刚度;即采用公式的前半部分, 这两个方法算出来的结果好像不一样吧,望楼主再发帖前先自己试验一下,不然会误导我们 E是混凝土的弹性模量,数值大小与混凝土强度等级有关,具体可以查混凝土结构设计规范相关条文。I值为构件截面惯性矩,L为构件计算长度,则EI/L则为构件线刚度。这也是结构力学中弯矩分配主要依据 材料的抗弯刚度计算,实际上就是对材料制成的构件进行变形(即挠度)控制的依据,计算方法的由来,应该是从材料的性能特征中得到的: 第一个特性决定材料的抗压强度和抗拉强度,当材料的抗拉强度决定构件的承载力时,因其延伸率很大,而表现出延性破坏特征,反之即为脆性破坏。如抗弯适筋梁和超筋梁,大小偏心受压。而抗剪构件,在桁架受力模型中,不存在强度正比关系(抗弯尽管也不是严格意义上的正比关系,但基本接近正比),而只是双线性关系,所以,其适筋时的延性也不如抗弯适筋梁,只就是概念设计中的强剪弱弯的由来;

第四章 扭的强度与刚度计算

一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C m (d ) (e ) 图19-5 (b )

Abaqus有限元分析中的沙漏效应

Abaqus有限元分析中的沙漏效应[转] 2011-09-21 17:34:27| 分类:有限元 | 标签: |字号大中小订阅 1. 沙漏的定义 沙漏hourglassing一般出现在采用缩减积分单元的情况下: 比如一阶四边形缩减积分单元,该单元有四个节点“o”,但只有一个积 分点“*”。而且该积分点位于单元中心位置,此时如果单元受弯或者受剪,则必然会发生变形,如下图a所示。 关于沙漏问题,建议看看abaqus的帮助文档,感觉讲的非常好,由浅入深,把深奥的东西讲的很容易理解。 沙漏的产生是一种数值问题,单元自身存在的一种数值问题,举个例子,对于单积分点线性单元,单元受力变形没有产生应变能--也叫0能量模式,在 这种情况下,单元没有刚度,所以不能抵抗变形,不合理,所以必须避免这种情况的出现,需要加以控制,既然没有刚度,就要施加虚拟的刚度以限制沙漏 模式的扩展---人为加的沙漏刚度就是这么来的。 关于沙漏现象的判别,也就是出现0能模式的方法最简单的是察看单元变 形情况,就像刚才所说的单点积分单元,如果单元变成交替出现的梯形形状, 如果多个这样的单元叠加起来,是不是象我们windows中的沙漏图标呢? ABAQUS中沙漏的控制: *SECTION CONTROLS:指定截面控制 警告:对于沙漏控制,使用大于默认值会产生额外的刚度响应,甚至当值 太大时有时导致不稳定。默认沙漏控制参数下出现沙漏问题表明网格太粗糙, 因此,更好的解决办法是细化网格而不是施加更大的沙漏控制。 该选项用来为减缩积分单元选择非默认的沙漏控制方法,和standard中的修正的四面体或三角形单元或缩放沙漏控制的默认系数;在explicit中,也 为8节点块体单元选择非默认的运动方程:为实体和壳选择二阶方程、为实体 单元激活扭曲控制、缩放线性和二次体积粘度、设置当单元破损时是否删除他们、或为上述完全破损的单元指定一标量退化参数。等 必需参数: NAME:名字 可选参数: DISTORTION CONTROL:只用于explicit分析。=YES激活约束防止负体积 单元出现或其他可压缩材料的过度变形,这对超弹材料是默认的。DISTORTION

abaqus有限元分析简支梁

1.梁C 的主要参数: 其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa 受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa 2.混凝土及钢筋的本构关系 1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度: 其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:

其中123.0, 6.93c c == 3、损伤因子: 其中c h = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性 5、名义应力应变和真实应力及对数应变的转换: ln (1)ln(1)true nom nom Pl true nom E σσεσε ε=+=+- 6、混凝土最终输入的本构关系如下: compressive behavior tensile behavior tension damage yield stress inelastic strain yield stress displacement parameter displacement 21.50274036 2.721 25.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.0043806

刚度校核

刚度校核 l.轴的弯曲刚度校核计算 2.轴的扭转刚度校校计算 l.轴的弯曲刚度校核计算 常见的轴大多可视为简文梁。若是光轴,可直接用材料力学中的公式计算其挠度或偏转角;若是阶梯轴,如果对计算精容要求不高,则可用当量直径法作近似计算。把阶梯轴看成是当量直径为dv的光轴,然后再按材料力学中的公式计算。当量直径为 式中:l i——阶梯轴第i段的长度,mm; d i——阶梯轴第i段的直径,mm; L——阶梯轴的计算长度;m。; Z——阶梯轴计算长度内的轴段数。 当载荷作用干两支承之间时,L=l(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度)。 轴的弯曲刚度条件为: 挠度 偏转角 式中:[y]——轴的允许挠度,mm,见表15-5; [θ]——轴的允许偏转角,rad,见表15-5。

表15-5 轴的允许挠度及允许偏转角 2.轴的扭转刚度校校计算 轴的扭转变形用每米长的扭转角p来表示。圆轴扭转角P的计算公式为: 光轴 阶梯轴 式中:T——轴所受的扭矩,N·mm; G——轴的材料的剪切弹性模量,MPa,对于钢材,G=8.1*104MPa; I p——轴截面的极惯性矩,mm4,对于圆轴,I p= d4/32 L——阶梯轴受扭矩作用的长度,mm; T i、l i、I pi——分别代表阶梯轴第i段上所受的扭矩、长度和极惯性矩,单位同前; z——阶梯轴受扭矩作用的轴段数。 轴的扭转刚度条件为

?≤[?] ( °)/m 式中[?] 为轴每米长的允许扭转角,与轴的使用场合有关。对于一般传动轴,可取[?]=0.5-1( °)/m;对于精密传动轴,可取[?]=0.25-0.5( °)/m;对于精度要求不高的轴,[?]可大于1( °)/m。 表15-4 抗弯,抗扭截面系数计算公式 注:近似计算时,单,双键槽一般可忽略,花键轴截面可视为直径等于平均直径的圆截面。

空气弹簧刚度计算公式

空气弹簧刚度计算公式 1. 载荷与气压关系式: )A p (p P a -= ----(1) 式中: P 载荷 p 气囊内绝对气压 A 气囊有效承压面积 a p 标准大气压,其值与运算单位有关: 采用N 、mm 时,a p =0.0981≈0.1N/mm 2 采用kgf 、cm 时,a p =1 kgf/cm 2 采用1b 、in 时,a p =14.223 lb/in 2(psi) 2. 气压与容积变化关系式―――气体状态方程式 m )V V (p p 00= 式中: p 任一位置气囊内气体的绝对气压 V 任一位置气囊内气体容积 0p 静平衡位置气囊内气体的绝对气压 0V 静平衡位置气囊内气体容积 m 多变指数,静态即等温过程 m =1; 动态即绝热过程 m =1.4; 一般状态,可取 m =1.33。 3. 刚度:弹性特性为弱非线性,取其导数,即 dx dP K = 式中: K 任一位置的刚度 P 载荷 x 气囊变形量即行程 即: dx )A]p d[(p K a -= dx )A]p V V d[(p a m m 00-= dx dV V V Amp dx dA )p V V (p 1m m 00a m m 00?--=+ ----(2)

当气囊处在平衡位置时, V =0V , p =0p , dx dV =-A , 即: 020a 00V A mp dx dA )p (p K +-= ----(3) 在平衡位置时之偏频: 0a 000)V p (p mgA p dx dA A g 2π1n -+?= (Hz) ----(4) 式中: dx dA 称为有效面积变化率; g 重力加速度。 可见,降低dx dA 、增大0V ,可降低0n ,提高平顺性。 P.S.有时采用相对气压p 1来运算更为方便: p 1 =p -a p ----(5) 代入式(1)即P = p 1 A 或:0p = a 10p p + 代入式(3) 即:02a 10100V A )p m(p dx dA p K ++= ----(6) 0 10a 100V mgA p p p dx dA A g 2π1n ?++?= (Hz) ----(7) 又∵2 D 4πA = D 为有效直径, ∴dx dD 2πD dx dA ?= 代入式(6) 0 2 a 10100V A )p m(p dx dD 2πDp K ++?= ----(8) 式中: dx dD 称为有效直径变化率。 dx dD 或dx dA 由空气弹簧制造商提供数据或曲线, 对囊式空气弹簧,一般dx dD =0.2--0.3, 对膜式空气弹簧,一般dx dD =0--0.2, 甚至有dx dD =-0.1,取决于活塞形状。

起重机刚度计算

第2章门式起重机支腿弯矩对主梁跨中挠度的影响 门式起重机与桥式起重机不同,其两端刚接支腿对主梁挠度有影响。桥式起重机可看成支腿高度为零的特殊门式起重机,因此研究门式起重机支腿弯矩对主梁挠度的影响更具有一般性。服役起重机在质检系统检验检测中,不考虑自重对挠度的影响。根据国家检规描述,在静载试验后, 将小车停在主梁跨中,起升额定载荷,测量跨中的下挠值。因此,整机额定载荷试验按一次超静定计算。当载荷处于跨中时,计算分析支腿弯矩、水平约束力和支腿惯性矩的变化对主梁挠度的影响具有重要意义。 2.1基于图乘法主梁挠度的分析及计算 门架结构按弹性小变形变化进行计算,理论上起重机主梁的挠度应通过分别计算门架平面和支腿平面内的静挠度相叠加而获得,但由于支腿平面内各构件宽度小,刚性强,变形更小,对总的静挠度贡献很小,可以忽略不计。因此,只在门架平面内进行分析计算[112]。此时门架结构简化为3个梁组成。设主梁CD为梁①,左侧支腿AC为梁②,右侧支腿BD为梁③。梁①跨度为L,梁②和梁③长为h,如图2-1所示,F为额定载荷。 图2-1 门架结构简化示意图 2.1.1水平约束力计算 首先,解除图1中B点水平约束,代之以X1,得到静定结构。由力法方程: δ11X1+Δ1F =0 (2-1)式中δ11—在B点沿X1的方向作用一单位力,B点沿X1方向仅因为这一单位力引起的位移,单位:mm/N; Δ1F—在X1的作用点沿X1方向,仅由载荷F引起的位移,单位:mm。

下面采用图乘法求δ11和Δ1F 。载荷F 和水平约束力X 1分别作用下的弯矩图如图2-2和图2-3所示。 由虚功原理: 2111111112422428F F L M M FL L FL L FL h dx h h EI EI EI --???==+= ???? (2-2) 233 1111123 33Z Z M M Lh h h dx EI EI EI EI δ==++? (2-3) 232311*********Z Z Z Z F Z Z I I L FL h I I L I I h X I I h δ?=- =++ (2-4) 式中 I 1—主梁截面惯性矩,单位:m 4; I Z2 、I Z3—左、右侧支腿折算惯性矩[112], 单位:m 4。文中的惯性矩无特殊说明均指门架平面内的惯性矩。 图2-2 载荷F 作用下弯矩图M F 图2-3 当水平约束力X 1=1时的弯矩图1M 2.1.2 载荷和支腿弯矩共同作用下的挠度?b 求挠曲方程时,将原结构分解,如图2-4所示。图中M 2为梁②在C 点对主梁的弯矩,M 3为梁③在D 点对主梁的弯矩。先求解M 2和M 3 在主梁CD 上的挠曲方程。为求挠曲方程,假设一集中载荷P ,施加在距C 任意距离x 处,以左段分离体为研究对象: 图2-4主梁挠曲线计算简图 ①在P 的左侧,距离梁左端为x 0的任意截面上的弯矩M 为: ②在P 的右侧,距离梁左端为x 0的任意截面上的弯矩为: ③根据卡氏定理 [113],求P 作用点处的挠度。偏导数已求毕,即令假设集中荷载P=0。求挠曲方程。 式中:?m 为支腿弯矩作用下的挠曲方程,单位:mm 。

abaqus有限元建模小例子

问题一: 工字梁弯曲 1.1 问题描述: 在<<材料力学实验>>中,弯曲实验測定了工字梁弯曲应变大小及其分布,以验证弯曲正应力公式。在这里,採用ABAQUS/CAE建立试验件的有限元模型,ABAQUS/Standard模块进行分析求解,得到应力、应变分布,对比其与理论公式计算值及实验測量值的差別。 弯曲实验的相关数据: 材料:铝合金E=70GPa 泊松比0.3 实验装置结构简图如图所示: 结构尺寸测量值:H=50(+/-0.5mm) h=46(+/-0.5mm) B=40(+/-0.5mm) b=2(+/-0.02mm) a=300(+/-1mm) F1=30N Fmax=300N N ? F100 = 1.2 ABAQUS有限元建模及分析 一对象: 工字型截面铝合金梁 梁的结构简图如图1所示,結构尺寸、载荷、約束根据1.1设定,L取1600mm,两端各伸出100mm。 二用ABAQUS/CAE建立实验件的有限元模型,效果图如下: 边界条件简化: 左侧固定铰支座简化为下表面左参考点处的约束U1=U2=U3=0

右侧活动铰支座简化为下表面右参考点处的约束U1=U2=UR3=0 几何模型

有限元模型 三ABAQUS有限元分析結果 ①应力云图(Z方向正应力分量):施加载荷前 F=300N

②应变(Z方向分量): 中间竖直平面的厚度方向应变分布图: F=100N F=200N

F=300N 由上图可以看出应变沿着厚度方向呈线性比例趋势变化,与实验测得的应变值变化趋势相同。中性轴处应变均接近零值,应变与距离中性轴位移基本为正比关系。 1.3分析结果: 中间竖直截面上下边缘轴向应力数值对比:*10^-6 MPa 距中性轴距ABAQUS模拟实验测量值平均理论值 1/2H -96.182*70000 -97*70000 -6.9165=-70000*98.807 -1/2H 95.789*70000 92*70000 6.9165

相关文档
相关文档 最新文档