文档库 最新最全的文档下载
当前位置:文档库 › 第 一 节 多元函数的基本概念

第 一 节 多元函数的基本概念

第 一 节 多元函数的基本概念
第 一 节 多元函数的基本概念

第八章 多元函数微分法及其应用

一、学时分配

讲课学时:16学时 习题课学时:2学时 共18学时

二、基本内容

1.多元函数的概念、极限、连续性

2.偏导数、全微分、复合函数与隐隐约约函数的求导

3.多元函数微分学的几何应用

4.方向导数与梯度

5.多元函数的极值与最值。

三、教学要求

1.理解多元函数的基本概念;

2.理解多元函数偏导数的概念,熟练掌握多元函数偏导数、全微分的求法;

3.掌握多元复合函数、隐函数的求导法则;

4.理解多元函数微分学的几何应用,了解方向导数与梯度;

5.掌握多元函数极值的求法,并会应用其解决实际问题。

四、重点难点

1.重点:多元函数的偏导数的概念与求法,条件极值

2.难点:多元复合函数的求导

第 一 节 多元函数的基本概念

教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性

定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限.

教学重点:多元函数概念和极限,多元函数的连续性定理.

教学难点:计算多元函数的极限.

教学内容:

一、 平面点集

1. 邻域

设000(,)P x y 是xoy 平面上的一个点,δ是某一正数.与点000(,)P x y 距离小于δ的点(,)P x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即

00(,){}U P P PP δδ=<,

也就是

0(,){(,}U P x y δδ=<.

在几何上,),(0δP U 就是xoy 平面上以点000(,)P x y 为中心、0>δ为半径的圆内部的点),(y x P 的全体.

00(,){0}U P P PP δδ=<<称为点0P 的去心δ邻域.

2. 区域

设E 是平面上的一个点集,是平面上的一个点.如果存在点

的某一邻域,则称为的内点.显然,

的内点属于.

如果的点都是内点,则称为开集.例如,集合

中每个点都是的内点,因此为开集.

如果点的任一邻域内既有属于的点,也有不属于的点

(点本身可以属于,也可以不属于),则称为

的边界点.的边界点的全体称为的边界.例如上例中,

的边界是圆周和 .

如果对于任意给定的,的去心邻域内总有

的点,则称是的聚点.

设是点集.如果对于D 内任何两点都可用完全包含在D 中的折线连结起来,则称点集D 是连通的. 连通的开集称为区域或开区域.例如,}0),{(>+y x y x 及}41),{(22<+

开区域连同它的边界一起所构成的点集,称为闭区域,例如

{(,)1}x y x y +≤及22{(,)14}x y x y ≤+≤

都是闭区域.

对于平面点集E ,如果存在某一正数r ,使得

(,)E U O r ?,

其中O 是原点坐标,则称E 为有界点集,否则称为无界点集.例如,22

{(,)14}x y x y ≤+≤是有界闭区域,

{(,)1}x y x y +<是无界开区域.

3.n 维空间

n 元有序实数组12(,,

,)n x x x 的全体构成集合 12{(,,

,),1,2,,}n n i x x x x R i n =∈=R 。 元素12(,,

,)n x x x 通常也用单个字母x 表示,i x 称为x 的第i 个坐标。 在n R 中定义线性运算如下:

设12(,,,)n x x x =x ,12(,,,)n y y y =y 为n R 中的任意两个元素,R λ∈,规定:

1122(,,,)n n x y x y x y =+++x +y ,

12(,,,)n x x x λλλλ=x

这样定义了线性运算的集合n R 称为n 维空间。

二、多元函数概念

在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下:

例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系

h r V 2π=.

这里,当,r h 在集合(){},0,0r h r h >>内取定一对值(),r h 时,V 的对应值就随之确定.

例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 p =

V RT , 其中R 为常数.这里,当V 、T 在集合0{(,)0,}V T V T T >>内取定一对值(,)V T 时,p 的对应值就随之确定.

定义1 设D 是平面上的一个点集.称映射:f D R →为定义在D 上的二元函数,通常记为

),(y x f z =,(,)x y D ∈(或)(P f z =,P D ∈).

其中点集D 称为该函数的定义域,y x 、称为自变量,z 称为因变量.数集

}),(),,({D y x y x f z z ∈=

称为该函数的值域.

z 是y x ,的函数也可记为 ),(y x z z =, (,)z x y ?=等等.

类似地可以定义三元函数),,(z y x f u =以及三元以上的函数.一般的,把定义1中的平面点集D 换成n 维空间内的点集D ,则可类似地可以定义n 元函数),,,(21n x x x f u =.n 元函数也可简记为)(P f u =,这里点D x x x P n ∈),,,(21 .当1=n 时,n 元函数就是一元函数.当2≥n 时,n 元函数就统称为多元函数.

关于多元函数定义域,与一元函数类似,我们作如下约定:在一般地讨论用算式表达的多元函数()u f x =时,就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域.例如,函数)ln(y x z +=的定义域为

}0){(>++y x y x

(图8-1),就是一个无界开区域.又如,函数)arcsin(22y x z +=的定义域为

}1){(22≤++y x y x

(图8-2),这是一个有界闭区域.

设函数),(y x f z =的定义域为D .对于任意取定的点D y x P ∈),(,对应的函数值为),(y x f z =.这样,以x 为横坐标、y 为纵坐标、),(y x f z =为竖坐标在空间就确定一点 ),,(z y x M .当),(y x 遍取D 上的一切点时,得到一个空间点集

}),(),,(),,{(D y x y x f z z y x ∈=,

图8-1-1 图8-1-2 这个点集称为二元函数),(y x f z =的图形.通常我们也说二元函数的图形是一张曲面.

三、多元函数的极限

定义2 设二元函数),(y x f 的定义域为D ,),(000y x P 是D 的聚点.如果存在常数A ,对于任意给定的正数ε,总存在正数δ,使得当点0(,)(,)P x y D U P δ∈?时,都有ε<-A y x f ),( 成立,则称常数A 为函数),(y x f 当00(,)(,)x y x y →时的极限,记作

00(,)(,)lim (,)x y x y f x y A →=, 或 A y x f →),((00(,)(,)x y x y →).

为了区别于一元函数的极限,我们把二元函数的极限叫做二重极限.

我们必须注意,所谓二重极限存在,是指),(y x P 以任何方式趋于000(,)P x y 时,

函数都无限接近于A .因此,如果),(y x P 以某一种特殊方式,例如沿着一条直线或定曲线趋于000(,)P x y 时,即使函数无限接近于某一确定值,我们还不能由此断定函数的极限存在.但是反过来,如果当),(y x P 以不同方式趋于000(,)P x y 时,函数趋于不同的值,那么就可以断定这函数的极限不存在.下面用例子来说明这种情形.

考察函数

?????=+≠++=,0,

0,0,),(222222y x y x y x xy y x f 显然,当点),(y x P 沿x 轴趋于点)0,0(时,

(,)(0,0)00lim (,)lim (,0)0x y x y f x y f x →→===;又当点),(y x P 沿y 轴趋于点)0,0(时,(,)(0,0)0

0lim (,)lim (0,)0x y y x f x y f y →→===. 虽然点),(y x P 以上述两种特殊方式(沿x 轴或沿y 轴)趋于原点时函数的极限存在并且相等,但是(,)(0,0)lim (,)x y f x y →并不存在.这是因为当点),(y x P 沿着直线kx y =趋于点)0,0(时,有

2222222(,)(0,0)0lim lim 1x y x y kx

xy kx k x y x k x k →→===+++, 显然它是随着k 的值的不同而改变的.

例3 求 (,)(0,2)sin()lim

x y xy x

→. 解 这里x xy y x f )sin(),(=的定义域为{}(,)0,D x y x y R =≠∈,0(0,2)P 为D 的聚点.由极限运算法则得

(,)(0,2)02sin()sin()lim

lim lim 122x y xy y xy xy y x xy →→→=?=?=. 四、多元函数的连续性

定义3 设函数),(y x f 在开区域(闭区域)D 内有定义,),(000y x P 是D 聚点,且D P ∈0.如果

0000(,)(,)lim (,)(,)x y x y f x y f x y →=,

则称函数),(y x f 在点),(000y x P 连续.

如果函数),(y x f 在开区域(或闭区域)D 内的每一点连续,那么就称函数),(y x f 在D 内连续,或者称),(y x f 是D 内的连续函数.

若函数),(y x f 在点),(000y x P 不连续,则称0P 为函数),(y x f 的间断点.这里顺便指出:如果在开区域(或闭区域)D 内某些孤立点,或者沿D 内某些曲线,函数),(y x f 没有定义,但在D 内其余部分都有定义,那么这些孤立点或这些曲线上的点,都是函数),(y x f 的不连续点,即间断点.

前面已经讨论过的函数

222222,0,(,)0,0,xy x y x y

f x y x y ?+≠?+=??+=?

当(,)(0,0)x y →时的极限不存在,所以点)0,0(是该函数的一个间断点.二元函数的间断点可以形成一条曲线,例如函数

11sin

22-+=y x z 在圆周122=+y x 上没有定义,所以该圆周上各点都是间断点.

一元函数中关于极限的运算法则,对于多元函数仍然适用.即多元连续函数的和、差、积仍为连续函数;连续函数的商在分母不为零处仍连续;多元连续函数的复合函数也是连续函数.

由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的,能用一个式子表示出来的多元函数,称为多元初等函数.

多元初等函数在其定义区域上都是连续的.

例4 求(,)(1,2)lim

x y x y xy →+. 解 函数 xy y x y x f +=

),(是初等函数,它的定义域为}0,0),{(≠≠=y x y x D .

因D 不是连通的,故D 不是区域.但}0,0),{(1>>=y x y x D 是区域,且D D ?1 ,所以D 是函数),(y x f 的一个定义区域.因10)2,1(D P ∈, 故

(,)(1,2)3lim

(1,2)2x y x y f xy →+==. 如果这里不引进区域1D ,也可用下述方法判定函数),(y x f 在点)2,1(0P 处是连续的:因0P 是),(y x f 的定义域D 的内点,故存在0P 的某一邻域D P U ?)(0,而任何邻域都是区域,所以)(0P U 是),(y x f 的一个定义区域,又由于),(y x f 是初等函数,因此),(y x f 在点0P 处连续.

一般地,求)(lim 0

P f P P →,如果)(P f 是初等函数,且0P 是)(P f 的定义域的内点,则)(P f 在点0P 处连续,于是)()(lim 00

P f P f P P =→.

例5 求(,)(0,0)lim x y →

(,)(0,0)lim x y →(,)lim x y →=(,)lim x y →2

1. 与闭区域上一元连续函数的性质相类似,在有界闭区域上多元连续函数也有如下性质.

性质1(最大值和最小值定理) 在有界闭区域 D 上的多元连续函数,在D 上一定有最大值和最小值.这就是说,在D 上至少有一点1P 及一点2P

,使得)(1P f 为最大值而)(2P f 为最小值,即对于一切P ∈D, 有 )()()(12P f P f P f ≤≤.

性质2(介值定理) 在有界闭区域D 上的多元连续函数,必取得介于最大值和最小值之间的任何值. 一切多元初等函数在其定义区域内是连续的.所谓定义区域是指包含在定义域内的区域或闭区域. 由多元初等函数的连续性,如果要求它在点0P 处的极限,而该点又在此函数的定义区域内,则极限值就是函数在该点的函数值,即

)()(lim 00P f P f P P =→

小结与思考:

本节在一元函数的基础上,讨论多元函数的基本概念.讨论中我们以二元函数为主,针对二元函数的极限及连续予以重点介绍.从二元函数到二元以上的多元函数则可以类推. 设集合22{(,)1}A x y x y =+≤,22{(,)49}B x y x y =≤+≤,问E A B =?是否为区域?

作业:

作业卡P7-8

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

函数的基本概念练习

第 1 页 共 1 页 函数的基本概念 一、知识归纳: 1、映射: 2、函数的定义: 3、函数的三要素: 4、函数的表示: 二、题型归纳: 1、有关映射概念的考察; 2、求函数的定义域; 3、求函数的解析式: 4、求函数的值域。 三、练习: 1、设B A f →:是集合A 到集合B 的映射,则下列命题正确的是( ) A 、A 中的每一个元素在B 中必有象 B 、B 中的每一个元素在A 中必有原象 C 、B 中的每一个元素在A 中的原象是唯一的 D 、A 中的不同元素的象不同 3、已知A={1、2、3、 4、5},对应法则f :1)3(2 +-→x x ,设B 为A 中元素在f 作用下的象集,则B = 。 4、设函数f(x)=132 +-x x ,则f(a)-f(-a)= 。 5、设(x ,y )在映射f 下的象是(x +y ,x -y ),则象(1,2)的原象是 ( ) A .(3,1) B .)21,23 (- C .(-1,3) D .)2 3,21(- 6、已知函数 =???>+-≤+=)]25([,) 1(3)1(1)(f f x x x x x f 则 . 7、函数y =f(x)的图像与直线x =4的交点个数为 ( ) (A )至多一个(B )至少一个(C )必有一个(4)一个、两个或无穷多个 8、由函数1)(2++= mx mx x f 的定义域是一切实数,则m 的取值范围是 ( ) A .(0,4] B .[0,1] C .[0,4] D .[4,+∞) 9、下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2 B .f (x )=1,g(x )=x 0 C .f (x )=|x |,g(x )=2 x D .f (x )=|x |,g(x )=? ??-∞∈-+∞∈)0,(,) ,0(,x x x x 10、函数y =1122---x x 的定义域为 ( ) A .{x |-1≤x ≤1} B .{x |x ≤-1或x ≥1} C .{x |0≤x ≤1} D .{-1,1} 3、已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为 ( ) A .(-1,0) B .[-1,1] C .(0,1) D .[0,1] 6、已知y=f(x)的定义域为R ,f(x+2)=-f(x),f(1)=10,则f(9)的值为( ) A .10 B .-1 C .0 D .不确定 7、设f (x -1)=3x -1,则f (x )=__ _______. 8、已知函数f ( 2x + 1 )的定义域为(0,1),则f ( x ) 的定义域为 。 9、函数)1(-x f 的定义域是[0,2],则)2(+x f 的定义域是 。 11、已知f ( x ) = 2 21x x +,那么f ( 1 ) + f ( 2) + f (2 1) + f ( 3 ) + f( 31 ) + f ( 4 ) + f ( 4 1 ) = 。 13、 14、 ). ()1(x f x x x f ,求已知函数满足+=+的解析式。,求已知函数)(1 2)1(2 x f x x x f +=

多元函数微分学复习题集与答案解析

第八章 多元函数微分法及其应用 复习题及解答 一、选择题 1. 极限lim x y x y x y →→+00 242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于 12 (D) 存在且不等于0或1 2 2、设函数f x y x y y x xy xy (,)sin sin =+≠=? ????1100 ,则极限lim (,)x y f x y →→0 = ( C ) (提示:有界函数与无穷小的乘积仍为无穷小) (A) 不存在 (B) 等于1 (C) 等于0 (D) 等于2 3、设函数f x y xy x y x y x y (,)=++≠+=??? ? ?22 2222000 ,则(,)f x y ( A ) (提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx = , 20 0(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以, (,)f x y 在整个定义域内处处连续.) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件 (B)充分而非必要条件 (C)充分必要条件 (D)既非充分又非必要条件 5、设u y x =arctan ,则??u x = ( B ) (A) x x y 22 + (B) - +y x y 22 (C) y x y 22 + (D) -+x x y 22 6、设f x y y x (,)arcsin =,则f x '(,)21= ( A ) (A )-1 4 (B ) 14 (C )-12 (D )1 2 7、设y x z arctan =,v u x +=,v u y -=,则=+v u z z ( C )

第八章多元函数微分法及其应用

第八章多元函数微分法及其应用 第一节多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、区域 1.邻域 设P o(x°,y。)是xoy平面上的一个点,是某一正数。与点P o(X o,y°)距离小于:的 点p(x,y)的全体,称为点p的「?邻域,记为U(P0,、),即 U(P°,、)= {P PPo < }, 也就是 U (P o,、)= {(X, y)丨..(X -X。)2(y - y o)2、}。 在几何上,U(P o「J就是xoy平面上以点p o(x o,y。)为中心、:-0为半径的圆内部 的点P(x,y)的全体。 2.区域 设E是平面上的一个点集,P是平面上的一个点。如果存在点P的某一邻域U(P) E, 则称P为E的内点。显然,E的内点属于E。 如果E的点都是内点,则称E为开集。例如,集合E, ={(x, y)1 vx2+ y2£4}中每个点都是E,的内点,因此E,为开集。 如果点P的任一邻域内既有属于E的点,也有不属于E的点(点P本身可以属于E,也可以不属于E ),则称P为E的边界点。E的边界点的全体称为E的边界。例如上例中,E ,的边界是圆周x2 y2 = 1和x2 y2=4o

设D是点集。如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于 D,则称点集D是连通的。 连通的开集称为区域或开区域。例如,{(x, y) x + y a 0}及{( x, y)d 0}及{(x, y) | 1< x y <4} 都是闭区域。 对于平面点集E ,如果存在某一正数r,使得 E U(0,r), 其中0是原点坐标,则称E为有界点集,否则称为无界点集。例如,{(x,y) | K x2 y2< 4}是有界闭区域,{(x, y) | x y>0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1圆柱体的体积V和它的底半径r、高h之间具有关系 V =二r2h 。 这里,当r、h在集合{(r,h) r 0,h 0}内取定一对值(r,h)时,V的对应值就随之确定。 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 RT P =— V 其中R为常数。这里,当V、T在集合{(V,T) V >0,T >T0}内取定一对值(V,T)时,p的 对应值就随之确定。 定义1设D是平面上的一个点集。称映射 f : D》R为定义在D上的二元函数,通 常记为 z 二f(x, y) , (x, y) D (或z 二f(P) , P D )。 其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。数集

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

多元函数微分习题

多元函数微分学 1.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 2.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连 续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 3.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31,31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2,91,91(2- 答:A 4.函数z f x y =(.)在点(,)x y 00处具有两个偏导数f x y f x y x y (,),(,)0000 是函数存在全 微分的( )。 (A).充分条件 (B).充要条件 (C).必要条件 (D). 既不充分也不必要 答C 5.对于二元函数z f x y =(,),下列有关偏导数与全微分关系中正确的命题是 ( )。 (A).偏导数不连续,则全微分必不存在 (B).偏导数连续,则全微分必存在 (C).全微分存在,则偏导数必连续 (D).全微分存在,而偏导数不一定存在 答B 6.二元函数z f x y =(,)在(,)x y 00处满足关系( )。 (A).可微(指全微分存在)? 可导(指偏导数存在)?连续 (B).可微?可导?连续 (C).可微?可导或可微?连续,但可导不一定连续 (D).可导?连续,但可导不一定可微 答C

18.2多元函数的基本概念教案

18. 2多元函数的基本概念 一、. 多元函数概念 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 V =πr 2h . 这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定. 例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 RT P V =, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定. 例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系 2 121R R R R R +=. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定. 定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为 z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D ) 其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量. 上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ). 值域: f (D )={z | z =f (x , y ), (x , y )∈D }. 函数的其它符号: z =z (x , y ), z =g (x , y )等. 类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数. 一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为 u =f (x 1, x 2, ? ? ? , x n ), (x 1, x 2, ? ? ? , x n )∈D , 或简记为 u =f (x ), x =(x 1, x 2, ? ? ? , x n )∈D , 也可记为 u =f (P ), P (x 1, x 2, ? ? ? , x n )∈D . 关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

函数的基本概念及表示法

题一:定义集合{1,2,…,n }到{1,2,…,n }上的函数f :k →i k ,k =1,2,…,n .记作:121,2,,,,,n n i i i ?? ??? . 设121,2,,,,,n n f i i i ??= ??? ,12 1,2,,,,,n n g j j j ??= ??? (这里的j 1,j 2,…,j n n j j j ,,,21 也是1,2,…,n 这n 个整数的一个排列).定义g f 12 1,2,,,,,n n i i i ??= ??? 121,2,,,,,n n j j j ?? ??? ,其中)]([)(k g f k g f = ,k =1,2,…,n ..则? ?? ? ?????? ??4,5,1,2,35,4,3,2,13,1,2,4,55,4,3,2,1= 题二:在加工爆米花的过程中,爆开且不糊的粒数占加工总数的比率称为可食用率p .它的大小主要取决于加工时间t (单位:分钟). 做了三次实验,数据记录如图所示.已知图中三个点都在函数p =-0.2t 2+bt +c 上,则由此得到的理论最佳加工时间为 分钟. 题三:3,10 ()((5)),10x x f x f f x x -≥?=?+

函数概念的产生及其历史演变

《函数》整体学习指导 函数的概念和基本性质(单调性、奇偶性) 解读:该部分学习意在通过对函数基本概念的理解(函数的概 念)、巩固(分段函数)和加深(映射的概念)(教材中先函数后映 射遵循概念发展的历史过程);基本性质的学习(为什要只重点研 究函数的这几个性质?水浒传里有108将,但是只对武松、鲁智深、 林冲等十几个人着力刻画,这是文学家的方法,也是数学家的方法。函数(Function)本部分学习的目的是通过学习形成函数研究的一般方法和套路。 基本初等函数(指数、对数、幂函数) 解读:该部分学习是在形成函数研究的一般方法之后对方法的 有力尝试,在尝试中不断加深对函数研究一般方法的认识和理解。 数学内部发展(函数的零点、二分法求方程近似解) (数学发展的两条主线都涉及了) 社会现实需要(解决社会与生活中的实际问题) 第一节:函数概念的起源及其历史演变 我们要参观的景点:(The scenery we’ll visit) 1. 函数的概念是什么?(What?) 2. 为什么要建立函数的概念?(Why ?) 3. 函数的概念是如何建立的?函数概念的建立经历了怎样的历史演变过程?(How?) 景点一:函数的概念是什么?函数的概念是如何建立的?

函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。 案例1:圆的面积S与圆半径r的关系; 案例2:锐角α与锐角β互余,α与β的关系; 案例3:气体的质量一定时,它的体积V与它的密度ρ之间的关系; 【思考1】上述的每一个问题在变化过程中,谁是常量,谁是变量?都涉及几个变量?【思考2】两个变量之间的关系是通过什么来刻画的? 【思考3】综合思考1和思考2的解答,总结上述例子变量间关系的共同特点?【早期函数概念】 十七世纪伽俐略在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关 系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念。 1718年约翰·贝努利对函数概念进行了明确定义:由任一变量和常数的任一形式所构 成的量(是历史上第一个正式发表的明确的函数定义),贝努利把变量x和常量按任何方 式构成的量叫“x的函数”。 欧拉在《无穷分析引论》(1748)中给出的函数定义是:“一个变量的函数是由该变量和一些数或常量以任何方式组成的解析式。” 【总结】十七和十八世纪的数学家对函数问题的认识上有着共同的思考:函数就是解析式

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

多元函数微分学总结

`第八章多元函数微分学 8.1基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 8.2基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于 这一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24 (,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++,

多元函数微分学及其应用

《高等数学》课程学习指导与讨论题 第五章多元函数微分学及其应用 在理论研究和实际应用中,经常遇到具有两个或两个以上自变量取值为数量或向量的函数,就是多元数量值函数与多元向量值函数,统称为多元函数,本章研究多元函数微分学的基本概念、理论和方法以及它们的应用,包括多元函数的极限与连续性。导数(方向导数,偏导数与梯度)与全微分等基本概念,多元函数微分法、极值问题以及多元函数微分学的一些几何应用。多元函数微分学中的基本概念、理论和方法是一元函数相应概念、理论和方法的推广和发展,因此它们之间既有相同之处,又有许多本质上的不同,同学们在学习这部分内容的时候,既要注意它们的相同点和互相联系,更要注意它们之间的不同点,善于将它们进行比较,研究推广到多元函数之后出现的新情况和新问题以及为什么会出现这些差异,有能力的同学还应注意推广的方法,以提高自己分析和解决问题的能力。 本章教学实施方案(总计30学时) 讲课:24学时分 1.n维Enclid空间中点集的初步知识(2学时)2.多元函数的极限与连续性(2学时) 3.多元数量值函数的导数与微分(7学时) 4.多元函数的Taylor公式与极值问题(4学时);5.多元向量值函数的导数与微分(3学时);6.多元函数微分学的几何应用(3学时) 7.空间曲线的曲率与挠率(3学时)。 习题课:4学时 1.多元函数极限、连续、偏导数与全微分(2学时);2.多元函数的极值与多元微分在几何中的应用(2学时)。 讨论课:2学时多元函数极限、连续、偏导数、方向导数、梯度、全微分的概念及联系;;多元函数在极值问题中与几何方面的应用。 第一节 n维Enclid空间中点集的初步知识 一、教学内容与重点 n R中点列的极限与点集的初步知识。 二、教学要求 1. 理解n维欧氏空间n R中点列极限的概念及性质,了解它们与一维空间中

(整理)多元函数微分法及其应用81534

第八章 多元函数微分法及其应用一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(, )P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在; (2)找两种不同趋近方式,若00(,)(,) lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似: 例1.用 εδ-定义证明2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的 结论。 例3 设 22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设 2 2224 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论(,)(0,0) lim (,)→x y f x y 是否 存在? 例5.求222 (,)(0,0)sin()lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数 332 222 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。

第八章多元函数微分法及其应用.doc

第八章多元函数微分法及其应用 一、内容提要 多元函数微分法是一元两数微分法的推广,有许多相似之处,学习时应 注意对比,搞清界同. 1. 基本概念与定理 设函数U = f(P),点P 可以是1,2,3,…丿维的.当n>2时,称此函数为多 ① 二元函数z = /(X, y)在儿何上表示空间一张曲面. ② 二元函数z = /(x,y)在点心(巾,儿)处的极限、连续、偏导数、全 微分的定义及关系. 极限 lim f(x,y) = A : V^>0,3t> >0,当 X->X0 .v->yo ()< p = J(_r_x ())2 +(y _y ())2 < 6时,有 I f(x, y) - A \0 Ay 二阶偏导数. 类似,可定义三阶以上的偏导数. _ 可微 若全增量A< = f(x 0 + 心,y ()+ Ay) - f(x 0,y 0)町表示为 Az = AAx + BAy + o(p),其中 q 二 J (心尸 +(2\)护, 则称z = f (x, y)在点P 0(x 0,y 0)可微.而AAx + BAy 为函数z = f (x, y)在点 P ()(w ),y ())的全微分,记 作 dA. . =AAx + B^y 定理1若函数z = /(x,y)的二阶混合偏导数f xy (x,y)及 /vx (x,y)在区域D 内连续,贝I 」在该区域内(x, y) = /VA .(x,y) ? 偏导 高阶偏导 —阶偏导数f x (x, y), fy (x, y)的偏导数,称为函数f (x, y)的 a? = /.u-UoO=£ dydx 空、 dx )

函数的基本概念与定义域

学生: 科目: 第 阶段第 次课 教师: 课 题 函数的基本概念与定义域 教学目标 1.了解函数的的基本概念,并能熟练的应用 2.理解函数的三种表示方法,了解分段函数,并能够简单的应用 3.会求函数的定义域 重点、难点 函数的定义的理解;求简单函数的定义域 考点及考试要求 1.了解函数的概念; 2.理解函数的三种表示方法; 3.了解简单的分段函数 教学内容 知识框架 知识点一、区间的概念 设b a R b a <∈且,, 定义 名称 符号 数轴表示 }|{b x a x ≤≤ 闭区间 ],[b a }|{b x a x << 开区间 ),(b a }|{b x a x <≤ 前闭后开区间 ),[b a }|{b x a x ≤< 前开后闭区间 ],(b a 区间是集合的有一种形式.对于区间的理解应注意: (1)区间的左端点必修小于右端点,有时我们将b -a 成为区间的长度,对于只有一个元素的集合我们仍然用集合来表示,如{}a ; (2)注意开区间),(b a 与点),(b a 在具体情景中的区别.若表示点),(b a 的集合应为{}),(b a ; (3)用数轴来表示区间时,要特别注意实心点与空心点的区别; (4)对于一个不等式的解集,我们既可以用集合形式来表示,也可用区间形式来表示; (5)要注意区间表示实数集的几条原则,数集是连续的,左小,右大,开或闭不能混淆. 例1.把下列数集用区间表示: (1)}1|{-≥x x ;(2)}0|{

例5.高为h ,底面半径为R 的圆柱形容器内,以单位时间内体积为a 的速度灌水.试求水面高 y 用时间t 表示的函数式,并求其定义域. 例6.已知函数3 2 3 41 ++-=ax ax ax y 的定义域为R ,求实数a 的取值范围. 例7.设}20|{},20|{≤≤=≤≤=y y N x x M ,下图中的四个图形,其中能表示从集合M 到集合N 的函数关系的有( ) 知识点四、抽象函数的定义域【拓展】 (1)函数)(x f 的定义域是指x 的取值范围; (2)函数))((x g f 的定义域是指x 的取值范围,而不是)(x g 的取值范围; (3)已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中x 的取值范围为B ,求出)(x g 的范围(值域),此范围就是)(x f 的定义域. 例8.已知函数)(x f 的定义域为]9,0[,求)12(+x f 的定义域.

相关文档
相关文档 最新文档