文档库 最新最全的文档下载
当前位置:文档库 › 碰撞知识点复习及习题

碰撞知识点复习及习题

碰撞知识点复习及习题
碰撞知识点复习及习题

一.动量守恒定律

1.守恒条件

(1)系统不受外力或所受外力的合力为零,则系统动量守恒.

(2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.

(3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒.

2.几种常见表述及表达式

(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).

(2)Δp=0(系统总动量不变).

(3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相

等、方向相反).

其中(1)的形式最常用,具体到实际应用时又有以下三种常见形式:

①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统).

②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,

两者速率与各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的

情况,如完全非弹性碰撞).

3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性.

4.应用动量守恒定律解题的步骤:

(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);

(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);

(3)规定正方向,确定初、末状态动量;

(4)由动量守恒定律列出方程;

(5)代入数据,求出结果,必要时讨论说明.

二.碰撞现象

1.碰撞的种类及特点

分类标

种类特点

机械能是否守恒

弹性碰撞动量守恒,机械能守恒非弹性碰撞动量守恒,机械能有损失完全非弹性碰撞动量守恒,机械能损失最大

碰撞前后动量是否共线

对心碰撞(正碰) 碰撞前后速度共线非对心碰撞(斜碰) 碰撞前后速度不共线

2.弹性碰撞的规律

两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.

在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

m2发生弹性正碰。则由动量守恒定律和动能守恒可以列出以下方程

利用(3)式和(4)式,可讨论以下两种特殊情况:

A.如果两物体质量相等,即m1=m2,则可得

B.如果一个物体是静止的,例如质量为m2的物体在碰撞前是静止的,

即v2=0,则可得

这里又可有以下几种情况:

a.

b.

质量较大的物体向前运动。

c.

d.以原速

率反弹回来,而质量很大的物体几乎不动。例如橡皮球与墙壁的碰撞。

e.速度几乎不变,而质量很小的物体获得的速度是原来运动物体速度的2倍,这是原来静止的物体通过碰撞可以获得的最大速度,例如铅球碰乒乓球。

3.一般碰撞现象满足的规律

(1)动量守恒定律:系统的总动量或某一方向上的总动量保持不变

(2)能量守恒:系统的总动能不会增加(特殊碰撞除外)

(3)速度要合理:

①若碰前两物体同向运动,则有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.

②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.

三.如何快速判定碰撞的可能性

1.满足实际情况.分以下四种情况:

(1)同向运动物体的碰撞:在光滑水平面上同向运动的两物体A、B,要发生碰撞,则碰撞前必有vA>vB(vB可以为零).由于碰撞过程中,相互作用力对前方物体向前,对后方物体向后,所以碰撞后前方物体的动量增加,从而vB'>vB;后方物体动量减小, vA'<vA(否则将违背动能不增加原理).(2)相向运动物体的碰撞:碰撞后,两物体可以沿同一方向运动,也可以沿各自反方向运动,还可以是原动量大的一个静止而另一个反弹,但不可能两个物体都仍沿各自原方向运动.

(3)若碰撞后两物体沿同一方向运动,则一定有前方物体的速度大于或等于后方物体的速度.

(4)在碰撞过程中,由于时间很短,所以只有直接相碰的物体动量才有明显变化,其他物体的动量通常认为不变.

2.满足动量守恒:由于碰撞时间很短,此时内力远大于外力,所以不管合外力是否为零,一般都按动量守恒处理.从而两个物体相碰时,两个物体的动量变化量大小相等方向相反.

3.满足动能不增加原理:由于碰撞过程中可能有机械能损失,所以碰撞后两个物体的总动能不会大于碰撞前两个物体的总动能.

以上方法一般首先判断实际情况,再判断动量守恒,最后判断动能不增加,这样既可减少运算量提高做题速度,同时还可减少一些平常由于疏忽而造成的错误,如一般按照动量守恒和动能不增加直接判出答案,那么有些就不满足实际情况从而造成错解.

四.例题

1.在质量为M的小车中挂有一单摆.摆球的质量为m0,小车

和单摆以速度v沿光滑水平面运动,与正对面的静止木块m发生碰撞,碰撞时间很短,在碰撞过程中下列哪些情况可能发生() A.小车、木块和摆球的速度都发生变化,分别变为v1、v2、v3,且有(M+m0)v=Mv1+mv2+m0v3 B.摆球的速度不变,小车和木块的速度都变为v1,且有Mv=(M+m) v1

C.摆球的速度不变,小车和木块的速度变为v1、v2 ,且有Mv=Mv1+mv2 D.小车和小球的速度都变为v1,木块的速度变为v2,且有(M+m0)v=(M+m0)v1+mv2

2. A、B两球在水平光滑轨道上同向运动,已知它们的动量分别是Pa=5kg·m/s,Pb=7kg·m/s,A球追上B球并发生碰撞,碰后B球的动量变为10kg·m/s,则两球的质量mA与mB的关系可能是()

A.mB=mA B.mB=2mA C.mB=4mA D.mB=6mA

3.一质量为M 的小球以速度V 运动,与另一质量为m 的静止小球发生正碰之后,一起向着相同方向运动,且两小球动量相等。则两小球质量比M/m 可以是: A.2 B.3 C.4 D.5

4.质量为M 的木块在光滑水平面上以速度1v 向右运动,质量为m 的子弹以速度2v 向左射 入木块并停留在木块中,要使木块停下来,发射子弹的数目是: 12mv m)v (M A.

+; B. 2

1

)(v m M Mv +;

C.

21Mv mv ; D. 2

1

mv Mv ; 5.如图所示,物体A 静止在光滑水平面上,A 的左边固定有轻质 弹簧,与A 质量相等的

物体B 以速度v 向A 运动并与弹簧发生碰 撞,A,B 始终在一直线上运动,则A,B 组成的系统动能损失最大的 时刻是:

A. A 开始运动时;

B. A 的速度等于v 时;

C. B 的速度等于零时;

D. A,B 速度相等时;

6.如图,木块A,B 的质量均为2kg ,置于光滑水平面上,B 与一 轻 弹簧一端相连,弹簧的另一端固定在竖直挡板上,当A 以4m/s 的速度向B 撞击时,由于有橡皮泥而粘在一起运动,那么弹簧 被压缩到最短时,具有的弹性势能大小为: A. 4J ; B. 8J ; C. 16J; D. 32J;

7. 小车AB 静置于光滑的水平面上,A 端固定一个轻质弹簧,B 端粘有橡皮泥,AB 车质量 为M ,长为L ,质量为m 的木块C 放在小车上,用细绳连结于小车的A 端并使弹簧压缩, 开始时AB 与C 都处于静止状态,如图所示,当突然烧断细绳,弹簧被释放,使物体C 离开弹簧向B 端冲去,并跟B 端橡皮泥粘在一起,以下说法中正确的是( ) A .如果AB 车内表面光滑,整个系统任何时刻机械能都守恒 B .整个系统任何时刻动量都守恒

C .当木块对地运动速度为v 时,小车对地运动速度为mv/M

D .AB 车向左运动最大位移小于L

8.质量为1 kg 的小球以4 m/s 的速度与质量为2 kg 的静止小球碰,关于碰后的速度v 1′和 v 2′,下面可能的是( )

A.v 1′=v 2′=

4

3

m/s B.v 1′=-1 m/s,v 2′=2.5 m/s C.v 1′=1 m/s,v 2′=3 m/s D.v 1′=-4 m/s,v 2′=4 m/s

9. 如图所示,小球A 系在细线的一端,线的另一端固定在O 点,O 点到水平面的距离为h.物块 B 质量是小球的5倍,置于粗糙的水平面上且位于O 点正下方,物块与水平面间的动摩擦因数为μ.再拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为

16

h

.小球与物块均视为质点,

不计空气v

阻力,重力加速度为g,求物块在水平面上滑行的时间t.

10. 如图所示,A 、B 两物体的质量分别是m 1=5kg,m 2=3kg.它们在光滑水平面上沿同一直线 向右运动,速度分别为v 1=5m/s,v 2=1m/s.当A 追上B 后,与B 上固定的质量不计的弹簧发 生相互作用。弹簧被压缩后再伸长,把A 、B 两物体弹开,已知A 、B 两物体作用前后均 沿

同一直线运动,弹簧压缩时未超过弹簧的弹性限度。求: (1) AB 相互作用后的最终速度各是多少? (2)碰撞中弹簧具有的最大弹性势能是多少?

11. 如图所示,光滑水平面上质量为m 1=2kg 的物块以v 0=2m/s 的初速冲向质量为m 2=6kg 静 止的光滑圆弧面斜劈体。求:

(1)物块m 1滑到最高点位置时,二者的速度; (2)物块m 1从圆弧面滑下后,二者速度;

(3)若m 1= m 2物块m 1从圆弧面滑下后,二者速度;

12.一质量为m 钢球静止在质量为M 铁箱的光滑底面上(不知道m 与M 的大小情况),如图示。CD 长L ,铁箱与地面间无摩擦。铁箱被加速至0v 时开始做匀速直线运动。后来箱壁与钢球发生弹性碰撞。问碰后再经过多长时间钢球与BD 壁相碰。

A

B

v 0 m 2 m 1

答案:1.BC 2.C 3.AB 4.D 5.D 6.B 7.BCD 8.AB

9. 解析:设小球的质量为m,运动到最低点与物块碰撞前的速度大小为v 1,取小球运动到最低点重力势能为零,根据机械能守恒定律,有

mgh=

12

mv 2

1 得v 1=2gh 设碰撞后小球反弹的速度大小为v′1,同理有

1162h mg

=mv′21 得v′1=

8

gh

设碰后物块的速度大小为v 2,取水平向右为正方向,根据动量守恒定律,有 mv 1=-mv′1+5mv 2 得v 2=

8

gh

物块在水平面上滑行所受摩擦力的大小 F=5μmg

设物块在水平面上滑行的时间为t,根据动量定理,有 -Ft=0-5 mv 2 得24gh

t g

μ=. 答案:

24gh

g

μ

10.(1)2m/s; 6m/s;

(2)15J;

11. (1) 0.5m/s ; (2)-1m/s; 1m/s; (3) 0; 2m/s;

12.t=L/Vo

因式分解知识点总复习含答案

因式分解知识点总复习含答案 一、选择题 1.下列各式中从左到右的变形,是因式分解的是() A.(a+3)(a-3)=a2-9 B.x2+x-5=(x-2)(x+3)+1 C.a2b+ab2=ab(a+b)D.x2+1=x(x+1 x ) 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A、是整式的乘法,故A错误; B、没把一个多项式转化成几个整式积的形式,故B错误; C、因式分解是把一个多项式转化成几个整式积的形式,故C正确; D、因式中含有分式,故D错误; 故选:C. 【点睛】 本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式. 2.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是() A.2x B.﹣4x C.4x4 D.4x 【答案】A 【解析】 【分析】 分别将四个选项中的式子与多项式4x2+1结合,然后判断是否为完全平方式即可得答案.【详解】 A、4x2+1+2x,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意; B、4x2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意; C、4x2+1+4x4=(2x2+1)2,能利用完全平方公式进行因式分解,故不符合题意; D 、4x2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意, 故选A. 【点睛】 本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键. 3.下列等式从左到右的变形属于因式分解的是() A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣a C.6x2y3=2x2?3y3D.mx﹣my+1=m(x﹣y)+1 【答案】A

因式分解知识点归纳总结word版本

因式分解知识点归纳总结概述 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。 分解因式与整式乘法互为逆变形。 因式分解的方法:提公因式法、公式法、分组分解法和十字相乘法 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1)) 分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式 提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。 例如:-am+bm+cm= a(x-y)+b(y-x)= ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a2-b2=(a+b)(a-b); 完全平方公式:a2±2ab+b2=(a±b) 2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 例如:a2 +4ab+4b2 = ⑶分组分解法 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y) 同样,这道题也可以这样做。 ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)

高中数学三角函数、解三角形知识点

三角函数、解三角形 1.弧长公式:r l α= 扇形面积公式:22 121r lr S α== 2.同角三角函数的基本关系式: 平方关系:1cos sin 2 2 =+αα 商数关系:sin tan cos α αα = 3.三角函数的诱导公式: 诱导公式(把角写成απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) 公式一()()()?????=?+=?+=?+απααπααπαtan 2tan cos 2cos sin 2sin k k k 公式二()()()?????=+=+=+ααπααπααπtan tan cos -cos -sin sin 公式三()()()?? ? ??=-=-=-ααααααtan -tan cos cos -sin sin 公式四()()()?????=-=-=-ααπααπααπtan -tan cos -cos sin sin 公式五???????=??? ??-=??? ??-ααπααπsin 2cos cos 2sin 公式六???????=??? ??+=?? ? ??+ααπααπsin -2 cos cos 2sin 4.两角和与差的正弦、余弦、正切公式: βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+= + β αβαβαtan tan 1tan tan )tan(+-=- 5.二倍角公式: a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -= 6.辅助角公式: sin cos a b αα+ )α?+( 其中sin tan b a ???= = = ). 比如: x x y cos 3sin += ) cos ) 3(13sin ) 3(11( )3(12 2 2 2 22x x ++ ++= )cos 23sin 21(2x x += )3 sin cos 3cos (sin 2ππx x +=)3sin(2π+=x 7.正弦定理: 2sin sin sin a b c R C ===A B (R 为△ABC 外接圆的半径) 8.余弦定理:2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B ,2 2 2 2cos c a b ab C =+- 推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=.

解三角形知识点归纳总结

第一章解三角形 .正弦定理: 2)化边为角: a : b: c sin A : sin B : sin C ? 7 a si nA b sin B a sin A b sin B ' c sin C J c sin C ' 3 )化边为角: a 2Rsin A, b 2Rsin B, c 2Rsin C 4 )化角为边: sin A sin B a ; sin B J b sin C b sin A a c' sin C c ' a b 5 )化角为边:si nA , si nB , si nC 2R 2R 3. 利用正弦定理可以解决下列两类三角形的问题: ① 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由 A+B+C=180,求角A,由正弦定理a 竺A, 竺B b sin B c sin C b 与c ②已知两边和其中一边 的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理旦 血 求出角B,由A+B+C=180求出角C,再使用正 b sin B 弦定理a 泄求出c 边 c sin C 4. △ ABC 中,已知锐角A ,边b ,贝U ① a bsin A 时,B 无解; ② a bsinA 或a b 时,B 有一个解; ③ bsinA a b 时,B 有两个解。 如:①已知A 60 ,a 2,b 2 3,求B (有一个解) ②已知A 60 ,b 2,a 2.3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数 .三角形面积 各边和它所对角的正弦的比相等, 并且都等于外 接圆的直径, 即 a b c sin A sin B sinC 2.变形:1) a b c a sin sin si sin 2R (其中R 是三角形外接圆的半径) b c sin sinC c 2R 沁;求出 sin C 1.正弦定理:在一个三角形中, bsin A

因式分解知识点归纳

因式分解知识点回顾

1 1 如: 2 3 ( ')3' 2 8 10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式

注意: ①积的系数等于各因式系数的积,先确定符号,再计算绝对值。 ②相同字母相乘,运用同底数幕的乘法法则。 ③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘法法则对于三个以上的单项式相乘同样适用。 ⑤单项式乘以单项式,结果仍是一个单项式。 如:2x2y3z?3xy 11、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即 m(a b c) ma mb mc( m,a,b,c都是单项式) ①积是一个多项式,其项数与多项式的项数相同。 ②运算时要注意积的符号,多项式的每一项都包括它前面的符号。 ③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。] 如:2x(2x 3y) 3y(x y) 12、多项式与多项式相乘的法则; 多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相

(3a 2b)(a 3b) (x 5)(x 6) 三、知识点分析: 1.同底数幕、幕的运算: a m - a n=a m+n(m, n 都是正整数). (aO n=a mn(m, n都是正整数). 例题 1.若 2a 2 64,则a= ;若 27 3n( 3)8,则n= 例题2.若52x1125,求(x 2)2009 x的值。 例题3.计算x 2y 32y 练习 1.若 a2n 3,则 a6n= 2.设4x=8y-1,且9y=2产,则x-y等于 2.积的乘方(ab)n=a n b n(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幕相乘 p 4 例题1.计算:n m m n n m p 3.乘法公式 平方差公式: a b a b a2 b2

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

(完整版)解三角形知识点及题型总结

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

乘法公式与因式分解知识点经典题例

戴氏教育中高考学校教育中心 【教师寄语:请你相信,有志者事竟成,破釜沉舟,百二秦关终属楚;苦心人天 不负,卧薪尝胆,三千越甲可吞吴!】 乘法公式与因式分解 考点一:完全平方公式 1.(2014?南充)下列运算正确的是() A.a3?a2=a5B.(a2)3=a5C.a3+a3=a6D.(a+b)2=a2+b2 2.(2014?莆田)下列运算正确的是() A.a3?a2=a6B.(2a)3=6a3C.(a﹣b)2=a2﹣b2D.3a2﹣a2=2a2 3.(2014?贵港)下列运算正确的是() A.2a﹣a=1 B.(a﹣1)2=a2﹣1 C.a?a2=a3D.(2a)2=2a2 考点二:平方差公式 4.(2014?句容市一模)下列运算正确的是() A.3a+2a=a5B.a2?a3=a6C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 5.(2014?锡山区一模)计算(x﹣2)(2+x)的结果是() A.x2﹣4 B.4﹣x2C.x2+4x+4 D.x2﹣4x+4 6.(2013?益阳)下列运算正确的是() A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 考点三:因式分解的意义 7.(2014?海南)下列式子从左到右变形是因式分解的是() A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7) C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣25 考点四:公因式 8.观察下列各式:①2a+b和a+b;②5m(a﹣b)和﹣a+b;③3(a+b)和﹣a﹣b;④x2﹣y2和x2+y2;其中 有公因式的是() A.①②B.②③C.③④D.①④ 考点五:因式分解—提取公因式 9.(2014?威海)将下列多项式分解因式,结果中不含因式x﹣1的是() A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1 10.(2013?槐荫区一模)把多项式mx2﹣2mx分解因式,结果正确的是() A.m(x2﹣2x)B.m2(x﹣2)C.m x(x﹣2)D.m x(x+2) 考点六:因式分解—公式法 11.(2014?衡阳)下列因式分解中,正确的个数为() ①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y) A.3个B.2个C.1个D.0个 12.(2014?常德)下面分解因式正确的是() A.x2+2x+1=x(x+2)+1 B.(x2﹣4)x=x3﹣4x C.ax+bx=(a+b)x D.m2﹣2mn+n2=(m+n)2 考点七:因式分解—分组分解 13.(2010?自贡)把x2﹣y2﹣2y﹣1分解因式结果正确的是()

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

解三角形知识点归纳

解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C o .

因式分解知识点总结

因式分解知识点总结 注意三原则 1.分解要彻底(是否有公因式,是否可用公式) 2.最后结果只有小括号 3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1)) 4.最后结果每一项都为最简因式 归纳方法: 1.提公因式法。 2.公式法。 3.分组分解法。 4.凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5.组合分解法。 6.十字相乘法。 7.双十字相乘法。 8.配方法。 9.拆项补项法。 10.换元法。 11.长除法。 12.求根法。 13.图象法。 14.主元法。 15.待定系数法。

16.特殊值法。 17.因式定理法。 基本方法各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提尽全家都搬走,留1把家守提负要变号,变形看奇偶。 例如:-am+bm+cm=-(a-b-c)m a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。 注意:把2a+1/2变成2(a+1/4)不叫提公因式 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式: (a+b)(a-b)=a^2-b^2,反过来为a^2-b^2=(a+b)(a-b) 完全平方公式:(a+b)^2=a^2+2ab+b^2,反过来为a^2+2ab+b^2=(a+b)^2 (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;s in s in B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

因式分解知识点归纳总结一

因式分解知识点归纳总结一 (一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1.平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2 =(a+b)2 a2-2ab+b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 ①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。 ③有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m +n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am +an)+(bm+ bn) =a(m+ n)+b(m+ n) =(m +n)?(a +b). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数.

因式分解相关知识点整理【竞赛专用】

因式分解相关知识点整理【竞赛专用】1.因式分解的思路:“一提、二代、三分组” 2.常用公式: [1]a 2 b 2(a b)(a b) [2](a b) 2 a 22ab b 2 [3]a 3b3(a b)(a 2?ab [4](a b)3 a 33a 2b3ab 2⑸若n为正奇数,则a n b n ⑹若n为正整数,则a n b n b 2 ) b3 (a b)(a n1 a n 2b a n 3b 2 (a b)(a n i a n 2b a n 3b 2 应用公式时,按某个字母降幕排列是一个简单而有用的措施,值得注意。 3.常用分组方法(注意:每组项数须平均分配): (1 )按不同字母分组 (2) b.按不同字母的幕分组(幕次相近的放在一起) (3)按不同项的系数分组 注:当分组不当,无法继续分解原式时,就应回到分组前的状况 4.拆项与添项 (1 )若整式按某一字母的升幕或降幕排列,那么以拆开中项为宜 (2)可以配完全平方(配方法) 5.十字相乘法(二次齐次式ax 2bxy cy2也可用此法分解,令y1代入原式即可) ax+c例子: X bx+d x+2 X x+3 adx bcx+cd abx2+3x+6 x 2+ 2 x abx2+(ad bc) x+cd x 2+5x+6将以上竖式简化,就可以得到十字相乘法的竖式: a - b c -d 1 1 X2 3 ab bc5 补充一个结论:— 若二次三项式ax bx c的系数和a b c 0,则ax bx c (x 1)(ax c) ax 2 bxy cy 2 dxz eyz fz2的三元齐次式.) 把其中三组二元三项式或二元齐次式分别用十字相乘法来分解,如果其中两组包含相同字母ab n2 b n1) ab n 2 b n 1 ) 第1页-2008.09 - v1.01

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

因式分解知识点总结复习过程

因式分解知识点总结

第一讲因式分解 一,知识梳理 1. 因式分解 定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解 即:多项式几个整式的积 1 1 例:- ax bx 3 3 因式分解, 应注意以下几点。 1. 因式分解的对象是多项式; 2. 因式分解的结果一定是整式乘积的形式; 3. 分解因式,必须进行到每一个因式都不能再分解为止; 4. 公式中的字母可以表示单项式,也可以表示多项式; 5. 结果如有相同因式,应写成幕的形式; 6. 题目中没有指定数的范围,一般指在有理数范围内分解; 因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程 2. 因式分解的方法: (1)提公因式法: ①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。 公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式或多项式 系数一一取各项系数的最大公约数

字母一一取各项都含有的字母 指数---- 取相同字母的最低次幕 例:12a3b3c 8a3b2c3 6a4b2c2的公因式是________________________ . 解析:从多项式的系数和字母两部分来考虑,系数部分分别是12、-8、6,它们的最大公约数为2;字母部分a'b3c,a3b2c3, af2都含有因式a3b2c,故多项式的公因 式是2a3b2c. ②提公因式的步骤 第一步:找出公因式; 第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因 式,所得商即是提公因式后剩下的另一个因式。 注意:提取公因式后,对另一个因式要注意整理并化简,务必使因式最简。多 项式中第一项有负号的,要先提取符号。 例1:把12a2b 18ab2 24a3b3分解因式. 解析:本题的各项系数的最大公约数是6,相同字母的最低次幕是ab,故公因式为 6ab。 解:12a2b 18ab224a'b3 2 2 6ab(2a 3b 4a b ) 例2:把多项式3(x 4) x(4 x)分解因式 解析:由于4 x (x 4),多项式3(x 4) x(4 x)可以变形为 3(x 4) x(x 4),我们可以发现多项式各项都含有公因式(x 4 ),所以我们可以提取公因式(x 4 )后,再将多项式写成积的形式. 解:3(x 4) x(4 x)

解三角形知识点归纳总结归纳

欢迎阅读 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

相关文档
相关文档 最新文档