文档库 最新最全的文档下载
当前位置:文档库 › 4.7三角函数的综合应用

4.7三角函数的综合应用

4.7三角函数的综合应用
4.7三角函数的综合应用

1

4.7三角函数的综合应用

例1、设实数a,b,x,y 满足24,62222=+=+y x b a ,则ax+by 的最大值为 解:令ββααsin 62,cos 62,sin 6,cos 6====y x b a ,则)cos(12βα-=+by ax 故by ax +的最大值为12;

变式题:已知α是三角形的一个内角,且5

1

cos sin =

+αα,则方程1cos sin 22=-ααy x 表示( ) A .焦点在x 轴上的双曲线 B .焦点在y 轴上的双曲线 C .焦点在x 轴上的椭圆 D .焦点在x 轴上的椭圆 解:D ;

例2、设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上的面积,已知函数

y =sin x 在[0,

n

π]上的面积为n 2(n ∈N * ),求:(1)y =sin3x 在[0,32π]上的面积;(2)y =sin (3x -π)

+1在[

3

π,34π

]上的面积;

解:(1)

34

(2)3

2+π 例3、已知],0[,cos sin )(πθθθθ∈+=b a f ,且1与2

cos 22

θ

的等差中项大于1与2

sin

22

θ

的等比中项的平

方,求当a=4,b=3时,)(θf 的最大值及相应的θ值;

解:因为1与2

cos

22

θ

的等差中项大于1与2

sin

22

θ

的等比中项的平方,由此可解得:

21cos ->θ,又],0[πθ∈,故]3

2,0[πθ∈,所以当a=4,b=3时,)sin(

5)(?θθ+=f ,其中4

3

arctan =?,因为]3

2,0[πθ∈,所以; ]3

24

3arctan ,4

3

[arctan π?θ+∈+,故当2

π

?θ=

+,即4

3

arctan 2-=

π

θ时,)(θf 的最大值为5; 例4、已知函数.3

cos 33cos 3sin

)(2x x x x f += (1)求f(x)的图象的对称中心的横坐标;

(2)如果△ABC 的三边a 、b 、c 满足b 2

=ac ,且边b 所对的角为x ,试求x 的范围及此时函数f(x)的值域. 解:(1)2

3)332sin(2332cos 2332sin 21)32cos 1(2332sin 21)(++=++=++=πx x x x x x f

由)3

32sin(

π

+x =0即z k k x z k k x ∈-=∈=+π

ππ213)(332得

2

即对称中心的横坐标为

)(2

1

3z k k ∈-π

(2)由已知b 2

=ac ,得2

1

2222cos 22222=-≥-+=-+=

ac ac ac ac ac c a ac b c a x 所以

301cos 21π≤

3

1,3(+ 综上:]3

,

0(π

∈x ,)(x f 值域为]2

3

1,3(+

; 例5、如图所示,某化工厂反应塔MQ 上有温度计AB , 已知|AM |=a ,|BM |=b , 在矩形QMNP 的边MN 上建 观察点C 较安全,观察温度计AB 时视角越大越清晰,

问C 在线段MN 上何处时,对温度计AB 观察得最清晰?

解:要使体温计AB 观察的最清晰,只要视角∠ACB 最大即可, 以M N ,MQ 所在直线为x 轴,y 轴,以M 为坐标原点建立直角 坐标系.设C (x ,0),∠ACB =θ,

则tan θ=x ab x b a ab x x b a x

ab x a x b k k k k BC

AC AC BC +

-=+-=+---

=

+-22)(1)(1

∵a >b ,∴tan θ≤

ab

b a 2- 等号当且仅当

x =

x

ab

,即x =ab 时成立. 又θ∈(0,

2π),θ取最大值arctan ab

b a 2-.故C 点应在MN 上距M 为ab 处. 变式:已知tan 3tan αβ=,且0βα<≤2

π

<

求y αβ=-的最大值.

解:tan tan tan tan()1tan tan y αβ

αβαβ

-=-=

+∵tan 3tan αβ=,且tan 0β>

∴22tan tan 13tan y ββ

=

+,当且仅当13tan tan ββ=

,即tan β=

时,max

(tan )y =又函数tan u y =在0,

2π??

????

上单调递增,∴max 6y π=。 说明:在三角函数关系的条件下求角的最值,一般应设法转化为求该角的三角函数的最值,同时必须注意选定

函数的单调性。

例6、如图,水渠横断面为等腰梯形,渠深为h ,梯形面积为S ,为使渠道的渗水量达到最小,应使梯形两腰及下底边长之和达到最小,此时腰与下底夹角α应该是多少?

解:因()h BC AB S +=

21

,则h

S CD AB 2=+, 在BCE Rt ?中,ααcot cot ?==h BE CE ,

α

αsin sin h BE BC ==,设

p=AD+BC+CD

3

由AB+CD=CD+2CE+CD=

h S 2,知h S CE CD =+,则αcot h h S

CD -=, p=AD+BC+CD=2BC+CD=

h h S h h S h ?-+=-+α

α

ααsin cos 2cot sin 2, 因h,S 为常量,p 的最小值取决于ααsin cos 2-的最小值,故设α

α

sin cos 2-=y ,下面求y 取最小值时的α角。式子

变形为2cos sin =+ααy ,得()1

2sin 2-=

+y θα,其中y

1

tan =

θ, 由()1sin ≤+θα,解不等式

11

22≤-y ,得3≥y ,所以 303

1arctan

==θ ;

备战中考数学锐角三角函数综合练习题附答案

备战中考数学锐角三角函数综合练习题附答案 一、锐角三角函数 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得DC= 3 3 3,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=333∴3 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE 5032 35 答:从无人机'A 上看目标D 2 35

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1m).备用数据:, 【答案】(1)∠BPQ=30°; (2)该电线杆PQ的高度约为9m. 【解析】 试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可; (2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解. 试题解析:延长PQ交直线AB于点E, (1)∠BPQ=90°-60°=30°; (2)设PE=x米. 在直角△APE中,∠A=45°, 则AE=PE=x米; ∵∠PBE=60° ∴∠BPE=30°

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数公式大全81739

三角函数公式大全三角函数定义 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系: 记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项 数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

12,三角函数的综合应用

实用文档 §4.8三角函数的综合应用 【复习目标】 1. 理解三角函数中自变量的两面性——角与实数,将三角函数问题与几何、代数联系起来; 2. 三角恒等变型与三角函数的图象与性质是综合应用的两个方面。 【课前预习】 1. ⊿ABC 的内角满足tan sin 0A A -<,cos sin 0A A +>,则A 的范围是 。 2. 若111cos sin θθ-=,则sin 2θ= 。 3. 由函数52sin 3()66y x x ππ=≤≤与函数2y =的图象围成一个封闭图形,这个封闭图形 的面积是 。 4. 已知()f x 是定义在(0,3)上的函数,图象如图所示,那 么不等式()cos 0f x x <的解集是 ( ) A .()()0,12,3? B .(1,)(,3)22ππ ? C . ()0,1,32π??? ??? D .()()0,11,3? 5. 函数|sin |,[,]y x x x ππ=+∈-的大致图象是 ( ) 【典型例题】

实用文档 例1 已知函数2()sin sin f x x x a =-++. (1) 当()0f x =有实数解时,求a 的取值范围; (2) 若x R ∈,有 171()4f x ≤≤,求a 的取值范围。 例2 (2003上海卷·22)已知集合M 是满足下列性质的函数()f x 的全体:存在非零常 数T ,对任意x ∈R ,有()f x T +=T ·()f x 成立. (1)函数()f x = x 是否属于集合M ?说明理由; (2)设函数()f x =a x (a >0,且a ≠1)的图象与y=x 的图象有公共点,证明:()f x =a x ∈M ; (3)若函数()f x =sin kx ∈M ,求实数k 的取值范围.

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

高中三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) = cot(A+B) =cot(A-B) = 倍角公式 tan2A =Sin2A=2SinA?CosA Cos2A =Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 半角公式 sin()=cos()= tan()=cot()= tan()== 和差化积 sina+sinb=2sincossina-sinb=2cossin cosa+cosb = 2coscoscosa-cosb = -2sinsin tana+tanb= 积化和差 sinasinb = -[cos(a+b)-cos(a-b)]cosacosb = [cos(a+b)+cos(a-b)] sinacosb = [sin(a+b)+sin(a-b)]cosasinb = [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(-a) = cosacos(-a) = sina sin(+a) = cosacos(+a) = -sina sin(π-a) = sinacos(π-a) = -cosa sin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =

九年级下册《三角函数的应用》综合练习2(坡度、坡角)

三角函数的应用(坡度、坡角) ◆随堂检测 1、某斜坡的坡度为i=1______度. 2、以下对坡度的描述正确的是( ). A .坡度是指斜坡与水平线夹角的度数; B .坡度是指斜坡的铅直高度与水平宽度的比; C .坡度是指斜坡的水平宽度与铅直高度的比; D .坡度是指倾斜角的度数 3、某人沿坡度为i=1: 3 的山路行了20m ,则该人升高了( ). A .20 B . 40 .3 3 m C D 4、斜坡长为100m ,它的垂直高度为60m ,则坡度i 等于( ). A .35 B .4 5 C .1:43 D .1:0.75 5、在坡度为1:1.5的山坡上植树,要求相邻两树间的水平距离为6m ,?则斜坡上相邻两树间的坡面距离为( ). A .4m B .2 C .3m D .◆典例分析 水库拦水坝的横断面为梯形ABCD ,背水坡CD 的坡比i=1,?已知背水坡的坡长CD=24m ,求背水坡的坡角α及拦水坝的高度. 解:过D 作DE ⊥BC 于E . ∵该斜边的坡度为1 则 ,∴α=30°, 在Rt △DCE 中,DE ⊥BC ,DC=24m . ∴∠DCE=30°,∴DE=12(m ).

故背水坡的坡角为30°,拦水坝的高度为12m. 点评:本题的关键是弄清坡度、坡角的概念,坡度和坡角的关系:坡度就是坡角的正切值,通过做高构造直角三角形,再利用三角函数值求出坡角即可. ◆课下作业 ●拓展提高 1、如图,沿倾斜角为30°的山坡植树,?要求相邻两棵树间的水平距离AC为2m, 那么相邻两棵树的斜坡距离AB约为_______m(精确到0.1m).(?可能用 ≈1.41) 1题图2题图 2、如图,防洪大堤的横断面是梯形,坝高AC=6米,背水坡AB的坡度i=1:2, 则斜坡AB的长为_______米. 3、如图,在高2米,坡角为30°的楼梯表面铺地砖,?地毯的长度至少需________ 米(精确到0.1米). 3题图4题图 4、如图,梯形护坡石坝的斜坡AB的坡度i=1:3,坡高BC为2米,则斜坡AB 的长是() A.2B.C.D.6米 5、为了灌溉农田,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2m,下底宽为2m,坡度为1:0.6的渠道(其横断面为等腰梯形),并把挖出的土堆在两旁,使土堤的高度比原来增加了0.6m,如图所示,求:(1)渠面宽EF;(2)

锐角三角函数及应用

锐角三角函数【知识梳理】 【思想方法】 1. 常用解题方法——设k法 2. 常用基本图形——双直角 【例题精讲】 例题1.在△ABC中,∠C=90°. (1)若cosA=1 2 ,则tanB=______;(?2)?若cosA= 4 5 ,则tanB=______. 例题2.(1)已知:cosα=2 3 ,则锐角α的取值范围是() A.0°<α<30° B.45°<α<60° C.30°<α<45° D.60°<α<90° (2)当45°<θ<90°时,下列各式中正确的是() A.tanθ>cosθ>sinθ B.sinθ>cosθ>tanθ C.tanθ>sinθ>cosθ D.sinθ>tanθ>cosθ 例题3.(1)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,∠CAB=60°,?CD=3,BD=23,求AC,AB的长. 例题4.“曙光中学”有一块三角形状的花园ABC,有人已经测出∠A=30°,AC=40米,BC=25米,你能求出这块花园的面积吗? 例题5.某片绿地形状如图所示,其中AB⊥BC,CD⊥AD,∠A=60°,AB=200m,CD=100m,?求AD、BC的长.

【当堂检测】 1.若∠A 是锐角,且cosA=sinA ,则∠A 的度数是( ) A.300 B.450 C.600 D.不能确定 2.如图,梯形ABCD 中,AD ∥BC ,∠B=450,∠C=1200,AB=8,则CD 的长为( ) A.638 B.64 C.328 D.24 3.在Rt △ABC 中,∠C=900,AB=2AC ,在BC 上取一点D ,使AC=CD ,则CD :BD=( ) A.213+ B.13- C.2 3 D.不能确定 4.在Rt △ABC 中,∠C=900,∠A=300,b=310,则a= ,c= ; 5.已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34, 则底角∠B= ; 6.若∠A 是锐角,且cosA=5 3,则cos (900-A )= ; 7.在Rt △ABC 中,∠C=900,AC=1,sinA= 23,求tanA ,BC . 8.在△ABC 中,AD ⊥BC ,垂足为D ,AB=22,AC=BC=52,求AD 的长. 9. 去年某省将地处A 、B 两地的两所大学合并成一所综合性大学,为了方便两地师生交往,学校准备在相距2km 的A 、B 两地之间修一条笔直的公路,经测量在A 地北偏东600方向,B 地北偏西450方向的C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么? B A D C A B C D C A B 第2题图 第8题图 第9题图

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数综合应用解题方法总结(超级经典)

精锐教育学科教师辅导教案

例3:求函数y=f(x)=cos 2 2x-3cos2x+1的最值. 解 ∵f(x)=(cos2x- 23)2-4 5, ∴当cos2x=1,即x= k π,(k ∈Z)时,y=min=-1, 当cos2x=-1,即x= k π+ 2 π ,( k ∈Z)时,y=max=5. 这里将函数f(x)看成关于cos2x 的二次函数,就把问题转化成二次函数在闭区间[-1,1]上的最值值问题了. 4.引入辅助角法 y=asinx+bcosx 型处理方法:引入辅助角?,化为y=22b a +sin (x+?),利用函数()1sin ≤+?x 即可求解。Y=asin 2 x+bsinxcosx+mcos 2 x+n 型亦可以化为此类。 例4:已知函数()R x x x x y ∈+?+= 1cos sin 2 3cos 212当函数y 取得最大值时,求自变量x 的集合。 [分析] 此类问题为x c x x b x a y 2 2 cos cos sin sin +?+=的三角函数求最值问题,它可通过降次化简整理为 x b x a y cos sin +=型求解。 解: ().4 7,6,2262,4562sin 21452sin 23 2cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+??? ??+=+???? ??+=++=+?++?=y z k k x k x x x x x x x x y ππππππ 5. 利用数形结合 例5: 求函数y x x = +s in c o s 2的最值。 解:原函数可变形为y x x = ---s i n c o s () .0 2 这可看作点Ax xB (c o s s i n )() ,和,-20的直线的斜率,而A 是单位圆x y 2 2 1+=上的动点。由下图可知,过B ()-20,作圆的切线时,斜率有最值。由几何性质,y y m a x m i n .= =-333 3 , 6、换元法 例6:若0

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数公式推导和应用大全

三角函数公式推导和应用大全 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数看似很多、很复杂,但只要掌握了三角函数的本质及部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的部规律及本质也是学好三角函数的关键所在 中文名 三角函数公式 外文名 Formulas of trigonometric functions 应用学科 数学、物理、地理、天文等 适用领域围 几何,代数变换,数学、物理、地理、天文等 适用领域围 高考复习 目录 1 定义式 2 函数关系 3 诱导公式 4 基本公式 ?和差角公式 ?和差化积 ?积化和差 ?倍角公式 ?半角公式 ?万能公式 ?辅助角公式 5 三角形定理 ?正弦定理 ?余弦定理 三角函数公式定义式 编辑 锐角三角函数任意角三角函数 图形 直角三角形

任意角三角函数正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典. 三角函数公式函数关系 编辑 倒数关系: ; ; 商数关系: ; . 平方关系: ; ; . 三角函数公式诱导公式 编辑 公式一:设 为任意角,终边相同的角的同一三角函数的值相等:

公式二:设 为任意角, 与 的三角函数值之间的关系: 公式三:任意角 与 的三角函数值之间的关系: 公式四: 与 的三角函数值之间的关系: 公式五: 与 的三角函数值之间的关系:

高考真题 三角函数的综合应用

三角函数的综合应用 2019年 1.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 2010-2018年 一、选择题 1.(2018北京)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ, m 变化时,d 的最大值为 A .1 B .2 C .3 D .4 2.(2016年浙江)设函数2 ()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关 3.(2015陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数 3sin()6 y x k π ?=++,据此函数可知,这段时间水深(单位:m )的最大值为

A .5 B .6 C .8 D .10 4(2015浙江)存在函数()f x 满足,对任意x R ∈都有 A .(sin 2)sin f x x = B .2 (sin 2)f x x x =+ C .2(1)1f x x +=+ D .2(2)1f x x x +=+ 5.(2015新课标Ⅱ)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC , CD 与DA 运动,∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为 A B C D 6.(2014新课标Ⅰ)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为

中考数学锐角三角函数综合练习题含答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到 1cm )? 【答案】 【解析】 过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可. 2.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以 为顶点作菱形 ,使点 在第一象限内,且 ;以 为圆心, 为 半径作圆.设点运动了秒,求: (1)点的坐标(用含的代数式表示); (2)当点在运动过程中,所有使 与菱形 的边所在直线相切的的

值. 【答案】解:(1)过作轴于, ,, ,, 点的坐标为. (2)①当与相切时(如图1),切点为,此时, ,, . ②当与,即与轴相切时(如图2),则切点为,, 过作于,则, ,. ③当与所在直线相切时(如图3),设切点为,交于,

则,, . 过作轴于,则, , 化简,得, 解得, , . 所求的值是,和. 【解析】 (1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标 ⊙P与菱形OABC的边所在直线相切,则可与OC相切;或与OA相切;或与AB相切,应分三种情况探讨:①当圆P与OC相切时,如图1所示,由切线的性质得到PC垂直于OC,再由OA=+t,根据菱形的边长相等得到OC=1+t,由∠AOC的度数求出∠POC为30°,在直角三角形POC中,利用锐角三角函数定义表示出cos30°=oc/op,表示出OC, 等于1+t列出关于t的方程,求出方程的解即可得到t的值;②当圆P与OA,即与x轴相切时,过P作PE垂直于OC,又PC=PO,利用三线合一得到E为OC的中点,OE为OC的一半,而OE=OPcos30°,列出关于t的方程,求出方程的解即可得到t的值;③当圆P与AB所在的直线相切时,设切点为F,PF与OC交于点G,由切线的性质得到PF垂直于AB,则PF垂直于OC,由CD=FG,在直角三角形OCD中,利用锐角三角函数定义由OC表示出CD,即为FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根据PF=PC,表示出PC,过C作CH垂直于y轴,在直角三角形PHC中,利用勾股定理列出关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值. 3.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度( 坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 :i h l =h l α

三角函数的综合应用

解答题规范练 三角函数的综合应用 (推荐时间:70分钟) 1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R . (1)若函数f (x )=1-3,且x ∈??? ?-π3,π 3,求x 的值; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象. 解 (1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin ????2x +π 6+1. 由2sin ????2x +π6+1=1-3,得sin ????2x +π6=-3 2. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π 6, ∴2x +π6=-π3,即x =-π4 . (2)当-π2+2k π≤2x +π6≤π 2 +2k π(k ∈Z ), 即-π3+k π≤x ≤π 6 +k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为 ??? ?-π3+k π,π6+k π(k ∈Z ),

2. 已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b - cos 2x . (1)求函数f (x )的值域; (2)若f (θ)=1 5,θ∈????π6,π3,求sin 2θ的值. 解 (1)f (x )=a ·b -cos 2x =(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x =cos 2x +3sin 2x -1 =2sin ????2x +π 6-1, f (x )的值域为[-3,1]. (2)由(1)知f (θ)=2sin ? ???2θ+π 6-1, 由题设2sin ????2θ+π6-1=1 5,即sin ????2θ+π6=35, ∵θ∈????π6,π3,∴2θ+π6∈????π2,5π6, ∴cos ????2θ+π6=-45 , ∴sin 2θ=sin ????????2θ+π6-π6=sin ????2θ+π6cos π6-cos ????2θ+π6sin π 6 =35×3 2-????-45×12=33+410 . 3. 已知向量m =? ???sin A ,1 2与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小; (2)若BC =2,求△ABC 面积S 的最大值. 解 (1)∵m ∥n ,∴sin A ·(sin A +3cos A )-3 2=0. ∴ 1-cos 2A 2+32sin 2A -3 2 =0,

第5讲 锐角三角函数的综合应用

第1页/共1页 第5讲 锐角三角函数的 综合应用 ※题型讲练 【例1】如图,在顶角为30°的等腰三角形ABC 中,AB =AC ,若过点C 作CD ⊥AB 于点D .根据图形求tan ∠BCD 的值. 【例2】如图,在等腰直角△ABC 中,∠C =90°,,AC =6,D 为AC 上一点,若tan ∠DAB = ,求AD 的长. 【例3】如图,在△ABC 中∠C 是锐角,BC =a ,AB =c . (1)证明:△ABC 的面积S △ABC = acsinB ; (2)若△ABC 是等边三角形,边长为4,求△ABC 的面积. 【例4】如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ; (2)若sin ∠DFE =1 3 ,求tan ∠EBC 的值. 【例5】如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上, 请按要求完成下列各题: (1)用签字笔画AD ∥BC (D 为格点),连接CD ; (2)请你在△ABD 的三个内角中任选一个锐角,若你所选的锐角是 ,则它所对应的正弦函数值是 . (3)若E 为BC 中点,则tan ∠CAE 的值是 . 【例6】如图,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D , (1)求该一次函数的解析式; (2)求tan ∠OCD 的值; (3)求证:∠AOB =135°. 【例7】已知关于x 的方程2x 2-(3+1)x +m =0的两根分别为sinθ 和cosθ,且锐角θ 的范围是0°<θ<45°. (1)求m 的值; (2)求方程的两根及此时θ的值. 【例8】已知平行四边形ABCD 中,对角线AC 和BD 相交于点O ,AC =10, BD =8. (1)若AC ⊥BD ,试求四边形ABCD 的面积 ; (2)若AC 与BD 的夹角∠AOD =60°,求四边形ABCD 的面积; (3)试讨论:若把题目中“平行四边形ABCD ”改为“四边形ABCD ”,且∠AOD =θ,AC =a ,BD =b ,试求四边形ABCD 的面积(用含θ,a ,b 的代数式表示). ※课后练习 1.如图,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cos ∠DCA =4 5 ,BC =10,则AB 的值是( ) A .3 B .6 C .8 D .9 1.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OC =2,则点B 的坐标为( ) A .(2,1) B .(1,2) C .(2+1,1) D .(1,2+1) 3.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C =90°,则a 3cosA +b 3cosB 等于( ) A .abc B .(a +b )c 3 C .c 3 D . 4.如图,A ,B ,C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ′B ′,则tan B ′的值为( ) A .12 B .13 C .14 D .24 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sinα= . 6.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA =3 5,BE =4, 则tan ∠DBE 的值是 . 7.如图,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =4 3,四边形EFGH 的周长为40,则矩 形ABCD 的面积为 . 8.如图,已知:在△ABC 中,∠B =45°,∠C =60°,AB =82. 求△ABC 的面积(结果可保留根号). 9.如图,在△ABC 中,AD 是BC 边上的高,tanB =cos ∠DAC . (1)求证:AC =BD ; (2)若sinC = ,BC =12,求AD 的长. 10.已知:如图,在△ABC 中,AC =b ,BC =a . 求证: . 11.如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A 1处,已知OA =3,AB =1,求点A 1的坐标. 12.如图,△ABC 是等腰三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB ,垂足为E ,连结CE ,求sin ∠ACE 的值. 5 1 2 1() . abc a b c +B b A a sin sin =13 12 第4题图 第2题图 第6题图 第7题图 第1题图 第5题图

相关文档
相关文档 最新文档