文档库 最新最全的文档下载
当前位置:文档库 › 浅埋多线隧道在不稳定岩堆体中的施工技术

浅埋多线隧道在不稳定岩堆体中的施工技术

浅埋多线隧道在不稳定岩堆体中的施工技术
浅埋多线隧道在不稳定岩堆体中的施工技术

浅埋多线大跨隧道在不稳定岩堆体

中的施工技术措施

高军

(中铁隧道局科研所洛阳 471009)

摘要本文介绍了内昆线跨度最大、地质最复杂的三线车站隧道曾家坪子一号隧道的施工过程,重点介绍了隧道洞口段(DK291+187-DK291+237)50m范围内处在不稳定岩堆体中的施工技术和采取的技术措施,通过严密的监控量测体系,及时进行信息反馈指导施工;目前该隧道已顺利安全贯通,使我局的大跨隧道施工技术又上了一个台阶。

主题词大跨隧道不稳定岩堆体施工技术监测与反馈

1工程概况

我局内昆线管段为水富至梅花山段第四标段,管段总长24.6km,其中隧道15座,占线路总长的85.25%,其中大跨度隧道4座。线路走向沿洛泽河流域,沿线沟谷纵横,山势陡峻,地形极为险要。工程所在地属构造剥蚀高中山峡谷地 ,地面覆盖有第四系砂粘土,坡脚多岩堆。隧道穿越的岩层有砂岩、灰岩、白云岩、页岩等,地下水主要以基岩裂隙水和岩溶水为主。

曾家坪子1#隧道全长2563m,是内昆线上的重点工程。曾家坪子车站因受地形限制,昆明端站线咽喉区413m被迫伸入曾家坪子1#隧道进口,形成了三线车站隧道,其中269m为三线隧道,95m为渡线隧道,由三线过渡到一线。隧道进口端地质条件差、成分复杂,地层自上而下为砂粘土、块石土、断层、泥质灰岩、泥岩、砂岩等,车站大跨隧道范围内有93m为Ⅴ级围岩,其中洞口段50m位于岩堆体中,其余部分为Ⅳ级围岩。洞口段不稳定岩堆体在施工过程中的稳定性是关键。2工程特点和施工原则

2.1工程特点

1)地质条件差

DK291+187~+237段为块石土堆积体(块石土为松散的大孤石夹砂、粘土组成,自稳能力差);DK291+237~396段为Ⅳ级围岩,岩性为泥质灰岩、泥岩、断层岩,遇水软化成泥状,容易坍塌。

2)三线、大跨、浅埋

DK291+187~+237段为三线车站隧道,其开挖宽度20.68米,高度13.83米,高跨比0.67,属于典型的扁平结构,洞口段埋深8~25米,为浅埋隧道。

3)技术难度大、施工工艺复杂、科技含量高

在块石土堆积体中修建三线大跨隧道,根据现有资料,可借鉴的经验少,且曾家坪子1#隧道进口大跨隧道施工断面多达16个,施工工序多,结构受力转换复杂,施工组织难度大。

2.2施工原则

1)隧道设计以强支护,抑制大变形和过量沉降为原则,加强初期支护。

2)在进行安全、经济性、工期以及技术复杂程度、是否现有条件容易实现等标准进行施工方法的评价以选用施工方案时,应首先考虑安全性,对施工方法能否充分保证掌子面稳定性和预防坍塌作为首要要素。实践表明,充分了解岩堆体的地质特性,合理选用施工方法是防坍塌之根本。否则,事与愿违。

3)坚持“断面分割,化大为小,短进尺,弱爆破,强支护,勤量测,早闭合,衬砌紧跟”的施工原则。

3施工方法的选择和确定

隧道施工方法应根据隧道所处的地质条件、断面积、形状、长度、工期要求、机械设备等情况综合分析后确定,一个好的施工方案应满足技术上可行且可靠,施工造价低及工期短等条件。但从目前的施工技术水平出发,适合大跨度隧道的施工方法主要有侧壁导坑法、中壁法、台阶法等

几种,曾家坪子1#

隧道进口段由于跨度大、浅埋、地质条件差等原因,开挖后地层自稳能力极差,为确保开挖面和隧道的整体稳定,根据工程类比和专家论证,最终确定在洞口三线大跨段采用双侧壁导坑法(图1)施工。

其主要优点是:采用双侧壁导坑法,把大断面隧道分割为几个小断面隧道,各小断面隧道各自封闭成环,改善了

小,确保施工安全和整个隧道的稳定。

其主要开挖步骤为;

⑴左导超前,先施作超前小导管φ42,开挖左导1、2部,在2部底设一道Ⅰ18临时横撑;

⑵等左导开挖15米后开挖右导1、2部(同左导1、2部);

⑶开挖左导3、4部,使左导封闭成环,灌注左导仰拱混凝土Ⅴ;

⑷滞后左导3、4部15米开挖右导3、4部,灌注右导仰拱混凝土Ⅵ; ⑸灌注左、右导边墙混凝土Ⅶ、Ⅷ;

⑹开挖中洞9;

⑺灌注中洞拱部混凝土Ⅹ; ⑻开挖中层11;开挖中洞仰拱12;

⑼灌注中洞仰拱混凝土13。

44.1岩堆体的工程地质特点

岩堆体是指松散岩石堆积体,属于不良工程地质,主要存在于第四

系坡积层(Q 4dl )、崩积层(Q 4

dl+col

)、残积层(Q 4

dl+cl

)等地层中,在内昆线上主要由砂粘土夹碎石、砂粘土及块石土构成。岩堆体一般呈碎裂、松散状,节理、裂隙极其发育,矿物成分连接极其弱,成岩作用不明显,因而自稳能力差,对隧道工程,尤其是隧道洞口浅埋段影响极其显著,给隧道工程施

岩堆体的工程地质特点对隧道工程影响主要表现在以下几个方面:

1)围岩软弱,工程类别低(Ⅳ级及Ⅳ级以下),围岩自稳时间短,变形迅速,极易坍塌,防坍是岩堆体隧道施工的首要目标。

2)围岩压力大,施工时常产生较大的拱顶下沉和净空变位,影响范围大,在浅埋段则有较大的地表下沉,进而造成被波及地表民房不均匀下沉、开裂。

3)洞口边坡开挖和浅埋段施工过程中常造成边坡失稳,在地表形成裂缝,危及隧道施工现场的整体稳定,迫使采取抗滑措施,而治理措施往往工程数量巨大,时间长,效果却并不十分明显,边坡失稳是岩堆体施工的主要灾害之一。

4)岩堆体易受自然特征(坡度)及气候季节影响,尤其是对雨水影响极其敏感。

岩堆体一般含有大量粘土矿物,在雨水作用下容易软化,抗剪强度急剧下降,即抗滑力降低,而岩堆体自身重量的增加又使下滑力增加,因此,雨水是岩堆体失稳的主要诱因之一。

5)岩堆体对爆破等动载作用敏感。 4.2地表深孔注浆

分析表明,岩堆体前缘土体主要

止地表开裂,在洞门边、仰坡刷方过程中,应采取弱爆破,边开挖,边支护的指导方针,对刷方范围进行喷锚加固。其次,积极采用加固、抗滑措施。

目前应用较为广泛的岩堆体加固主要有地表深孔注浆、洞内导管注浆等。

设计参数

钢花管φ70~75mm,间距150cm,梅花形布置,金竹林设计长度8m,曾家坪规定必须打到基岩或隧道边墙基底2.0m 以下。

布置范围:横向:偏压侧15m,浅埋侧18~25m 。

纵向:由自然坡度和边坡稳定分析确定。

洞内导管采用Ф42钢管,长度5m,纵向间距1.5m,环向间距0.95m,梅花1)设计参数 钢管规格:热轧无缝钢管,φ89mm (或108mm ),壁厚6mm (或8mm ),丝扣相连接。 布置范围:钢管设置于拱部,管中心位于衬砌设计外轮廓线外30cm,

沿纵向平行设置,环向间距0.4~

0.5m,外插角2~3。

钢花管注浆孔设置,孔口段 2.0m 范围内管壁不开孔,剩余部分按15cm 间距交错设置注浆孔,孔径10mm 。

2)注浆参数 双液浆:水泥W :C=0.8:1~1.2:1,水玻璃浆35Be

注浆终压40l/min,掺入量1~3%,注浆终压50l/min,凝结时入量3~5%,半径0.6m 。

水泥砂浆: 注浆前进行可根据上述注浆

压水清孔

,

3Ⅰ准备工作

大管棚施作前,应先修好洞顶天沟,然后进行边、仰坡的开挖,从地面由上而下分层开挖,边开挖边防护,防护措施采用铺设50号浆砌片石,厚25cm 。

Ⅱ钻孔

埋导向管:开孔直径φ146mm,用CS 砂浆埋设长3m 直径φ127mm 的导向管,以利于控制钻孔方向,导向管的埋设一定要准确;

Ⅲ安设管棚

每钻完一孔便顶进一根大管棚。钻进时可根据实际情况,采用钢花管跟进的方法逐段跟进至设计深度,管棚每节长3m,每节之间用丝扣连接,相邻两节之间节头要错开,其错接长度不小于1m 。管棚与导向管之间用CS 砂浆堵塞;为保证管棚内能饱满充填,

在管棚内安有排气管,排气管孔口用

阀门连接。

Ⅳ注浆

注浆过程要作好记录,综合分析,注浆压力和注浆量变化是否达到设计要求,并设检查孔,观察浆液充填情况和孔内涌水量。

长管棚注浆加固范围有限,很难达到预定的加固圈,为此在开挖前采用小导管注浆补强。

A 设计参数

Ⅰ小导管长L=6.0m,采用32mm 焊接钢管,壁厚 3.5mm,开孔长4m,间距60~75cm,外插角20°左右,沿开挖轮廓线布置。

Ⅱ注浆压力根据地层致密程度而定,一般为0.8~1.5MPa 。

B 注浆参数

同大管棚注浆。 C 注浆工艺流程

喷砼封闭开挖面钻孔打小导管

开挖 D 注浆

①单液注浆

注浆首先喷混凝土封闭掌子面以

防漏浆,对于强行打入的钢管先冲洗管内积物,然后再注浆,注浆顺序由下而上。

水泥浆液由稀到浓,逐级变浓。注完浆的钢管要立即堵塞孔口,防止浆液外流。

②水泥—水玻璃双液浆

对于地下水丰富的地层,宜选用水泥—水玻璃双液注浆,双液注浆采

侧导洞的埋深浅,围岩基础的承载力更小,从而导致左侧导洞的拱顶下沉值大于右侧导洞的拱顶下沉值。

C导洞开挖引起的拱顶下沉值随埋深的增加而减小,埋深小于20m地段的拱顶下沉值最为显著,主要是由于隧道底部基础承载力低使隧道整体下沉引起的。深埋段,围岩压力大,偏压占主导地位,是右导拱顶沉降值大

位置,围岩压力和支护内力在开挖过程中均呈增长趋势,部分支护截面的钢筋和砼应力已超过允许应力。以上说明一方面不均衡支护设计体系是较为合理的,另一方面由于初支强度(特别是导坑内壁)较弱,难以抑制围岩变形和承担由此引起的施工荷载,为确保隧道稳定和施工安全,需调整优化部分支护参数。

2)在不稳定岩堆体隧道施工中监渝线狗磨湾隧道的9.3m/月,使曾家坪1#隧道不再成为全线的控制工程,确保了总工期。

3)曾家坪1#三线大跨隧道的设计施工成功之处是通过多种手段如有限元模拟计算、工程类比和监控量测等手段正确指导了设计、施工,积累了大量资料,丰富了三线大跨山岭隧道的钻爆法施工技术。

参考文献:

1内昆线水昭段指导性施工组织设计;隧道局内昆指2在不稳定岩堆体中隧道修建技术研究;董新平

3曾家坪子一号隧道施工监测技术总结;李红军

膨胀岩隧道施工技术

膨胀岩隧道施工技术 1 前言 1.1 膨胀机理 膨胀岩问题是当今工程地质学和岩石力学领域中较复杂的世界性研究课题之一。膨胀岩 的膨胀取决于两方面因素,一是内因:主要包括岩石成分(矿物成分、化学成分和粒度)、天然含水量和湿度状况、胶结程度等三种,这些决定了膨胀岩膨胀能力和膨胀潜势的大小;二是外因:工程活动造成膨胀岩的水分得失和内应力、强度变化等,它决定了膨胀岩的实际膨胀程度。很明显,工程活动过程中,膨胀岩产生膨胀的外部条件都不可避免地得到了不同程度的满足。 岩土膨胀的实质是由所含粘土矿物的亲水性造成的。研究表明:蒙脱石具有巨大的膨胀能力;其次是伊利石;而高岭石的膨胀能力最弱,几乎不具膨胀性。另外,软岩的膨胀还与这些粘土矿物的含量有直接而密切的关系。以往研究成果表明:当蒙脱石含量达7%以上或伊利石含量达20%以上时,软岩即具有明显的胀缩特性,且其含量愈高,胀缩率愈大。 天然状态泥质膨胀性软岩的含水情况是决定其膨胀潜势的重要因素之一。对膨胀性软岩而言,其天然含水量愈大,膨胀势愈头小;而天然含水量愈小,则膨胀势头愈大。 泥质岩胶结情况是决定其膨胀潜势大小和膨胀性发挥程度的关键因素之一。胶结性越差的岩石其膨胀性越强。 国内膨胀岩岩性主要有:灰白、灰绿、灰黄、灰红和灰色的泥岩、泥质粉砂岩、页岩、风化的泥灰岩、风化的基性岩浆岩、蒙脱石化的凝灰岩以及含硬石膏、芒硝的岩石等,岩石 由细颗粒组成,遇水时有滑腻感。 1.2 膨胀岩的特性 ⑴超固结性 未经卸荷作用而处于原始状态的膨胀岩是稳定的,同时在水的作用下,膨胀岩大多具有原始地层的超固结特性,在岩体中储存较高的初始应力。膨胀性岩层在开挖前,岩体没有受到扰动并处于三向受力状态,保持着空间平衡。由于隧道开挖对膨胀岩体产生扰动,破坏了原有平衡,引起围岩应力释放,强度降低,产生卸荷膨胀。同时,施工中不可避免地产生水与膨胀岩的接触,引起了膨胀岩化学状态的改变,使得内部应力变化、强度降低现象进一步加剧,使围岩产生变形破坏。因此,膨胀岩开挖后将产生较大塑性变形。 ⑵干缩湿胀性 膨胀岩裂隙发育,裂隙多充填灰白、灰绿色等富含蒙脱石的物质。这些亲水性粘土矿物,因吸水而膨胀,失水而收缩。干湿循环产生的胀缩效应:一是使岩体结构破坏,强度衰减或丧失,围岩压力增大;二是造成围岩应力变化,无论膨胀压力或是收缩压力,都将破坏围岩 的稳定性,并对支护结构产生较大的荷载。 1.3 膨胀岩的判别和分级 1.3.1 膨胀岩的判别

浅埋偏压隧道的设计研究

浅埋偏压隧道的设计研究 发表时间:2016-09-01T15:06:14.747Z 来源:《基层建设》2015年6期作者:缪小金[导读] 摘要:在隧道修建中,通常会出现浅埋偏压的情况,特别是在隧道进出口处和沿山傍河处浅埋偏压隧道围岩多为IV级以上软弱围岩 衢州市科峰工程规划设计研究有限公司 摘要:在隧道修建中,通常会出现浅埋偏压的情况,特别是在隧道进出口处和沿山傍河处浅埋偏压隧道围岩多为IV级以上软弱围岩,力学性质复杂,而且受偏压影响,地应力分布不均,这就使浅埋偏压隧道稳定性分析变得很困难,使得在隧道进洞施工中很难实现施工质量、安全质量的精准控制。本文以某工程隧道出口浅埋偏压地段为研究对象,针对隧道出口段埋深较浅且存在偏压、围岩破碎、节理裂隙发育、稳定性能等特点,对隧道洞口浅埋段采取地表预注浆设计进行加固,阐述注浆施工工艺,改善软弱围岩成拱稳定条件。 关键词:洞口浅埋;偏压;隧道设计 引言 近年来,伴随着我国社会经济水平的不断发展,人们的生活水平有了很大提高,同时生活理论也有了很大的转变,越来越注重绿色环保。对工程建设环保要求也越来越高,尤其是对隧道洞口段的环保要求,相关设计施工规范均作了洞口位置规范性要求,强调早进洞、晚出洞,即适当延长洞VI和隧道长度,提倡零开挖洞口。让隧道洞口周围的植被、建筑物得到妥善保护,洞口段围岩一般比较破碎、地质条件较差,如何遵循尽量减少对岩体扰动原则提高洞口段岩体和边、仰坡稳定性,确保安全、环保进洞方式值得研究,笔者通过对隧道口浅埋段地表预注浆软弱围岩预加固措施作出了研究分析,并对如何处理这些问题提出了自己的看法。以供参考。 1 工程概况 该隧道位于改建工程Kl+364-KI+474段,隧道出口紧邻村庄,距离民房约30m.隧道全长110m,整个隧道位于R=350圆曲线上。为降低公路建设对隧道附近居民带来影响,避免原设计方案进洞深挖方造成环境破坏,着力保护山区村庄周围原始风貌,采用隧道早进洞、晚出洞环保设计理念达到零开挖进洞要求,隧道出口端洞口浅埋偏压段衬砌长度达56 m。隧道位于两大山脉间,地形起伏大,沟壑纵横。隧道轴线海拔高程介于241.2m-268.1m,隧道最大埋深31.3m,山体地势陡峭,中部起伏不平,植被发育,隧道洞口段风化非常严重,为角砾粉质粘土及强-中风化千枚状板岩,稳定性极差,洞口段均为V级围岩。 2 洞口浅埋段衬砌结构及施工方案设计 2.1衬砌结构设计 隧道洞口浅埋段衬砌形式采用V级围岩加强段复合式衬砌支护设计断面,针对隧道洞口段软弱围岩、浅埋偏压特点,结合地表预注浆加固对超前支护、初期支护及二衬进行加强设计,支护参数如下。 1)钢架,采用I18工字钢弯制而成,接头形式为垫板加高强螺栓,考虑到浅埋偏压等多种不利因素,拱架设计间距取0.8m一榀,纵向采用担2钢筋连接,环向间距取1.0m。 2)系统锚杆,采用L=4.0m25mm中空注浆锚杆,拱部及侧墙设置,环向间距0.8m,纵向间距配合钢拱架使用取0.6m,锚杆呈梅花形布置,锚杆尾部与钢拱架连接,锚杆必须设计钢垫板。 3)喷射混凝土,采用25cm厚C25网喷射混凝土,钢筋网间距20cm×20cm,钢筋网焊接钢拱架。 4)二次衬砌,采用50cm厚FS型C25钢筋混凝土,主筋采用22钢筋,纵向间距20cm,构造筋采用12钢筋,环向间距25cm。洞口范围20m 内超前支护采用注浆长管棚,设置范围为拱部120,环向间距40cm,管棚采用108×6cm热轧无缝钢管,每节长4m-6m,管棚注浆采用1:1水泥浆,注浆压力0.5MPa-2.0MPa。 2.2施工方案设计 V级围岩加强段采用台阶分部法开挖,要求先进行上弧形导坑开挖,留核心土支挡开挖工作面,有利于及时施作拱部初期支护以加强开挖工作面稳定性,核心土以及下部开挖在初期支护保护下进行,施工安全性好,一般环形进尺0.5m-1.0m,下台阶长度为开挖毛洞径1.5倍,为避免初支拱脚下沉,隧道下部断面开挖时上部断面初期支护每榀钢拱架增加4根锁脚锚杆.隧道施工开挖时少扰动岩体,严格控制超、欠挖,用风镐修边,修去欠挖部分,钢筋网和钢支撑密贴围岩面,支撑紧密,再加C15混凝土预制垫块楔紧使初期支护及时可靠。二次衬砌采用混凝土运输车、输送泵和衬砌模板台车机械化配套施工方案确保混凝土质量达到内实外光。 3隧道地表预注浆加固处理 根据隧道洞口段地形地貌以及地质特征,结合工程本身特点,通过分析确定洞口段软弱围岩加同采用水泥-水玻璃双液注浆,注浆从施工作用上看施工工艺属于静压注浆之固结注浆,在注浆理论上属于渗透注浆,主要通过注浆管将浆液均匀注入地层中,利用浆液速凝且凝固时间可控、浆液结石率高、结合体早期强度大特征,在相对较高灌浆压力,浆液以充填渗透和挤密等方式,赶走碎石土及岩体裂隙中水分和空气后占据位置使双浆液在劈裂孔隙或裂隙中混合并迅速凝结,形成结合体使原来松散围岩胶结成一个整体,改善隧道成拱稳定条件,保证工程安全顺利掘进。 3.1 地表预注浆方案设计 隧道出口洞门左侧发育有洼地,右侧地形陡峻,洞口段浅埋偏压较明显,隧道洞口处为河流.隧道出口K1+429-K1+464浅埋暗洞段隧道轴线位置埋深仅7m-9m,为确保施工安全顺利进洞,通过分析需要对隧道进洞段地表软弱围岩进行地表注浆预加固,即开挖进洞前在洞身轴线两侧各8m范嗣地表进行竖向钻孔分段注入l:1水泥-水玻璃双浆液,将松散围岩胶结成足够强度复合围岩,保证隧道安全顺利进洞.注浆需要在原地面清表及整平后方可进行。注浆管采用妒5×5mmPVC打孔塑料管,间距2.0mx2.0m,梅花形布置;塑料花管段埋入原地面不小于1.5m,管壁每隔15cm交错布孔眼,孔眼直径10mm,详见图1

隧道岩爆应急预案

一、应急预案的方针与原则 坚持“安全第一,预防为主”、“保护人员安全优先,保护环境优先”的方针,贯彻“常备不懈、统一指挥、高效协调、持续改进”的原则。更好地适应法律和经济活动的要求;给参建职工的工作提供更好更安全的环境;保证各种应急资源处于良好的备战状态;指导应急行动按计划有序地进行;防止因应急行动组织不力或现场救援工作的无序和混乱而延误事故救援;有效地避免或降低人员伤亡和财产损失;帮助实现应急行动的快速、有序、高效;充分体现应急救援的“应急精神”,坚持“早预防、早发现、早报告、早救治”原则。 二、编制目的 对潜在的隧道岩爆事故做出应急准备,并对已发生的隧道岩爆进行控制,最大限度降低事故的损害程度。 三、编制依据 1、《实施性施工组织设计》 2、《铁路隧道施工规范》(TB10204-2002) 3、《新建铁路黔江至张家界至常德线大坡隧道施工设计图》 4、依据沪昆公司标准化管理体系的要求,结合本工区的工程特点特制定本预案。 5、依据张家界建设指挥部的有关应急处理的规定要求;本工程实施性施组及本单位在相关工程中的经验。 6、国家相关法律、法规,国家有关部门、铁道行业及中国铁路总司相关技术标准、规范、指南、中国铁路总公司相关规章制度。 7、中国铁路总公司《铁路工程设计措施优化指导意见》(铁总建设【2013】103号)。 8、原铁道部《关于进一步明确软弱围岩及不良地质铁路隧道

设计施工有关技术规定的通知》(铁建设【2010】120号)。 9、中国铁路总公司《中国铁路总公司办公厅关于2014年铁路建设质量安全重点工作安排的通知》(铁总办【2014】10号)。 10、勘察设计合同以及合同的有效组成文件、设计施工图。 11、当前铁路建设的技术水平、管理水平和施工装备水平。 12、地质勘查报告。 四、工程概况 大坡隧道位于湖南省龙山县兴隆街乡三塘村及茅坪乡水沙坪村之间。隧道起讫里程为DK92+550~DK99+228,全长6678m,双线隧道,洞身最大埋深727m,最小埋深44m。隧道进口端位于兴隆街乡三塘村东侧山坡上,出口端位于茅坪乡水沙坪村西侧一山坡脚下,隧道通过处地势陡峻、沟谷深切,谷深坡陡,仅进出口有乡村公路通达,交通较不便利。 隧道采用进、出口各1座平导辅助施工。隧道进口:平导起讫里程PK92+570~PK95+870,长度3300m,位于线路左侧 25m,与线路平行,设计坡度与正洞一致。平导与正洞间每隔500m左右设一处横通道作为疏散横通道,共设7处,后期作为疏散隧道及运营排水通道。隧道出口:平导起讫里程 PK97+225~PK99+192长度1967m,位于线路左侧25m,与线路平行,设计坡度与正洞一致。共设4处横通道,后期作运营排水通道。 隧道进口段DK92+550~DK95+600(3050m)及出口段DK98+810~DK99+228(418m)为可溶岩段落,DK95+600~DK98+810(3210m)为非可溶岩段落,非可溶岩及可溶岩形成不同的地形地貌。隧道 DK92+550~DK93+671.710、DK97+315.661~DK98+540.480段位于 R=4500的曲线上,其余均位于直线段上;洞身纵坡依次为17.4‰ /1300、17.5‰/2750、8‰/600、-3.5‰/2028。

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1 概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的

隧道膨胀岩施工技术

隧道膨胀岩施工技术 第二工程有限公司 摘要: 四角田隧道围岩遇水软化、泥化,具有膨胀性,开挖过程中出现数次塌方,已施作二衬段出现砼开裂、拱墙错台、钢筋 折断、拱底鼓起等多种病害。真对上述地质情况,本方着 重介绍对该地质所采取的治理措施,为在以后该地质隧道 施工提供了经验。 关键词:膨胀衬砌开裂拆换施工技术 1、工程概况 云南大(理)保(山)高速公路四角田隧道位于大理州永平县西南部。该隧道是上下行分离的双车道隧道,上下行线间距最小处为20m,隧道断面为双曲半圆拱,设计净宽10.9m,净高7.2m,其中上行线长1533m,下行线长1500m。 四角田隧道岩性是以糜棱岩、泥岩、泥岩粉砂岩、石英砂岩为主的膨胀岩,膨胀岩具有很强的亲水性。膨胀岩的特性是:当岩体中水分聚集时,岩体快速膨胀,对隧道已衬砌好的结构物产生强烈的膨胀压力而导致结构破坏;当岩体中水分失掉时,岩体立即收缩,甚至出现干裂,导致自身强度降低或消失,使开挖的洞室极易发生坍塌。该隧道围岩节理裂隙极其发育,风化破碎严重、地下裂隙水极为丰富。由于该隧道的破碎岩体在强烈的地质构造作用中聚集了潜在的应力,随着隧道的开挖,具有很强的膨胀性,膨胀系数一般在1.5左右,自稳能力极差,极易造成初期支护大变形和

结构的破坏。 2、选取施工方案的原则 四角田隧道施工初期采用普通的复合式衬砌支护和台阶法施工,施工中曾出现数次坍方,初支严重开裂变形,甚至多段二衬出现拱部纵向开裂、仰拱开裂、底鼓、二次衬砌变形侵限定等病害。针对以上原因,在充分总结施工方法和分析产生的原因的基础上,提出了以下施工原则: 2.1采取超前注浆等手段,加固隧道周边围岩,稳定隧道周边围岩内的水分,减少围岩压力及应力变化。 2.2尽早封闭暴露围岩,保持围岩干燥,防止围岩吸水崩塌。 2.3加强初期支护,减少围岩变形,防止坍塌。 2.4设置柔性变形层,允许初期支护有一定的变形。 2.5采用加强性钢筋砼二次衬砌,提高二次衬砌的承载力;根据初支变形确定二次施作时机。 2.6注意排水。 3、施工方法 3.1理论依据 (1).新奥法施工理论 (2).膨胀性围岩特性 3.2施工技术控制措施 (1).打设超前支护锚杆并注浆,强化前方岩体力学性质,抑制岩体的应力释放,保证开挖顺利进行。 (2).采用钢拱架、喷射钢纤维砼、系统锚杆组成联合支护系统,加强初期支护刚度,打设12m长自钻式中空锚杆控制围岩变形松动。

试比较浅埋偏压隧道的几种施工方法

试比较浅埋偏压隧道的几种施工方法 发表时间:2010-06-11T08:35:09.437Z 来源:《赤子》2009年第22期供稿作者:王宇[导读] 山区公路的布线一般沿沟谷进行,沿线隧道多存在一定的偏压效应。 王宇贵州省公路桥梁工程总公司 550001 摘要结合某隧道工程所采用的三种施工方法,探讨了在不同的施工方法下,施工的受力与变形的不同数值。并对不同的施工方法的优点和注意事项作以分析。 关键词偏压隧道现场监测数值计算施工方法对比研究 1.引言 山区公路的布线一般沿沟谷进行,沿线隧道多存在一定的偏压效应。传统的防偏压方法,一般注重采用设计措施,如增设锚杆与管棚、在偏压较小的一侧增设重力式挡墙或加大衬砌的厚度等,而对施工方法则只简单地提及而没有进行对比研究,这样无形中会加大施工成本,造成施工中不安全因素的增加。本文以具体例子为依托,对施工过程中的监测资料进行分析,提出了适合该隧道的施工方法;同时,采用数值分析的手段,从受力的角度提出了最佳的施工方案。 为以后类似工程的设计与施工提供了依据。该隧道的设计为“CD”施工方法,考虑到施工工期及经济因素,拟对进口段采用正台阶施工进行试开挖并进行施工量测,通过对量测数据、施工进度、经济条件等因素的综合分析提出最终适合于该隧道的施工方法。 2 监测数据分析 根据现场条件及一般隧道的监测内容,该隧道的主要监测项目为:周边位移量测、拱顶下沉量测、地表下沉量测、钢支撑内力量测和锚杆轴力量测。各元件的具体布置,见图1。 2 1地表下沉 从地表下沉的监测曲线图可以看出,当围岩开挖历经20天之后,其地表下沉基本上就处于稳定状态,而此时掌子面已经推进了将近100m左右。上述情况表明:该断面的地表沉降经过20天以后基本完成,可以进行下一步的工作。 2.2 收敛变形 根据量测断面上台阶开挖30~97m的收敛变形血线图可以看出,量测时间共45d。在上台阶开挖过程中收敛量在3mm以内,说明在上台阶开挖过30m时围岩的大部分应力已经释放,围岩的位移大部分已发生。水平测线AC数值最大,表明隧道侧压力比竖直压力大,其中的主要原因可能是隧道左侧成拱效应比右侧成拱效应差,因此隧道左侧受到更大的围岩压力。 2.3 拱顶位移 上台阶开挖后典型断面拱顶实测位移曲线图,该断面围岩主要为炭质板岩,属于Ⅲ类围岩,围岩较破碎。通过对测量线进行拟合可知:(1)最终位移u∞=3883mm,该值较大,这主要是由于该断面所处围岩比较破碎,且节理裂隙较发育。但在第6天位移即为33.43m m,已达到最终位移的81%,这说明围岩很快趋于稳定。(2)当t =16d时,位移速率为0.1mm/d,以后随着时间的增长,位移速率将越来越小。 2.4钢支撑内力 所选取的典型断面主要围岩类型为泥岩,属于Ⅲ类围岩。 内力变化曲线时间上可分为4个阶段。其中上台阶开挖后数据曲线形成了急剧增大一缓慢增大一趋于平缓这I、Ⅱ、Ⅲ三个阶段,下台阶开挖后形成了第Ⅳ阶段。下台阶开挖后,钢支撑左右两侧的内力变化并不一致,说明钢支撑所受的左、右两侧的压力并不相等。 由于各部位内力变化在上台阶开挖后基本一致,因此可以对其中某个部位的内力变化进行分析,从而得到一般的规律,现选取钢支撑内层的左侧部位,经分析其内力最终值为2.393kN;在L =50 m 时为1.56k N,占其最终值的6 5%;在L=100m时,为1.93 k N,占其最终值的81%,可见内力的大部分在上台阶开挖后50m内产生。 2.5锚杆内力量测结果 锚杆内力量测结果,见下图。从图中可以看出,围岩变形超过20天之后,其变形基本处于稳定状态,在最初的一周之内,其变形发展是最为显著的时期,过此之后,其变形将逐渐趋于稳定。因此,围岩开挖之后的初始阶段是值得注意的时期。 2.6 施工方法调整 鉴于实测的位移、支护结构的轴力较小且收敛较快,因此将原设计中采用的“CD”法开挖并辅助超前锚杆支护的施工方法变更为采用台阶法开挖的施工方法即可满足要求。 3数值模型的建立与计算参数的选取 为了更好地了解在不同施工方法下偏压隧道的受力变形规律,以便从隧道受力变形的角度寻找出这种隧道的最佳施工方法,本文采用数值分析的手段,对其进行建模分析。 3.1数值模型的建立 根据不同的施工方法建立的数值模型如下图所示。为节省篇幅,在本文中只列出CD法开挖的网格剖分图。 计算参数的选取:综合国际《工程岩体分级标准》GB50218—94、《公路隧道设计规范》JTJ026-90、《铁路隧道设计规范》TB10003—2001等资料对各类围岩物理力学参数的取值情况,取各类围岩中值作为岩体的计算参数。对锚杆与型钢拱架材料参数则根据实验结果取值。 3.2计算结果与分析 采用数值模拟得出的几种不同施工方法下隧道周边与地表最大位移、隧道周边最大围岩应力。而锚杆轴力和钢支撑内力由于受篇幅限制,不再一一列出。 321不同施工方法下受力共同点 (1)拱顶部分的锚杆与钢支撑在不同的施工阶段受力都很小。 (2)完工后受偏压较大的右墙所承受的围岩应力最大,而且拱脚与墙角往往都是应力集中的地方。 (3)锚杆与钢支撑的受力在施工中间阶段往往是右侧受力稍大,而完工后则左侧稍大。

隧道岩爆施工方案

目录 1 编制说明 (3) 1.1编制依据 (3) 1.2编制原则 (3) 1.3编制范围 (4) 2 工程概况 (4) 2.1线路概况 (4) 2.2隧道主要工程量 (4) 3 岩爆的特点及辨识 (4) 3.1岩爆的基本特征 (4) 3.2岩爆产生的条件 (5) 3.3判断岩爆发生的应力条件 (6) 3.4地应力计算与隧道岩爆预测 (6) 3.4.1XX (6) 3.4.2XX (6) 3.4.3XX (7) 3.4.4XX (8) 4、岩爆的预防及处理方案 (10) 4.1总体施工方案 (10) 4.2超前地质预报 (10) 4.2.1超前探孔 (11)

4.2.2地质素描 (11) 4.3加强光面爆破控制,提高爆破效果 (11) 4.4加强初期支护 (12) 4.4.1轻微岩爆区 (12) 4.4.2中等岩爆区 (12) 4.5超前应力释放 (12) 4.6加强高压水冲洗 (13) 4.7加强效果检测 (13) 4.8岩爆发生时的处理措施 (13) 4.9、岩爆防护开挖台架 (14) 5、安全防护措施 (15) 5.1成立岩爆预防及救援小组 (15) 5.2安全防护措施 (16) 5.3洞内作业安全技术措施 (16) 5.3.1钻爆作业安全措施 (16) 5.3.2人员及机械防护措施 (18) 5.3.3洞内作业救援逃生措施 (18)

隧道岩爆防治专项施工方案 1 编制说明 1.1 编制依据 ⑴、《XXXXX标招标图》;《XXXXX两阶段施工图》; ⑵、国家和交通部现行有关工程的设计规范、施工指南、工程质量检验评定标准及安全技术规程; ⑶、国家和四川省政府的有关法律、法规和条例、规定; ⑷、现场详细的施工技术调查资料; ⑸、施工单位资源状况、施工技术水平及管理水平; 1.2 编制原则 ⑴、贯彻执行国家、交通部、当地政府制定的有关政策。 ⑵、按照公路工程施工程序,合理安排施工进度,保证质量,确保按期完工,节约资源,保护环境,取得社会和建设单位信誉。 ⑶、坚持科学性、先进性、经济性与合理性、实用性相结合的原则,采用先进的施工技术、科学的组织方法,合理安排施工。 ⑷、坚持高起点规划、高标准要求、高质量落实,全面实现质量目标的原则。积极推广应用新技术、新工艺、新设备、新材料、新测试方法,采用国内外先进、成熟、可靠的方法和工艺,优化施工方案,实现安全、质量目标。 ⑸、坚持以人为本,安全生产的原则。施工生产活动始终把人的健康安全放在首位,严格执行GB/T28001-2001职业健康安全管理体系,认真编制施工安全技术方案,加强过程控制,落实保证措施,保证安全生产投入,实现安全生产。

浅埋偏压隧道进洞施工技术及应用

浅埋偏压隧道进洞施工技术及应用 浅埋偏压隧道进洞施工技术及应用 摘要:浅埋偏压隧道由于其浅埋偏压的不利因素,在施工和后续的运营中极易产生病害,造成人身财产的损失。本文对施工过程中遇到的问题、处理方法及爆破施工技术进行了探讨。 关键词:浅埋偏压;隧道;进洞;施工 中图分类号:U455文献标识码: A 文章编号: 1.工程概况 西源隧道工程,为双线隧道,最大埋深约35.34m,平均埋深约 18m,Ⅳ级围岩占17.1%,Ⅴ级围岩占82.9%,部分地段地下水较发育。隧道进出口桩号分别为K101+762、K102+230。本隧道地层岩性自上而下为第四系残坡积层粉质黏土,下伏基岩为二叠系上统P21炭质页岩、粉砂岩及二叠系下统P1q灰岩。围岩破碎,节理裂隙发育,空隙潜水较发育,多处浅埋,沟谷。隧道围岩较差,遇水极易软化,施工安全风险极大。 2.设计施工方法 衬砌及施工辅助措施情况见表1。 表1西源隧道正洞衬砌与施工辅助措施一览表 管棚采用Φ108mm×108m热轧无缝钢管,外插脚为3□,压注水泥浆液。 3.施工过程中遇到的问题及处理方法 (1)在洞口边仰坡开挖过程中,隧道进口右侧坡体上有滑坡现象出现,滑坡面光滑。处理方法:在滑坡体处加设锚杆、再挂网喷浆。 (2)在洞口长管棚施工时,发现导向墙右侧下沉,但导向墙整体完好,导向墙上部土体有开裂现象。经各方现场勘查研究,一致认为施工恰处梅雨季节,隧址处围岩孔隙水发育,导向墙两基脚地基为炭质页岩,遇水后承载力急剧下降造成导向墙下沉,经检测实际地基土承载力只有40KPa左右,远小于设计显示的200KPa。处理方法:

将导向墙两基脚从设计上的120°改为180°,并增大基脚尺寸,同时采用小导管注浆加固导向墙基脚(采用ф42小导管,L=4~5m,左、右两侧纵横向各设置12根)。对基脚下岩体进行注浆板结加固,以满足导向墙地基承载力的要求。加固处理完5天开始连续观测7天,导向墙平面位置无变化,没有水平位移。 (3)采用设计图纸推荐的六步CD法施工,在6步CD第3步开挖时,发现6步CD第1步与6步CD第2步连接处中隔壁9榀钢架出现了变形,介于此情况,现场马上进行6步CD第3步回填,并及时开挖了6步CD第4步和6步CD第5步,减少了右侧土体对中隔壁的侧压力,避免中隔壁垮塌。中隔壁稳定后对掌子面挂网并喷射20cm 厚混凝土,并按30cm间距插打两排超前小导管并注浆。在隧道地表沉降观测中发现洞顶地表开裂、洞内沉降明显,为确保洞口施工安全和坡体稳定,决定对DK101+793~+833段采用准50mmPVC袖阀管注浆加固,注浆孔深度至仰拱下1m范围,注浆宽度25m,间距2.0m*2.0m。DK101+793~+813注浆压力控制在0.8Mpa左右,DK101+813~+833注浆压力控制在0.4Mpa左右。注浆采用1:1水泥浆。 (4)施工至DK101+810断面时,掌子面滑坡,但滑坡体不大,滑坡面光滑。处理方法为:回填反压,掌子面挂网并喷射15cm厚混凝土,30cm间距插打两排超前小导管并注浆,待稳固后进行开挖进尺。 (5)施工至DK101+815断面时,拱顶右侧塌方冒顶,坍塌处至掌子面约5米,埋深约6米。坍坑近似直径10米的圆坑,呈漏斗状,隧道内坍体近300m3左右。 经分析,造成此次冒顶的主要原因有:①围岩破碎,围岩为Ⅴc 级围岩,表层Qe1+d1粉质黏土,褐黄色,硬塑。塌方前两天连续下雨,粉质黏土遇水软化、松散,失去承载力。②DK101+813~+833段注浆压力为0.4Mpa左右,注浆压力小,仅对注浆孔周围小部分岩体起到板结效果,达不到注浆加固围岩的作用。注浆压力0.8Mpa时围岩板结效果注浆压力0.4Mpa时围岩板结效果③此处正处于纵向土、岩交界面,两介质性能差异较大,粘结较差。④洞口长管棚未能很好的起到超前支护作用。由于施工误差,设计的长管棚钢管间距为40cm,

隧道岩爆施工方案

目录 1 编制说明 (2) 1.1编制依据 (2) 1.2编制原则 (2) 1.3编制范围 (3) 2 工程概况 (3) 2.1线路概况 (3) 2.2隧道主要工程量 (3) 3 岩爆的特点及辨识 (4) 3.1岩爆的基本特征 (4) ⑤岩爆主要发生在埋深较大,所处岩层性状较单一,弹性模量等物理力学性能较高,能储存一定的应变能量。 (4) 3.2岩爆产生的条件 (4) 3.3判断岩爆发生的应力条件 (5) 3.4地应力计算与隧道岩爆预测 (5) 3.4.1XX (5) 3.4.2XX (6) 3.4.3XX (6) 3.4.4XX (7) 4、岩爆的预防及处理方案 (9) 4.1总体施工方案 (9) 4.2超前地质预报 (9) 4.2.1超前探孔 (10) 4.2.2地质素描 (10) 4.3加强光面爆破控制,提高爆破效果 (10) 4.4加强初期支护 (11) 4.4.1轻微岩爆区 (11) 4.4.2中等岩爆区 (11) 4.5超前应力释放 (12) 4.6加强高压水冲洗 (12) 4.7加强效果检测 (12) 4.8岩爆发生时的处理措施 (12)

4.9、岩爆防护开挖台架 (13) 5、安全防护措施 (14) 5.1成立岩爆预防及救援小组 (14) 5.2安全防护措施 (15) 5.3洞内作业安全技术措施 (16) 5.3.1钻爆作业安全措施 (16) 5.3.2人员及机械防护措施 (17) 5.3.3洞内作业救援逃生措施 (17) 隧道岩爆防治专项施工方案 1 编制说明 1.1 编制依据 ⑴、《XXXXX标招标图》;《XXXXX两阶段施工图》; ⑵、国家和交通部现行有关工程的设计规范、施工指南、工程质量检验评定标准及安全技术规程; ⑶、国家和四川省政府的有关法律、法规和条例、规定; ⑷、现场详细的施工技术调查资料; ⑸、施工单位资源状况、施工技术水平及管理水平; 1.2 编制原则 ⑴、贯彻执行国家、交通部、当地政府制定的有关政策。

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

公路浅埋偏压隧道的常用施工方法探究

公路浅埋偏压隧道的常用施工方法探究 发表时间:2015-12-15T11:21:50.750Z 来源:《基层建设》2015年16期供稿作者:赵光华[导读] 浙江省义乌市针对浅埋偏压隧道洞口段的施工方法举措比较丰富,比较常见的施工方法举措有砂浆锚杆表层打设法、表层压浆法、平衡压力法等。赵光华 身份证号码:330125************ 浙江省义乌市 322000 摘要:在公路隧道施工中,浅埋偏压隧道因其施工难度较大,其施工方法的选择作为施工控制的关键。本文首先简要介绍公路浅埋隧道的定义,随后结合笔者多年参与公路浅埋偏压隧道工程经验阐述常用施工方法举措,期望为今后公路浅埋隧道的施工常用施工方法的选择提供参考。 关键词:公路;浅埋偏压隧道;常用施工方法;探究 1 概述 浅埋偏压隧道是指既具有浅埋特征又同时具有偏压情况的隧道,具体指开挖过后,隧道将承受全部上层覆土层所产生的全部土压力,同时因实际地形不对称或岩层岩性不同致使隧道结构体自身所受到两侧荷载不平衡的隧道;根据隧道段落埋深与隧道自身直径的的比值小于2.5的,判定属于浅埋段,反之,属于深埋段;偏压隧道的压力根据隧道设计规范中的具体计算公式并结合隧道的实际埋深、具体尺寸及周边围岩具体级别等来判定,同时在隧道施工过程中,因采用的施工方法及顺序不一也会造成偏压情况出现。在公路隧道施工过程中,浅埋偏压隧道地段大都位于进、出洞口段因地形及覆土深度等形成浅埋偏压情况;在隧道进洞后的洞身段施工过程中,很少遇到浅埋和偏压情况,如遇到两者叠加属于地质地层属性影响造成的隧道两侧受力不均的情况。在《公路隧道设计规范》(JTG D70-2004)及《公路隧道设计细则》(JTG D70-2010)中就浅埋偏压隧道的规定均通过具体数据予以明确。 对于浅埋偏压隧道,覆盖层松散、软弱的围岩条件以及地质岩性地层的偏压造成隧道出现超过设计规定的变形、甚至出现坍塌情况的关键因素。在隧道设计阶段,针对处于浅埋段且受到严重偏压的情况,应进行专门设计防止隧道成型结构物受到影响而出现失稳事故。在施工阶段,针对浅埋偏压段的施工严格按照设计要求并结合现场实际采取可行有效的措施进行施工,防止出现质量问题及安全事故。 2 常用施工方法举措 浅埋偏压隧道属于公路不良地质隧道开挖施工中较为复杂的浅埋段及偏压段等不良地质地段的组合,同时一般还伴有岩石破碎、属于软弱岩层、含水量大等其他不良地质条件,给施工过程带来较大的难度。因此,针对浅埋偏压隧道洞口及洞身施工分别选择合适的施工方法是确保浅埋偏压隧道段施工质量及安全的前提条件。 2.1 洞口段常用施工方法举措 针对浅埋偏压隧道洞口段的施工方法举措比较丰富,比较常见的施工方法举措有砂浆锚杆表层打设法、表层压浆法、平衡压力法等。具体施工方法举措及适用范围如下。一是砂浆锚杆表层打设法举措,就是根据现场情况按设计以一定间距和深度打设锚杆孔,经检查合格后再插入锚杆在及时填入设计强度的水泥砂浆予以锚固加固土体;表层打设加固范围通过具体计算确定,主要适应于洞口浅埋开挖段中洞口顶土体处于斜坡体的地段。二是表层压浆法举措,按梅花型或方形布置打设压浆孔道,根据设计及现场实际情况确定压浆处理范围及孔道深度,插设压浆管道,拌和制作合格压浆浆液,通常采用纯水泥拌制,特殊情况可增加水玻璃等其他速凝材料进行拌制,并按设计及现行相关规范要求进行压浆作业,压浆完毕后及时对压浆通道顶部进行加强连接使之形成整体受力;主要适应用浅埋偏压隧道洞口附近地表岩层破碎、空隙大且极易出现整体塌方的地段。三是平衡压力法举措,针对浅埋偏压段,侧重于偏压的处治,即通过在临空面处设置反挡混凝土、钢筋混凝土以及预应力钢筋混凝土构筑物、对产生偏压的源头即高的山体土石方进行消减反压在临空面侧的双重平衡措施予以处理;一般先进行偏压临空侧的反挡工程的施工,即根据岩体情况选择相应工法,在岩体完整性较好的情况下,通过按一定间距设置抗滑桩或锚索抗滑桩或为加快施工进度采用型钢桩、钢管桩等抗滑设;在岩体比较差甚至是土体的情况下,建议采用预应力锚索与板及格构配合使用,或者在石料丰富地区直接采取挡墙加固举措予以处理;在采用平衡压力法的开始,及时对原状山体软弱部分进行夯实平整,根据山体实际地形开挖环形排水沟和截水沟,保证排水通畅;平衡压力法主要适用于浅埋偏压段洞口段各种地质情况。 2.2 洞身段常用施工方法举措 对于浅埋偏压隧道洞身段的施工方法举措主要有超前强(超强)支护方法、分部分块开挖方法、初期强(超强)支护方法、二衬衬砌早强(提高)强度方法等,减少或消除浅埋偏压隧道所受到的超设计及规范的偏压力。具体如下。一是超前强支护甚至超强支护的施工方法举措,在浅埋偏压段隧道洞身为开挖前,在待开挖作业面的上部设计指定范围内,采用专用机械设备进行孔道的打设钻机施工,根据设计及实际地质情况,决定孔道加密数量及插设的关键性加固材料如加强型锚杆、大钢管、加强小导管等强度高的钢管,并根据情况进行压浆作业,并及时对管间采取措施进行连接,确保整体受力效果;主要适用于具有显著的浅埋偏压且岩体软弱破碎地段。二是分部分块开挖方法举措,主要采取新奥法里的适用于软弱浅埋偏压型隧道岩层的开挖作业,具体有分两级或三级台阶进行分部分块开挖、环向留取核心土体进行分部分块开挖、中(交叉中)隔壁(C(R)D)法进行分部分块开挖、单(双)侧壁导坑开挖几大类;其中,两级或三级类多台阶开挖方法一般分上、下或上、中、下台阶,台阶间长度根据设计及现场地层地质情况以及施工作业实际划分,同时根据地质情况配合好超前强支护措施。主要适用于浅埋偏压段较好地层和较好地质地段;环向留取核心土开挖方法一般将开挖划分为三大区域,即环向上拱形部位、底部以及中间预留核心土部位,通过先进行环向上拱形部位的开挖及支护,在进行留取核心土部位开挖,最后再进行底部开挖的主要顺序进行开挖作业,主要适用于处于软弱岩层地质中的浅埋偏压地段的隧道开挖施工;中隔壁(CD)法主要以多级台阶开挖为基础将隧道开挖再从大致中间进行竖向划分,按设计及现行规范规定的既定程序进行有序开挖,且需及时设置临时中隔壁构造物,主要适用于存在不稳定岩层以及地层较差的浅埋偏压隧道段的开挖施工;而交叉中隔壁(CRD)法主要也是以多级台阶开挖为基础将隧道开挖再从大致中间进行竖向的划分,与CD法不同的是,无论开挖划分的跨度大小还是台阶间距都设置较短,以确保施工安全,再按设计及现行规范规定的既定程序进行有序开挖,且需及时设置临时中隔壁构造物,主要适用于存在极不稳定岩层以及地层极差的浅埋偏压隧道段的开挖施工。三是初期强支护甚至采取超前支护的方法举措,即通过设置加强型锚杆或锚喷结合方式甚至采取钢拱架、钢格栅等具有超前支撑能力的钢结构来快速封闭掌子面,确保围岩变形可控及施工安全。四是二次衬砌采用早强型混凝土或者采取高一等级强度的混凝土,让二衬衬砌尽可能早的发挥作用。

隧道岩爆的防治措施

岩爆,也称冲击地压,它是一种岩体中聚积的弹性变形势能在一定条件下的突然猛烈释放,导致岩石爆裂并弹射出来的现象 轻微的岩爆仅有剥落岩片,无弹射现象,严重的可测到4.6级的震级,烈度达7一8度,使地面建筑遭受破坏,并伴有很大的声响。岩爆可瞬间突然发生,也可以持续几天到几个月。发生岩爆的条件是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性,在这种条件下,一旦由于地下工程活动破坏了岩体原有的平衡状态,岩体中积聚的能量导致岩石破坏,并将破碎岩石抛出。 发生原因 发生条件:在硬脆岩体高地应力地区,硐室开挖过程中发生岩爆。 发生原因:围岩强度适应不了集中的过高应力而突发的失稳破坏。 防治措施:应力解除、注水软化和使用锚栓-钢丝网-混凝土防爆支护等。[1] 基本解释 岩爆是岩石工程中围岩体的突然破坏,并伴随着岩体中应变能的突然释放,是一种岩石破裂过程失稳现象。 岩爆-简介 岩爆是深埋地下工程在施工过程中常见的动力破坏现象,当岩体中聚积的高弹性应变能大于岩石破坏所消耗的能量时,破坏了岩体结构的平衡,多余的能量导致岩石爆裂,使岩石碎片从岩体中剥离、崩出。 岩爆往往造成开挖工作面的严重破坏、设备损坏和人员伤亡,已成为岩石地下工程和岩石力学领域的世界性难题。轻微的岩爆仅剥落岩片,无弹射现象。严重的可测到4.6级的震级,一般持续几天或几个月。发生岩爆的原因是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性。这时一旦地下工程破坏了岩体的平衡,强大的能量把岩石破坏,并将破碎岩石抛出。预防岩爆的方法是应力解除法、注水软化法和使用锚栓-钢丝网-混凝土支护。岩爆-产生的条件 1.近代构造活动山体内地应力较高,岩体内储存着很大的应变能,当该部分能量超过了硬岩石自身的强度时; 2.围岩坚硬新鲜完整,裂隙极少或仅有隐裂隙,且具有较高的脆性和弹性,能够储存能量,而其变形特性属于脆性破坏类型,当应力解除后,回弹变形很小; 3.埋深较大(一般埋藏深度多大于200m)且远离沟谷切割的卸荷裂隙带; 4.地下水较少,岩体干燥; 5.开挖断面形状不规则,大型洞室群岔洞较多的地下工程,或断面变化造成局部应力集中的地带。 地质构造

浅埋偏压隧道施工技术

浅埋偏压隧道施工技术 浅埋偏压隧道施工技术 摘要:随着现代科学技术的逐步完善,在不断进步的经济社会对现代交通运输行业高标准要求的推动下,浅埋偏压性隧道进洞交通建设工作正面临着前所未有的发展空间与潜力。本文对某隧道浅埋偏压段的处理进行了分析,并对地面注浆加固、超前管棚及锁脚钢管的施工工艺进行了探讨。 Abstract: with the gradual improvement of modern science and technology, in the economic and social progress of modern transportation industry to promote the high standard requirement, shallow buried bias into the hole of the tunnel traffic construction work are facing unprecedented development space and potential. In this paper a tunnel of shallow buried bias segment of the treatment was analyzed, and the ground grouting strengthening, lead tube tent and lock the construction process of the steel tube feet are discussed in this paper. 中图分类号:TU74文献标识码: A 文章编号: 一、工程概况 某隧道全长648m,该隧道属于典型的浅埋偏压隧道,且围岩松散,溶槽、裂隙发育,充填大量的碎石土和黄粘土,地质条件较差,对开挖带来很大的安全隐患,极易出现塌方甚至冒顶事故。为保证施工质量、安全以及运营的安全,我们在浅埋偏压地段施工时采取必要的加固措施。一是在外侧增设应力挡墙,以抵抗山体的侧压力,挡墙采用C 25片石混凝土,与围岩之间填充C25片石混凝土同步浇筑。二是增加拱部Φ108管棚长度,由设计15 m改为36 m,以便更好地控制隧道初期支护变形和下沉,可以有效的控制开挖和支护施工质量以及

相关文档