文档库 最新最全的文档下载
当前位置:文档库 › 第2章-质点动力学答案

第2章-质点动力学答案

第2章-质点动力学答案
第2章-质点动力学答案

%

2015-2016(2)大学物理A (1)第二次作业

第二章 质点动力学答案

[ A ] 1、【基础训练1 】 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 2

1

=

.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A) 3/)2(0g a +. (B) )3(0a g --.

(C) 3/)2(0g a +-. (D) 0a [解答]:

()()()()00000()

,/3,

2/3

Mg T Ma T mg m a a M m g M m a ma a g a a a g a -=-=+-=++=-∴+=+ 、

[ D ]2、【基础训练3】 图示系统置于以g a 2

1

=

的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为

(A) mg . (B) mg 2

1.

(C) 2mg . (D) 3mg / 4. [解答]: 设绳的张力为T ,F 惯=ma

mg ?T +ma =ma‘,

T =ma’,

mg +mg /2=2ma’. 》

所以 a’=3g/4, T=3mg/4

[ B ] 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1

(A) N =0. (B) 0 < N < F.

(C) F < N <2F. (D) N > 2F. …

[解答]: 2F=(m 1+m 2)a, F+N=m 2a,

B

A

a

m 1

m 2F

F

所以:

2N=(-m 1+m 2)a=2F(-m 1+m 2)/ (m 1+m 2)

N=F(-m 1+m 2)/ (m 1+m 2) 0 < N < F.

[ C ] 4、【自测1】 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断

(A) 2a 1. (B) 2(a 1+g ).

(C) 2a 1+g . (D) a 1+g . [解答]: 适合用非惯性系做。

1221

/20,0,2mg ma T mg ma T a g a +-=+-==+所以

[ B ]5、【自测2】 质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,

如图2-22所示.设木板和墙壁之间的夹角为,当逐渐增大时,小球对木板的压力将 (A) 增加. (B) 减少. (C) 不变.

(D) 先是增加,后又减小.压力增减的分界角为=45°

【解答】

设N 为木板对小球的作用力 sin N mg α= /sin N mg α= α增加,N 减小。

由牛顿第三定律,小球对木板的压力大小也为N 。

填空题

6、【基础训练6】 假如地球半径缩短 1%,而它的质量保持不变,则地球表面的重力加速度g 增大的百分比是_______2%_______.

【解答】

2

M

g G R

=

32/,/2/dg GM R dR dg dR g R ∴=-=- 反向增加。

.

7、【基础训练8】 质量相等的两物体A 和B ,分别固定在弹簧的两端,竖直放在光滑水平面C 上,如图2-17所示.弹簧的质量与物体A 、B 的质量相比,可以忽略不计.若把支持面C 迅速移走,则在移开的一瞬间,A 的加速度大小a A =_0______,B 的加速度的大小a B =___2g____.

【解答】

a 1

`

&

F mg

α m

的支持力大小。

受为作用力大小,,为弹簧对注:。

,变为零。未变化。瞬间,移走。,原来处于平衡,C B N B A f g a a N f C 2mg mg f N mg f B A 20===+==

-

8、【基础训练9】 质量为m 的小球,用轻绳AB 、BC 连接,如图2-18,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′= .

【解答】

剪断前,B 球处于平衡。

cos mg

T

剪断后瞬间,B 球速率为零,2'cos

0v T mg m l

(速率为零)

剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′= 21:cos θ.

?

9、【自测5】 一物体质量为M ,置于光滑水平地板上.今用一水平力F

通过一质量为m 的

绳拉动物体前进,则物体的加速度a =____F/M+m__________,绳作用于物体上的力T =____M F/M+m _____________.

【解答】

连接体F =(m +M )a,T =Ma 【

10、【自测6】 一块水平木板上放一砝码,砝码的质量m =0.2 kg ,手

扶木板保持水平,托着砝码使之在竖直平面内做半径R =0.5 m 的匀速

率圆周运动,速率v =1 m/s .当砝码与木板一起运动到图示位置时,砝码受到木板的摩擦力为,砝码受到木板的支持力为.

【解答】 ^ 解法一

:

以水平木板为参考系(非惯性系),砝码相对于木板静止。在非惯性系中列出牛顿运动方程

22/cos 450/sin 450

f mv R N mv R m

g ??-=+-=

!

A

N F

解法二 惯性系中求解

N mg f ma ++=

2cos 45v f m R =? 2

sin 45v mg N m R

-=?

计算题

11、 【基础训练10】 质量为m 的物体系于长度为R 的绳子的一个端点上,在竖直平面内绕绳子另一端点(固定)作圆周运动.设t时刻物体瞬时速度的大小为v ,绳子与竖直向上的方向成θ角,如图所示. `

(1) 求t时刻绳中的张力T 和物体的切向加速度a t ; (2) 说明在物体运动过程中a t 的大小和方向如何变化

【解答】

(1) t 时刻物体受力如图所示,在法向 、 R m mg T /cos 2

v =+θ ∴ θcos )/(2

mg R m T -=v 在切向 t ma mg =θsin ∴ sin t a g θ=

(2) θsin g a t =,它的数值随

的增加按正弦函数变化.(规定物体由顶点开始转一周又

回到顶点,相应角由0连续增加到2).

> 0时,a t > 0,表示t a 与v 同向; …

2 > 时,a t < 0,表示t a

与v 反向. 12、【基础训练12】 水平转台上放置一质量M =2 kg 的小物块,物块与转台间的静摩擦系数μs =,一条光滑的绳子一端系在物块上,另一

端则由转台中心处的小孔穿下并悬一质量m =0.8 kg 的物块.转台以角速度ω=4 rad/s 绕竖直中心轴转动,求:转台上面的物块与转台相对静止时,物块转动半径的最大值r max 和最小值r min .

【解答】

质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f

和质量为m 的物块对它的

拉力F 的合力提供.当M 物块有离心趋势时,f 和F

的方向相同,而当M 物块有向心运动

趋势时,二者的方向相反.因M 物块相对于转台静止,故有

F + f max =M r max ω2 !

m

O R θ

v

m O R

θ

v T g m P

=

m

45°

F - f max =M r min ω2

m 物块是静止的,因而

F = m g 又 f max =μs M g 故 2.372

max =+=

ωμM Mg

mg r s mm 4.122

min =-=ω

μM Mg mg r s mm

.

13、 【基础15】 光滑的水平桌上放置一固定的半径为R 的圆环带,一物体贴着环内侧运动,物体与环带间的滑动摩擦系数为μ,设物体在某一时刻经过A 点的速率为0v ,求此后t 时刻物体的速率以及从A 点开始的路程。

【解答】

2202000000,.,

ln

.d N m dt d R dt N m R

R d dt R R t R R dt ds ds dt R t R t R t

R

s R

υ

μμυυ

υυμυ

υυμυυυυμυμυμυμ

?-=??-=??=?=-→=+==→=+++∴=

如图所示;建立自然坐标系。

;

14、【自测10】一条轻绳跨过一轻滑轮(滑轮和轴的摩擦可忽略)。在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环(如图)。当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少环与绳间的摩擦力多大

【解答】

f

N

()()()()

()()

1112212122122221211212121212T f ,T ();.(2),.

.m g T m a m g m a a a m a m m g m a g a gm m a T m m m m m m g m a a m m -=-=---+-=

=++--=

+1212隔离法,根据题意设左边绳子的张力为右边摩擦力为,T=f.又因为环相对运动,所以有:

两式相加,

得:m g-m g=m +m 环的加速度为

15、 【自测11】一人在平地上拉一个质量为m 的木箱与匀速前进,如图2-30所示。木箱与地面间的摩擦因数=.设此人前进时,肩上绳的支撑点距地面高度h=,不计箱高,问绳长l 为多长时最省力

【解答】

设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有

F cos θ-f =0 F sin θ+N -Mg =0 f =μN

得 θμθμsin cos +=

Mg

F

令 0)sin (cos )

cos sin (d d 2

=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''?=θ

且 0d d 2

2

F

∴ l =h / sin θ=2.92 m 时,最省力. 附加题

16,【自测13】一条质量分布均匀的绳子,质量为m ,长度为L ,一端拴在竖直转轴OO ’上,并以恒定角速度ω在水平面上旋转,设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T(r)。 【解答】

h

M

l μ

Mg

θ

F

N f

T

G

\

G2

f

第二章 质点动力学

普通物理
黄 武 英
第二章
一.牛顿第一定律
质点动力学
三.牛顿第三定律
§2.1 牛顿定律
二.牛顿第二定律
§2.2 常见的力
一.万有引力 五.四种基本力 二.重力 三.弹力 四.摩擦力
牛顿定律应用举例
§2.3 单位制和量纲 §2.4 动量定理和动量守恒定律 §2.5 动能定理和功能原理 §2.6 能量守恒定律 §2.7 角动量定理和角动量守恒定律
物理与电子信息学院
§2.4 动量定理和动量守恒定律
一、质点的动量定理 二、动量定理的应用 三、质点系的动量定理 四、质心运动定理 五、质点系的动量守恒定律 六、变质量物体的运动方程
§2.5 动能定理和功能原理
一、动能及功的定义 三、功率 五、保守力和非保守力 六、质点的功能原理 七、质点系的动能定理和功能原理 二、动能定理
四、功的计算举例
§2.6 能量守恒定律
一、机械能守恒定律 二、守恒定律(机械能与动量) 的综合应用 三、能量转化及守恒定律 四、碰撞
§2.7角动量守恒定律
一、力矩 二、角动量 三、角动量守恒定律
四、动能定理
K rb G K 2 2 1 Wab = ∫K f ? dr = 1 2 mVb ? 2 mVa
ra
本章小结 G G dp d (mv ) G 一、牛顿第二定律 = =F dt dt
二、质点系的动量定理
五、质点系的功能原理和机械能守恒定律
Ekb + E pb ? ( Eka + E pa ) = W外 + W非保守内力
则: E kb + E pb = E ka + E pa 六、角动量定理和角动量守恒定律 K K dL 角动量定理 M= G dt 若 M =0 (条件)
功能原理
若外力和非保守内力都不作功或所作的总功为零(条件) 机械能守恒定律
G I =

t2
t1
G G G F合外 dt = ∑ mi vi (t 2 ) ? ∑ mi vi (t1 )
i i
三、质点系的动量守恒定律 若系统不受外力作用,或所受外力的矢量和为零(条件) n K K K K 则: ∑ miVi=m1V1 + m2V2 + " mnVn = 恒量
i =1
G

dL =0 dt
G L = 常矢量
角动量守恒定律

第2章 质点动力学

第2章 质点动力学 一、选择题 1. 如图1所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小 (D) 速度继续增大, 加速度逐渐增大 [ ] 2. 一物体作匀速率曲线运动, 则 (A) 其所受合外力一定总为零 (B) 其加速度一定总为零 (C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零 [ ] 3. 对一运动质点施加以恒力, 质点的运动会发生什么变化? (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性 (C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 [ ] 4. 用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置 (A) 都有切向加速度 (B) 都有法向加速度 (C) 绳子的拉力和重力是惯性离心力的反作用力 (D) 绳子的拉力和重力的合力是惯性离心力的反作用力 [ ] 5. 如图2所示,三艘质量均为0m 的小船以相同的速度v 鱼贯而行.今从中间船上同时以速率u (与速度v 在同一直线上)把两个质量均为m 的物体分别抛到前后两船上. 水和空气的阻力均不计, 则抛掷后三船速度分别为 (A) v ,v ,v (B) u +v ,v ,u -v (C) u m m m 0++ v ,v ,u m m m +-v (D) u m m m 0++ v ,v ,u m m m 0 +-v [ ] 6. 质量为m 的铁锤竖直落下, 打在木桩上并停下. 设打击时间为?t , 打击前铁锤速率为 v ,则在打击木桩的时间内, 铁锤所受平均合外力的大小为 (A) t m ?v (B) mg t m -?v (C) mg t m +?v (D) t m ?v 2 [ ] 7. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块, 这是因为 (A) 前者遇到的阻力大, 后者遇到的阻力小 (B) 前者动量守恒, 后者动量不守恒 (C) 后者锤的动量变化大, 给钉的作用力就大 (D) 后者锤的动量变化率大, 给钉的作用力就大 [ ] 8. 质点系的内力可以改变 (A) 系统的总质量 (B) 系统的总动量 图1 图2 v

大学物理2-1第二章(质点动力学)习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 ??? ? ??--= -m kt e k F mg v 1 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正 方向,开始沉降处为坐标原点。由牛顿第二定律得 t v m ma f F mg d d ==--

即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =-- 对上式两边积分 ??=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2?? =- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-=

大学物理第二章(质点动力学)习题答案

习题二 2-1 质量为m得子弹以速率水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹得重力,求:(1)子弹射入沙土后,速度大小随时间得变化关系; (2)子弹射入沙土得最大深度。 [解] 设任意时刻子弹得速度为v,子弹进入沙土得最大深度为s,由题意知,子弹所受得阻力f= - kv (1) 由牛顿第二定律 即 所以 对等式两边积分 得 因此 (2) 由牛顿第二定律 即 所以 对上式两边积分 得到 即 2-2 质量为m得小球,在水中受到得浮力为F,当它从静止开始沉降时,受到水得粘滞阻力为f=kv(k为常数)。若从沉降开始计时,试证明小球在水中竖直沉降得速率v与时间得关系为 [证明] 任意时刻t小球得受力如图所示,取向下为y轴得正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 整理得 对上式两边积分 得 即 2-3 跳伞运动员与装备得质量共为m,从伞塔上跳出后立即张伞,受空气得阻力与速率得平方成正比,即。求跳伞员得运动速率v随时间t变化得规律与极限速率。 [解] 设运动员在任一时刻得速率为v,极限速率为,当运动员受得空气阻力等于运动员及装备得重力时,速率达到极限。 此时 即 有牛顿第二定律 整理得 对上式两边积分 得 整理得 2-4 一人造地球卫星质量m=1327kg,在离地面m得高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f得大小;(2)卫星得速率v;(3)卫星得转动周期T。 [解] 卫星所受得向心力即就是卫星与地球之间得引力

由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 ()() s m 1096.61327 1085.11063781082.736 33e ?=?+???=+= m h R f v (3) 卫星得运转周期 ()() 2h3min50s s 1043.710 96.61085.1106378223 3 63e =?=??+?=+=ππv h R T 2-5 试求赤道上方得地球同步卫星距地面得高度。 [解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 代入第一式中 解得 2-6 两个质量都就是m 得星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。已知轨道半径为R ,求:(1)每个星球所受到得合力;(2)每个星球得运行周期。 [解] 因为两个星球在同一轨道上作圆周运动,因此,她们受到得合力必须指向圆形轨道得圆心,又因星球不受其她星球得作用,因此,只有这两个星球间得万有引力提供向心力。所以两个星球必须分布在直径得两个端点上,且其运行得速度周期均相同 (1)每个星球所受得合力 (2) 设运动周期为T 联立上述三式得 所以,每个星球得运行周期 2-7 2-8 2-9 一根线密度为得均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面得瞬时作用力。 [解] 链条对桌面得作用力由两部分构成:一就是已下落得s 段对桌面得压力,另一部分就是正在下落得段对桌面得冲力,桌面对段得作用力为。显然 时刻,下落桌面部分长s 。设再经过,有落在桌面上。取下落得段链条为研究对象,它在时

力学习题第二章质点动力学(含答案)

第二章质点动力学单元测验题 一、选择题 1.如图,物体A和B的质量分别为2kg和1kg,用跨过定滑轮的细线相连,静 止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F作用在物体A上,则F至少为多大才能使两物体运动. A.3.4N; B.5.9N; C.13.4N; D.14.7N 答案:A 解:设沿斜面方向向下为正方向。A、B静止时,受力平衡。 A在平行于斜面方向:F m g sin T f f 0 A12 B在平行于斜面方向:1sin0 f m g T B 静摩擦力的极值条件:f1m g cos, B f m m g 2(B A)cos 联立可得使两物体运动的最小力F min满足: F min (m B m A)g sin (3m B m A )g cos=3.6N 2.一质量为m的汽艇在湖水中以速率v0直线运动,当关闭发动机后,受水的阻力为f=-kv,则速度随时间的变化关系为 A.v k t =v e m; B. v= -t k t v e m 0; C. v=v + k m t ; D. v=v - k m t 答案:B 解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以v0方向为正方向建立坐标系. 牛顿第二定律: dv ma m kv dt 整理: d v v k m dt

积分得:v= - v e k t m 3.质量分别为m和m( 12m m)的两个人,分别拉住跨在定滑轮(忽略质量)21 上的轻绳两边往上爬。开始时两人至定滑轮的距离都是h.质量为m的人经过t 1 秒爬到滑轮处时,质量为m的人与滑轮的距离为 2 m m1m-m1 1; C.1(h gt2)2h gt 1 2 A.0; B.h+; D.(+) m m2m2 222 答案:D 解:如图建立坐标系,选竖直向下为正方向。设人与绳之间的静摩擦力为f,当 质量为m的人经过t秒爬到滑轮处时,质量为m的人与滑轮的距离为h',对二者12 分别列动力学方程。 对m: 1 f m g m a m 11m1 1 dv m 1 dt 对m: 2 f m g m a m 22m2 2 dv m 2 dt 将上两式对t求积分,可得: fdt m gt m v m 11m1 1dy m 1 dt fdt m gt m v m 22m2 2dy m 2 dt 再将上两式对t求积分,可得: 1 fdt m gt 0m h 22 11 2 1 fdt m gt m h m h 22 222 2

第二章 质点动力学习题答案

第二章 质点动力学习题答案 2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向 与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行 斜面与X 轴垂直方向为Y 轴.如图2-1. 图2-1 X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v 2 sin 2 1t g y α= 由①、②式消去t ,得 2 2 sin 21x g v y ?= α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为 常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m ⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律: 合力:f P F += a m f P =+ y 分量:dt dV m KV mg =-- dt KV mg mdV -=+? 即 dt m KV mg dV 1- =+ ? ? - = +t v v dt m KV mg dV 10

dt m KV mg KV mg K 1ln 10 - =++ )(0KV mg e KV mg t m K +?=+- mg K e KV mg K V t m K 1)(10- += ?- ① 0=V 时,物体达到了最高点,可有0t 为 )1ln(ln 00 0mg KV K m mg KV mg K m t + = += ② ∵ dt dy V = ∴ Vdt dy = dt mg K e KV mg K Vdt dy t t m K t y ? ?? ?? ????-+= = -0 1)(1 mgt K e KV mg K m y t m K 11)(02 -??????-+- =- 021()1K t m m mg KV e mgt K K -+--??=???? ③ 0t t = 时,max y y =, )1ln(11)(0)1ln(02 max 0mg KV K m mg K e KV mg K m y mg KV K m m K +?- ??? ?????-+= +?- )1ln(11)(0 2 2 002 mg KV g K m mg KV mg KV mg K m +-?? ??? ? ?????? +-+= )1ln() (02 20 002 mg KV g K m KV mg KV KV mg K m + - ++= )1ln(02 20mg KV g K m K mV + - = 2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一 段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度.

第2章-质点动力学答案

% 2015-2016(2)大学物理A (1)第二次作业 第二章 质点动力学答案 [ A ] 1、【基础训练1 】 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 2 1 = .若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A) 3/)2(0g a +. (B) )3(0a g --. (C) 3/)2(0g a +-. (D) 0a [解答]: ()()()()00000() ,/3, 2/3 Mg T Ma T mg m a a M m g M m a ma a g a a a g a -=-=+-=++=-∴+=+ 、 [ D ]2、【基础训练3】 图示系统置于以g a 2 1 = 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) mg 2 1. (C) 2mg . (D) 3mg / 4. [解答]: 设绳的张力为T ,F 惯=ma mg ?T +ma =ma‘, T =ma’, mg +mg /2=2ma’. 》 所以 a’=3g/4, T=3mg/4 [ B ] 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1 2F. … [解答]: 2F=(m 1+m 2)a, F+N=m 2a, B A a m 1 m 2F F

第2章 质点动力学

第2章质点动力学 一、质点: 是物体的理想模型。它只有质量而没有大小。平动物体可作为质点运动来处理,或物体的形状大小对物体运动状态的影响可忽略不计是也可近似为质点。 二、力: 是物体间的相互作用。分为接触作用与场作用。在经典力学中,场作用主要为万有引力(重力),接触作用主要为弹性力与摩擦力。 1、弹性力:(为形变量) 2、摩擦力:摩擦力的方向永远与相对运动方向(或趋势)相反。 固体间的静摩擦力:(最大值) 固体间的滑动摩擦力: 3、流体阻力:或。 4、万有引力: 特例:在地球引力场中,在地球表面附近:。 式中R为地球半径,M为地球质量。 在地球上方(较大),。 在地球内部(),。 三、惯性参考系中的力学规律牛顿三定律 牛顿第一定律:时,。牛顿第一定律阐明了惯性与力的概念,定义了

惯性系。 牛顿第二定律: 普遍形式:; 经典形式:(为恒量) 牛顿第三定律:。 牛顿运动定律是物体低速运动()时所遵循的动力学基本规律,是经典力学的基础。 四、非惯性参考系中的力学规律 1、惯性力: 惯性力没有施力物体,因此它也不存在反作用力。但惯性力同样能改变物体相对于参考系 的运动状态,这体现了惯性力就是参考系的加速度效应。 2、引入惯性力后,非惯性系中力学规律: 五、求解动力学问题的主要步骤 恒力作用下的连接体约束运动:选取研究对象,分析运动趋势,画出隔离体示力图,列出 分量式的运动方程。 变力作用下的单质点运动:分析力函数,选取坐标系,列运动方程,用积分法求解。 第2章质点动力学 二、解题示例 【例2-1】如题图2-1a所示一倾角为的斜面放在水平面上,斜面上放一木块,两者间摩擦

大学物理_第2章_质点动力学_习题答案

第二章 质点动力学 2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。 解:物体与斜面间的摩擦力f =uN =umgcos30 物体向斜面上方冲去又回到斜面底部的过程由动能定理得 22011 2(1) 22 mv mv f s -=-? 物体向斜面上方冲到最高点的过程由动能定理得 201 0sin 302 mv f s mgh f s mgs -=-?-=-?-o 2(2) s ∴= 把式(2)代入式(1)得, 220.198 u = 2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。 解:小球在运动的过程中受到重力G r 和轨道对它的支持力T r .取如图所示的自然坐标系,由牛顿定律得 22 sin (1) cos (2) t n dv F mg m dt v F T mg m R αα=-==-=r r r 由,,1ds rd rd v dt dt dt v αα= ==得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有, 90 2 n (sin )m cos 3cos '3cos ,e v vdv rg d v v r v mg mg r mg α αα ωαα α=-===+==-=-? ?o r 得则小球在点C 的角速度为 =由式(2)得 T 由此可得小球对园轨道得作用力为 T T 方向与反向 2-3如本题图,一倾角为的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者 习题2-2图

大学物理第二章 质点动力学习题解答

第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+==ρρ, j i a m F ?12?24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+=ρ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a ρρρ2222)?sin ?cos (/ωωωω-=+-== r m a m F ρ ρρ2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2 的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2 T' a T' a

大学物理习题精选-答案——第2章 质点动力学

质点动力学习题答案 2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向 与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ? 方向为X 轴,平行 斜面与X 轴垂直方向为Y 轴.如图2-1. 图2-1 X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v 2sin 2 1 t g y α= 由①、②式消去t ,得 2 20 sin 21x g v y ?= α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为 常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m ⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律: 合力:f P F ? ??+= a m f P ???=+ y 分量:dt dV m KV mg =-- dt KV mg mdV -=+? 即 dt m KV mg dV 1 -=+ ??-=+t v v dt m KV mg dV 01 0 dt m KV mg KV mg K 1 ln 10-=++

)(0KV mg e KV mg t m K +?=+- mg K e KV mg K V t m K 1 )(10-+=?- ① 0=V 时,物体达到了最高点,可有0t 为 )1ln(ln 000mg KV K m mg KV mg K m t +=+= ② ∵ dt dy V = ∴ Vdt dy = dt mg K e KV mg K Vdt dy t t m K t y ??? ?? ????-+==-0000 1 )(1 mgt K e KV mg K m y t m K 11)(02-??????-+-=- 021 ()1K t m m mg KV e mgt K K -+--??=???? ③ 0t t = 时,max y y =, )1ln(11)(0)1ln(02max 0mg KV K m mg K e KV mg K m y mg KV K m m K + ?-??? ?????-+=+?- )1ln(1 1)(0 22 02mg KV g K m mg KV mg KV mg K m +-????? ? ?????? +-+= )1ln()(022 0002mg KV g K m KV mg KV KV mg K m +-++= )1ln(0 220mg KV g K m K mV +-= 2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一 段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度. 解:链条在运动过程中,其部分的速度、加速度均相同,沿链条方向,受力为 m xg l ,根据牛顿定律,有

大学物理第二章质点动力学习题答案

习题二 2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。 [解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律t v m ma f d d == 即t v m kv d d ==- 所以t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0d d 0 得t m k v v -=0ln 因此t m k e v v -=0 (2)由牛顿第二定律x v mv t x x v m t v m ma f d d d d d d d d ==== 即x v mv kv d d =- 所以v x m k d d =- 对上式两边积分??=- 000d d v s v x m k 得到0v s m k -=- 即k mv s 0 = 2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉 降处为坐标原点。由牛顿第二定律得 即t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =-- 对上式两边积分 ??=--t v m t kv F mg v 00 d d y

得m kt F mg kv F mg -=---ln 即??? ? ??--= -m kt e k F mg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即 2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时2 T kv mg = 即k mg v = T 有牛顿第二定律t v m kv mg d d 2=- 整理得 m t kv mg v d d 2 =- 对上式两边积分 mgk m t kv mg v t v 21 d d 00 2??=- 得m t v k mg v k mg = +-ln 整理得T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解]卫星所受的向心力即是卫星和地球之间的引力 由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2)由牛顿第二定律h R v m f +=e 2 (3)卫星的运转周期 2-5试求赤道上方的地球同步卫星距地面的高度。 [解]设同步卫距地面高度为h ,距地心为R +h ,则

大物B课后题02-第二章 质点动力学

2-1 质量为0.25kg 的质点,受力为()F ti SI =的作用,式中t 为时间。0t =时,该质点以 102v jm s -=?的速度通过坐标原点,则该质点任意时刻的位置矢量是_____. 解 因为 40.25 dv F ti ti dt m ===,所以() 4dv ti dt =,于是有()0 4v t v dv ti dt =? ?, 222v t i j =+;又因为 dr v dt =,所以()222dr t i j dt =+,于是有()222dr t i j dt =+??,32 23 r t i tj C =++,而t=0时质点通过了原点,所以0C =,故该质点在任意时刻的位置 矢量为3 223 r t i tj =+。 2-2 一质量为10kg 的物体在力(12040)()f t i SI =+作用下,沿x 轴运动。0t =时,其速度 106v im s -=?,则3t s =时,其速度为( ) A. 1 10im s -? B. 1 66im s -? C. 1 72im s -? D. 1 4im s -? 解 本题正确答案为C 在x 方向,动量定理可写为()3 12040t dt mv mv +=-?,即0660mv mv -= 所以 ()10660660 67210 v v m s m -=+ =+=?。

一物体质量为10kg 。受到方向不变的力3040()F t SI =+的作用,在开始的2s 内,此力的 冲量大小等于______;若物体的初速度大小为1 10m s -? ,方向与F 同向,则在2s 末物体的 速度大小等于_______. 解 在开始的2s 内,此力的冲量大小为 ()2 3040140()I t dt N s = +=?? 由质点的动量定理得 0I mv mv =- 当物体的初速度大小为1 10m s -?,方向与F 同向时,在2s 末物体速度的大小为 10140 1024()10 I v v m s m -=+=+=? 2-4 一长为l 、质量均匀的链条,放在光滑的水平桌面上。若使其长度的1/2悬于桌边下,由静止释放,任其自由滑动,则刚好链条全部离开桌面时的速度为() 解 本题正确答案为B 。 根据题意作图.设链条的质量为m ,则单位长度的质量为m l ,若选取桌面为零势能点,则由机械能守恒定律得 21 2422m l l m l g l g mv l l ????????????-???=-???+ ? ? ? ????????????????? 其中v 为链条全部离开桌面时的速度。解之得 v =

第2章-质点动力学答案

:B : 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为 2015-2016 (2)大学物理 A (1)第二次作业 第二章 质点动力学答案 :A : 1、【基础训练1】一根细绳跨过一光滑的定滑轮, g 2a o /3 一 1 2、【基础训练3】 图示系统置于以a —g 的加速度上升的升降机内, A 、B — 2 两物体质量相同均为 m A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴 上和桌面上的摩擦并不计空气阻力,则绳中张力为 T = ma , mg+ me/ 2=2ma . 所以 a ’ =3g/4, T=3mg/4 一端挂一质量为 M 的物体, 1 另一端被人用双手拉着,人的质量 m —M .若人相对于绳 2 以加速度 a o 向上爬,则人相对于地面的加速度(以竖直向上 为正)是 (A) (2 a o g)/3. (B) (3g a o ) ? (C) (2a o g)/3. (D) a o [解答]: Mg T T mg M m Ma m(a a o ) M m a ma o , a o /3, (A) mg (B) Img . (C) 2 mg (D) 3 mg / 4. [解答]: 设绳的张力为T , F 惯二 ma mg- T + ma= ma ',

N sin mg N mg /sin 增加,N 减小。 m i 和m ,且m i 2F. N=F(-m+m)/ (m i +m) 0 < N < F. 度上升时, 绳子刚好被拉断 (A) 2 a i . (B) 2( a i +g ). (C) 2 ai + g . (D) a i + g . (D)先是增加,后又减小?压力增减的分界角为 =45 【解答】 设N 为木板对小球的作用力 /mg

大学物理第2章质点动力学习题(含解答)

第2章质点动力学习题解答 2-1 如图所示,电梯作加速度大小为a 运动。物体质量为m ,弹簧的弹性系数为k ,?求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。 解:(a )ma mg N =- )(a g m N += (b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F += 2-2 如图所示,质量为10kg 物体,?所受拉力为变力2132 +=t F (SI ),0=t 时物体静止。该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。 解:最大静摩擦力)(20max N mg f s ==μ max f F >,0=t 时物体开始运动。 ma mg F =-μ,1.13.02+=-= t m mg F a μ 1=t s 时,)/(4.12s m a = dt dv a = Θ,adt dv =,??+=t v dt t dv 02 01.13.0 t t v 1.11.03+= 1=t s 时,)/(2.1s m v =

2-3 一质点质量为2.0kg ,在Oxy 平面内运动,?其所受合力j t i t F ρ ρρ232 +=(SI ),0 =t 时,速度j v ρρ20=(SI ),位矢i r ρρ20=。求:(1)1=t s 时,质点加速度的大小及方向;(2) 1=t s 时质点的速度和位矢。 解: j t i t m F a ρρρ ρ+==22 3 2 2 3t a x = ,00=x v ,20=x ?? =t v x dt t dv x 02 23,2 3t v x = ?? ?==t x t x dt t dt v dx 03 2 02,28 4+=t x t a y =,20=y v ,00=y ? ? =t v y tdt dv y 02 ,22 2 +=t v y ?? ?+==t y t y dt t dt v dy 02 0)22(,t t y 26 3+= (1)1=t s 时,)/(2 32s m j i a ρ ρρ += (2)j t i t v ρρρ)22(223++=,1=t s 时,j i v ρ ρρ2521+= j t t i t r ρρρ)26()28(34+++=,1=t s 时,j i r ρ ρρ6 13817+= 2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。

大学物理第二章质点动力学习题解答

第二章 习题解答 2-17 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。 F=(242+122)1/2=125N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为: j t b i t a r ?sin ?cos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。 2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可 伸长。 解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律: ②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ ①+②可求得:g m m g m F a μμ-+-= 2 112 将a 代入①中,可求得:2 111) 2(m m g m F m T +-= μ 2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2 的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。 解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用牛顿第二定律: f 1 N 1 m 1 g T a F N 2 m 2g T a N 1 f 1 f 2 T' a T' a

第1~2章 质点的运动、第二章 质点动力学

第一章 质点的运动 1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。 解: cos ,sin x y dx dy v Rw wt v Rw wt dt dt v Rw = =-==-∴== 222 sin ,cos y x x y dv dv a Rw wt a Rw wt dt dt a Rw = ===∴== sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为 质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点作匀速率圆 周运动,角速度为ω;速度v = R ω;加速度 a = R ω2 1-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2 解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则 012132012221201112()0,2()/2()11 222 12 v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=- =-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =-kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e -kx . 解:取汽艇行驶的方向为正方向,则 020 0,,ln v x v kx dv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v v kx v v v e -==-= ∴ =-=-∴=-=-∴=?? 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。 解:人前进的速度V 0,则绳子前进的速度大小等于车移动的速度大小,

相关文档
相关文档 最新文档