文档库 最新最全的文档下载
当前位置:文档库 › 给水排水工程(给水管网水力计算表)

给水排水工程(给水管网水力计算表)

给水排水工程(给水管网水力计算表)
给水排水工程(给水管网水力计算表)

附录1 给水管网水力计算表

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

污水管网的设计说明及设计计算

污水管网的设计说明及设计计算 1.设计城市概况 假设城市设计为江西某中小城市的排水管网设计,有明显的排水界限,分为河南区与河北区,坡度变化较大。河流为其城市的地面标高的最低点,由河流开始向南、向北地面标高均有不同程度的增加,且城市人口主要集中河北区,城区基本出去扩建状态中,发展空间巨大,需要结合城市的近远期规划进行管网布置。城市的布局还算合理,区域划分明显,交通发达,对于布管具有相当的简便性。 2.污水管道布管 (2).管道系统的布置形式 对比各种排水管道系统的布置形势,本设计的污水管铺设采用截留式,在地势向水体适当倾斜的地区,各排水区域的干管可以最短距离沿与水体垂直相较的方向布置,沿河堤低边在再敷设主干管,将各个干管的污水截留送至污水厂,截流式的管道布置系统简单经济,有利于污水和雨水的迅速排放,同时对减轻水体污染,改善和保护环境有重大作用,适用于分流制的排水系统,将生活污水、工业废水及初降废水经处理后排入水体。截流式管道系统布置示意图如下. (2).污水管道布管原则 a.按照城市总体规划,结合当地实际情况布置排水管道,并对多种方案进行技术经济比较; b.首先确定排水区界、排水流域和排水体制,然后布置排水管道,应按主干管、干管、支管 c.的顺序进行布置; 1—城镇边界 2—排水流域分界线 3—干管 4—主干管 5—污水厂 6—泵站 7—出水口

d.充分利用地形,尽量采用重力流排除污水,并力求使管线最短和埋深最小; e.协调好与其他地下管线和道路工程的关系,考虑好与企业内部管网的衔接; f.规划时要考虑使管渠的施工、运行和维护方便; g.规划布置时应该近远期结合,考虑分期建设的可能性,并留有充分的发展余地。 (3).污水管道布管内容 ①.确定排水区界、划分排水流域 本设计中有很明显的排水区界,一条河流自东向西流动,将整个城镇划分为河南区与河北区;同时降排水区域分为四个部分,分别有四条干管收集污水,同一进入位于河堤的主干管,送至污水处理厂。 ②.污水厂和出水口位置的选择 本设计中河流流向为自东向西,同时该城镇的夏季主导风向为南风,所以污水处理厂应该设置在城市的西北处河流下游,由于该城镇是中小型城市,所以一个污水处理厂足以实现污水的净化。 ③.污水管道的布置与定线 污水管道的平面布置,一般按照主干管、干管、支管的顺序进行。在总体规划中,只决定污水主干管、干管的走向和平面布置。 定线时,应该充分利用地形,使污水走向按照地面标高由高到低来进行,主干管敷设在地面标高较低的河堤处,管道敷设不宜设在交通繁忙的快车道和狭窄的道路下,一般设在两侧的人行道、绿化带或慢车带下。 支管的平面布置形式采用穿坊式,组成的一个污水排放系统可将该系统穿过其他街区并与所穿过的街区的污水管道相连接。管道的材料采用混凝土管。 ④.确定污水管道系统的控制点和泵站的设置地点 管道系统的控制点为两个工厂和每条管道的起点,这些点决定着管道的最小埋深,由于整个管道的敷设过程中,埋深一直满足最实用条件,且对于将来的发展留有空间,所以不需要提升泵站,全部依靠重力流排水。 ⑤.确定污水管道在街道下的具体位置 充分协调好与其他管段的关系,污水和雨水管道应该敷设在给水管道的下面,处理管道的原则为:未建让已建的,临时性管让永久性管,小管让大管,有压管让无压管,可弯管让不可弯管。 根据以上分析,对整个区域进行布管,干管尽量与等高线垂直,主干管沿河堤进行布置,基本上与等高线平行,整个城镇的管道系统呈现截流式布置,布管方式见附图。(污水管道系统的总体平面布置图)。 3. 管段设计计算:

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

排水雨水管网设计计算说明书

仲恺农业工程学院实践教学 给水排水管网工程综合设计 ——排水管网计算书 (2013—2014 学年第二学期) 班级给排1x1 姓名xxx 学号 设计时间~ 指导老师xxxxxxxxxxxxxxx 成绩 城市建设学院

目录

1 设计原始资料 城镇概况 A 城市位于我国华南地区,该城市是广东省辖县级市,自然资源丰富,交通便利。市区地势平坦,主要建在平原上,城市中间以铁路为界,分为两个生活区:Ⅰ区和Ⅱ区。均有给水排水设备,自来水普及率100%。 气候情况 ① 市内多年来的极端高温℃,每年6~8月份的气温最高。而到了冬季(12~2月)温度较低,多年来的极端低温为0℃。 ② 年平均相对湿度为65%,春季湿度大,约为65~90%; ③ 雨季集中在4~9月份,这段时间的降雨量占全年降雨量的80%以上,4~9月份为受热带气旋影响的主要时段,降雨量大,多出现暴雨,年平均降雨量为1930mm ,多集中在6-9月,占全年降雨量的70%。 排水情况 城市用水按19万人口设计,居民最高日用水量按210 (d cap L )。生活污水排水量按给水的90%计算。街坊污水排入区域排水管网,区域排水管网再将接入城市的排水管道系统,最后到污水处理厂进行处理。 2 排水管段设计流量计算 污水管道的布置 地形坡度 地势由西南方向东北方逐渐降低,但总体变化趋势不大。 河流流向 该城市沿市区南部有一条由北至南流向的河流,综合地势原因,污水厂设在地势较低处。

污水管道布置图 居民生活污水计算 查居民生活用水定额表,取居民平均日生活用水定额为210d L?,则居民生活污水量 cap 定额为d % 210 ?189 90 = cap L? 街坊面积总面积计算 根据城市人口为14万,根据草图对街坊区进行编号,得到各街坊面积和总面积,计算见下页表 街区编号 1 2 3 4 5 6 7 8 9 CAD面积 街区面积(ha) 街区编号15 16 17 18 19 20 21 22 23 CAD面积 街区面积(ha) 街区编号29 30 31 32 33 34 35 36 37 CAD面积 街区面积(ha) 街区编号43 44 45 46 47 48 49 50 51 CAD面积 街区面积(ha) 街区编号57 58 59 60 61 62 63 64 65 CAD面积 街区面积(ha) 街区编号71 72 73 74 75 76 77 78 79 CAD面积 街区面积(ha) 街区编号85 86 87 88 89 90 91 92 93 CAD面积 街区面积(ha) 街区编号99 100 101 102 103 104 105 106 107 CAD面积 街区面积(ha) 街区编号112 113 114 115 116 117 118 174 119 CAD面积 街区面积(ha) 街区编号125 126 127 128 129 130 131 132 133 CAD面积 街区面积(ha) 街区编号139 140 141 142 143 144 145 146 147

枝状管网水力计算

9)4.10 3.88 单定压节点树状管网水力分析 某城市树状给水管网系统如图所示,节点(1)处为水厂清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为:s p1=311、1(流量单位:m 3/S,水头单位:m),h e1=42、6,n=1、852。根据清水池高程设计,节点(1)水头为H1=7、80m,各节点流量、各管段长度与直径如图中所示,各节点地面标高见表,试进行水力分析,计算各管段流量与流速、各节点水头与自由水压。 以定压节点(1)为树根,则从离树根较远的节点逆推到离树根较近的节点的顺序就是:(10),(9),(8),(7),(6),(5),(4),(3),(2);或(9),(8),(7),(10),(6),(5),(4),(3),(2);或(5),(4),(10),(9),(8),(7),(6),(3),(2)等,按此逆推顺序求解各管段流量的过程见下表。 ,即: q 1+Q 1=0,所以,Q 1=- q 1=-93、21(L/s) 根据管段流量计算结果,计算管段流速及压降见表。计算公式与算例如下: 采用海曾威廉-公式计算(粗糙系数按旧铸铁管取C w =100)

管道摩阻系数 管段水头损失 泵站扬程按水力特性公式计算: 管段编号[1][2][3][4][5][6][7][8][9] 管段长度(m) 600 300 150 250 450 230 190 205 650 管段直径(mm) 400 400 150 100 300 200 150 100 150 管段流量(L/s) 93、21 87、84 11、04 3、88 60、69 18、69 11、17 4、1 11、26 管段流速(m/s) 0、74 0、70 0、63 0、49 0、86 0、60 0、63 0、52 0、64 管段摩阻系数109、72 54、86 3256、05 39093、49 334、04 1229、92 4124、33 32056、66 14109、56 水头损失(m) 1、35 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 泵站扬程(m) 38、76 0 0 0 0 0 0 0 0 管段压降(m) -37、41 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 以定压节点(1)为树根,则从离树根较近的管段顺推到离树根较远的节点的顺序就是:[1],[2],[3],[4],[5],[6],[7],[8],[9]; 或[1],[2],[3],[4],[5],[9],[6],[7],[8]; 或[1],[2],[5],[6],[7],[8],[9],[3],[4]等,按此顺推顺序求解各定流节点节点水头的过程见下表。 步骤树枝管段号管段能量方程节点水头求解节点水头(m) 1 [1]H 1-H 2 =h 1 H 2 =H 1 -h 1 H 2 =45、21 2 [2]H 2-H 3 =h 2 H 3 =H 2 -h 2 H 3 =44、60 3 [3]H 3-H 4 =h 3 H 4 =H 3 -h 3 H 4 =43、83 4 [4]H 4-H 5 =h 4 H 5 =H 4 -h 4 H 5 =42、49 5 [5]H 3-H 6 =h 5 H 6 =H 3 -h 5 H 6 =40、63 6 [6]H 6-H 7 =h 6 H 7 =H 6 -h 6 H 7 =39、86 7 [7]H 7-H 8 =h 7 H 8 =H 7 -h 7 H 8 =38、86 8 [8]H 8-H 9 =h 8 H 9 =H 8 -h 8 H 9 =37、64 9 [9]H 6-H 10 =h 9 H 10 =H 6 -h 9 H 10 =34、16 节点编号i 1 2 3 4 5 6 7 8 9 10 地面标高(m) 9、80 11、50 11、80 15、20 17、40 13、30 12、80 13、70 12、50 15、00 节点水头(m) 7、80 45、21 44、60 43、83 42、49 40、63 39、86 38、86 37、64 34、16 自由水头(m) —33、71 32、80 28、63 25、09 27、33 27、06 25、16 25、14 19、16

排水管网计算说明书.

《给水排水管网系统》课程设计 说明书 21万人城镇排水管网规划设计 学院:环境科学与工程学院 专业:给水排水工程 班级:给排水1001 学号: 学生姓名: 指导教师:杨春平教授 二○一三年一月

由于城市化进程加快,城市人口急剧膨胀,城市水环境、生活环境遭到严重的污染和危害。城市排水管道系统是现代化城市不可缺少的重要城市市政基础设施,是城市社会文明、经济发展和现代化水平的重要标志,也是城市水污染防治防洪的骨干工程。它的任务是及时收集和输送城市人们在生产和生活中排放的废水以及城市雨水、冰雪融水,避免污水直接排入江河污染水体,进而造成人们生产和生活的危害。在面临全球水资源缺乏及严重污染的今天,排水管道系统不仅仅起到截污、防洪、排涝的作用,还能有效地防治水污染、净化污水为城市提供第二水源。 在本设计中,将根据所提供的基础设计资料和图纸,完成某城镇排水管道系统,包括污水管道系统和雨水管道系统的定线,排水管道计算和图纸的绘制。其中,污水管道系统是由收集和输送城市污水的管道及其附属构筑物组成的。设计的主要内容和深度应按照基本建设程序及有关的设计规定、规程确定。通常污水管道系统的主要设计内容包括:设计基础数据;包括设计地区的面积、设计人口数、污水定额、防洪标准等的确定;污水管道系统的平面布置;污水管道系统设计流量计算和水力计算;绘制污水管道系统平面图和纵断面图等。雨水管渠系统是由雨水口、雨水管渠、检查井、出水口等构筑物所组成的一整套工程设施。雨水管渠系统的任务是及时的汇集并排除暴雨形成的地面径流,防止城市居住区与工业企业受淹,以保障城市人民的生命安全和生活生产的正常秩序。在雨水管渠系统设计中管渠是主要的主成部分。所以合理而又经济的进行雨水管渠的设计具有很重要的意义。雨水管渠设计的主要内容包括:确定当地暴雨强度公式,划分排水流域,进行雨水管渠的定线,根据当地气象与地理条件,工程要求等确定设计参数,计算设计流量和进行水力计算,确定每一设计管段的断面尺寸、坡度、管底标高及埋深,绘制管渠平面图和纵剖面图。

给水管网水力计算

第1章建筑内部给水系统1.7给水管网的水力计算

1.7.1确定管径求得各管段的设计秒流量后,根据流量公式即可求定管径: 式中q j ——计算管段的设计秒流量,m 3/s ;d ——计算管段的管内径,m ; v ——管道中的水流速,m/s 。 建筑物内的给水管道中不同材质管径流速控制范围可按 不同材质管径流速控制范围表选取。但最大不超过2m/s 。v d q g 42π=v q d g π4=不同材质管径 流速控制范围表 点击查看

1.7.2给水管网和水表水头损失的计算1. 给水管道的沿程水头损失 式中h y——沿程水头损失,kPa; L ——管道计算长度,m; i——管道单位长度水头损失,kPa/m,按下式计算:

后退前进返回本章总目录返回本书总目录 式中i ——管道单位长度水头损失,kPa/m ; d j ——管道计算内径,m ; q g ——给水设计流量,m 3/s ; C h ——海澄-威廉系数: 塑料管、内衬(涂)塑管C h = 140; 铜管、不锈钢管C h = 130 ;衬水泥、树脂的铸铁管C h = 130; 普通钢管、铸铁管C h = 100。 i 1.7给水管网的水力计算 1.7.2给水管网和水表水头损失的计算

1.7.2给水管网和水表水头损失的计算 2. 生活给水管道的局部水头损失 管段的局部水头损失计算公式式中h j ——管段局部水头损失之和,kPa ; ζ ——管段局部阻力系数; v ——沿水流方向局部管件下游的流速,m/s ; g ——重力加速度,m/s 2。 ∑=g v h j 22 ζ

1.7.2给水管网和水表水头损失的计算 根据管道的连接方式,采用管(配)件当量长度计算法 管(配)件当量长度: 螺纹接口的阀门及管件的摩阻损失当量长度,见阀门和螺 纹管件的摩阻损失的当量长度表。 管(配)件产生的局部水头损失大小同管径某一长度管道 产生的沿程水头损失 则:该长度即为该管(配)件的当量长度。 等于阀门和螺纹管件的摩阻损失的 当量长度表点击查看

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书 环境科学与工程学院

第一部分城市给水管网水力计算程序及习题 一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); }

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M-1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M-1;k++) { printf("%d)",k+1);

排水雨水管网设计计算说明书精编WORD版

排水雨水管网设计计算说明书精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

仲恺农业工程学院实践教学 给水排水管网工程综合设计 ——排水管网计算书 (2013—2014 学年第二学期) 班级给排1x1 姓名 xxx 学号 201210524125 设计时间 ~ 2014.7.3 指导老师 xxxxxxxxxxxxxxx 成绩 城市建设学院

目录 1 设计原始资料 (1) 1.1 城镇概况 (1) 1.2 气候情况 (1) 1.3 排水情况 (1) 2 排水管段设计流量计算 (1) 2.1 污水管道的布置 (1) 2.2 居民生活污水计算 (2) 2.3 街坊面积总面积计算 (2) 2.4集中用户污水计算 (4) 2.5面积比流量计算 (4) 2.6 污水干管设计流量 (5) 2.7污水管网主干管水力计算 (6) 3 管道总平面图及纵剖面计算成果图绘制 (8) 4 污水设计总结 (8)

5 雨水管段设计流量计算 (9) 5.1 主要设计参数 (9) 5.2 各设计管段的设计流量 (9) 5.3 计算步骤 (10) 5.4 雨水管网主干管水力计算 (10) 5.5 雨水设计总结 (11)

1 设计原始资料 1.1 城镇概况 A 城市位于我国华南地区,该城市是广东省辖县级市,自然资源丰富,交通便利。市区地势平坦,主要建在平原上,城市中间以铁路为界,分为两个生活区:Ⅰ区和Ⅱ区。均有给水排水设备,自来水普及率100%。 1.2 气候情况 ① 市内多年来的极端高温38.7℃,每年6~8月份的气温最高。而到了冬季(12~2月)温度较低,多年来的极端低温为0℃。 ② 年平均相对湿度为65%,春季湿度大,约为65~90%; ③ 雨季集中在4~9月份,这段时间的降雨量占全年降雨量的80%以上,4~9月份为受热带气旋影响的主要时段,降雨量大,多出现暴雨,年平均降雨量为1930mm ,多集中在6-9月,占全年降雨量的70%。 1.3 排水情况 城市用水按19万人口设计,居民最高日用水量按210 (d cap L )。生活污水排水量按给水的90%计算。街坊污水排入区域排水管网,区域排水管网再将接入城市的排水管道系统,最后到污水处理厂进行处理。

城给水管网水力计算程序及例题

给水排水管道工程课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop:

for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

污水管网计算说明书

污水管网计算说明书 一排水量计算 1.1居民生活污水定额 Q1=K Z1∑q i N i/24×3600(L/S) 式中q i——各排水区域平均日居民生活污水量标准[L/(cap.d)]; N i——各排水区域在设计使用年限终期所服务的人口数(cap); K Z1——生活污水量的总变化系数; 其中,平均日污水流量 Q d=∑q i N i/24×3600=250×85%×3.2×104/24×3600=78.70(L/S) 居民生活污水采用定额法计算,我国现行《室外排水设计规范》规定,可按当地用水定额的80%~90%采用。对给排水系统完善的地区可按90%计,一般地区可按80%计。 注:采用平均日污水量定额。 1.2污水量的变化:生活污水量总变化系数宜按现行《室外排水设计规范》规定采用。 K Z=2.3Q d≦5 K Z=2.7/Q d0.115

2.2管线定线与布置: 排水管网一般布置成树状网,根据地形、竖向规划、污水厂的位置、土壤条件、河流情况以及污水种类和污染程度等分为多种形式,其中以地形为主要考虑因素。 一般按主干管、干管、支管的顺序进行布置 主要原则:采用重力流排除污水,尽可能在管线最短和埋深较小的情况下,让最大区域的污水能自流排出。 在绿地区域不需要布置排污管网。 2.3划分设计管段: 两个检查井之间的管段,如果采用的设计流量不变,且采用同样的管径和坡度,则称它为设计管段。 划分设计管段:只是估计可以采用同样管径和坡度的连续管段,就可以划作一个设计管段。根据管道的平面布置图,凡有集中流量流入,有旁侧管接入的检查井均可作为设计管段的起止点。(在较长设计管段或弯度较大的地方也可设置检查井,不列入计算)设计管段的起止点应依次编上号码。 2.4汇水面积划分: 汇水面积划分主要根据地形条件。 汇水面积的划分不包括绿地及街道 汇水面积划分见附图 2.5管段设计流量计算 面积比流量计算:q l=Q d/∑S mi=78.70/79.04=0.996(L/S)/ha 式中q l——按管段配水面积分配本段流量的比流量,[(L/S)/ha]; Q d——平均日污水流量,L/S; l mi——各管段沿线配水面积,m。 合计流量为汇水面积与面积比流量的乘积,设计流量为合计流量与总变化系数的乘积;各管段设计流量计算结果见下表。 管 段编号街坊 面积 (ha 居民生活污水日平均流量分配管段设计流量计算 本段 比流量转输流合计流量总变化沿线流量 管段流 (L/S)量(L/S)(L/S)系数(L/S) 量(L/S) /ha

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++)

{ Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

给水管网水力计算

管网水力计算 ?管网水力计算都是新建管网的水力计算。 ?对于改建和扩建的管网,因现有管线遍布在街道下,非但管线太多,而且不同管径交接,计算时比新设计的管网较为困难。其原因是由于生活和生产用水量不断增长,水管结垢或腐蚀等,使计算结果易于偏离实际,这时必须对现实情况进行调查研究,调查用水量、节点流量、不同材料管道的阻力系数和实际管径、管网水压分布等。

1§树状网计算 树状网特点 1)管段流量的唯一性 ?无论从二级泵站起顺水流方向推算或从控制点起向二级泵站方向推算,只能得出唯一的管段流量,或者可以说树状网只有唯一的流量分配。每一节点符合节点流量平衡条件q i+∑q ij=0

2)干线与支线的区分 ?干线:从二级泵站到控制点的管线。一般是起点(泵站、水塔)到控制点的管线,终点水压已定,而起点水压待求。 ?支线:起点的水压标高已知,而支线终点的水压标高等于终点的地而标高与最小服务水头之和。 ?划分干线和支线的目的在于两者确定管径的方法不同: ?干线——根据经济流速 ?支线——水力坡度充分利用两点压差? ? ? ??=D v f i

【例】某城市供水区用水人口5万人,最高日用水量定额为150L/(人·d),要求最小服务水头为16m。节点4接某工厂,工业用水量为400m3/d,两班制,均匀使用。城市地形平坦,地面标高为5.00m,管网布臵见图。 水泵水塔 01 2 3 48 5 67 450 300 600 205 650

总用水量 ?设计最高日生活用水量: 50000×0.15=7500m3/d=312.5m3/h=86.81L/s ?工业用水量: 两班制,均匀用水,则每天用水时间为16h 工业用水量(集中流量)=400/16=25m3/h=6.94L/s ?总水量: ∑Q=86.81+6.94=93.75L/s

市政给水管网水力计算问题研究

市政给水管网水力计算问题研究 摘要:目前市场上出现的排水给水管材的规格和类别非常多,这给水力计算带来了很大的麻烦。以往管理给水管网时基本属于经验式管理,存在科学性差。随着测流点、测压点在市政给水管网中的设置,管网建模逐渐进入了实用化阶段。通过介绍给水管网模型,介绍管网水力计算方程的研究问题。 关键词:水力计算;市政给排水;建模 在市政给水管网的设计中,水力计算是管网设计的计算基础。根据管网形状和管材不同,采用的参数或公式就不同。随着管材市场的不断发展,目前市场上出现的给水排水水管的规格和类别越来越多,这给水力计算带来了很大的麻烦。虽然有设计给水排水管道的相关设计手册中规定了针对各种管材的水力计算公式,但是还是不能够满足日益增多的管材规格,另外在查算时也非常不方便。在目前的管网设计中,通常通过建立微观管网模型来获取动态水力信息,进而进行水力计算,但是由于技术限制,这种方法在使用过程中受到限制。因此探究市政给水管网水力计算研究问题具有非常重要的意义。 供水管网模型 就目前研究的供水管网模型类型来看,管网模型的类型包括了宏观和微观两种管网模型。建立管网宏观模型时运用回归计算的方法,运用此方法的前提是基于大量的运行数据以及模型服从管网流量“比例负荷”。通过这种计算方法,能够建立控制点压力分布以及在管网中各个水厂的供水压力的函数关系。由于建立宏观模型是建立在统计的回归模型上,它的计算速度非常快,所以这种建模方法通常用在给水系统模块调度中,而在扩建、改建或者新建给水管网模块中并不适合。根据实际的管网情况,管网中的管段、水泵以及阀门等全部的元素,不通过简化处理而建立的模型即为微观模型。通过解环方程、解节点方程以及解管段方程能够将管网中节点以及管段的信息。通过建立微观模型能够将给水管网中水力的全部运行状态准确表达出来,其重点表达的是水力实时状态和信息。由于受到技术限制,一些管道的基础参数和拓扑关系的完整性很难获取,尤其是受到设备的限制,不能准确地将管网节点流量的动态数据准确获取。所以不能直接建立微观模型,必须将管网通过简化处理,利用简化后的管网进行水利计算。 管网水力计算方程 在管网设计中,水力计算是基础,也是分析管网中动态工况以及模拟管网系统的基础。进行管网水力计算的基础任务是在已知管网管径以及水管流量的前提下,求出各个管段的流量,用qij表示,并计算出水压(H)、流量(Q),同时各个节点的水压也需要计算出来。计算管网的基础方程包括回路方程、压降方程以及节点方程等。

给水管网水力计算基础

给水管网水力计算基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于 v d Av Q )4/(2π==所以管径v Q v Q d /13.1/4==π。但是,仅依靠这个公式还不能完全解决问题,因为在流量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =-1.0ms ; ——当直径d>400mm ,经济流速v=~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 表 自由水头Hz 值

排水管网计算书

华北理工大学建筑工程学院 排水管网系统课程设计说明书 设计题目:广宁县排水管网设计 专业:给排水科学与工程 班级: 姓名: 学号: 指导教师: 2017年 6月 17 日

目录 一、设计资料 二、设计方案 (一)排水体制的选择 (二)检查井的设置原则 三、计算各区污水计算 (一)一区污水量的计算 (二)二区污水量的计算 (三)公共建筑污水设计流量(火车站)(四)工业废水设计流量 四、污水管网定线 五、污水管道设计参数 六、雨水设计 (一)主要设计参数 (二)管渠定线 (三)雨水干管水力计算 (四)雨水管渠的敷设方式、管材、接口及基础 七、参考资料 八、设计成果图(见附图)

排水管网设计计算说明书 一、设计资料: 1、城市规划资料 城区总体规划图一张,1:10000。图上标有间隔1.0m的等高线,城市区域的划分、工厂及大型独立性公共建筑物的位置如图所示。 2、用水资料 人口密度及生活污水排放量见表1;火车站污水量为320 m3/d,均匀排出;城区工业企业分布及用水量情况见表2。 表1人口密度及排水量 区域人口密度(人/公顷)污水量标准(L/人·d) 铁路以南130 145 铁路以北100 125 表2 工厂名称 工人数 生产用水量(m3/d)用水时间高温车间一般车间 A 120 260 3500 全天均匀使用 B 80 136 2500 8~24点均匀使 用 C 94 187 3000 全天均匀使用 D 0 150 1800 8~16点均匀使 用 备注水质与生活饮用水相同,水压无特殊要求。淋浴人数高温车间按85% 计,一般车间按70%计。 3、城市自然状况 ①城区土壤种类为粘质土。地下水水位深度为15m。年降水量为936mm。 城市最高温度为42℃,最低温度为0.5℃,年平均温度为20.4℃。夏季主导风向为东南风,冬季主导风向为北风和东北风。 ②城区中各类地面与屋面的比例(%)见表3。 表3 各类屋面混凝土与沥青路面碎石路面非铺砌土路面公园与绿地

02-4给水管网的水力计算

第2章建筑内部给水系统 2.4给水管网的水力计算

在求得各管段的设计秒流量后,根据流量公式,即可求定管径: 给水管网水力计算的目的在于确定各管段管径、管网的水头损失和确定给水系统的所需压力。 υπ42d q g =πυg q d 4=式中 q g ——计算管段的设计秒流量,m 3/s ; d j ——计算管段的管内径,m ; υ——管道中的水流速,m/s 。 (2-12)

当计算管段的流量确定后,流速的大小将直接影响到管道系统技术、经济的合理性,流速过大易产生水锤,引起噪声,损坏管道或附件,并将增加管道的水头损失,使建筑内给水系统所需压力增大。而流速过小,又将造成管材的浪费。 考虑以上因素,建筑物内的给水管道流速一般可按表2-12选取。但最大不超过2m/s。

工程设计中也可采用下列数值: DN15~DN20,V =0.6~1.0m/s ;DN25~DN40,V =0.8~1.2m/s 。 生活给水管道的水流速度 表2-12

2.4.2 给水管网和水表水头损失的计算 2.4.2 给水管网和水表水头损失的计算 给水管网水头损失的计算包括沿程水头损失和局部水头损失两部分内容。 1. 给水管道的沿程水头损失 (2-13)——沿程水头损失,kPa; 式中 h y L——管道计算长度,m; i——管道单位长度水头损失,kPa/m,按下式计算:

2.4 给水管网的水力计算 2.4.2 给水管网和水表水头损失的计算 式中i——管道单位长度水头损失, kPa/m ; d j ——管道计算内径,m; q g——给水设计流量,m3/s; C h ——海澄-威廉系数: 塑料管、内衬(涂)塑管C h = 140; 铜管、不锈钢管C h = 130; 衬水泥、树脂的铸铁管C h = 130; 普通钢管、铸铁管C h = 100。 (2-14)

城给水管网水力计算程序及例题

给水排水管道工程

课程设计指导书 环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6

#define ep 0.01 #include int sgn(doublex); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; doublef[N+1],r[N+1],dq[N+1]; for(k=0;k<=M -1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M -1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M -1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]);

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M -1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M -1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M -1;k++) { printf("%d)",k+1); printf("k=%d, l=%f, h=%f, ",k+1,l[k],h[k]); printf("Q=%f, ",Q[k]*1000); printf("v=%f\n",4*Q[k]/(3.1416*pow(D[k],2))); } } int sgn(doublex) { if(x>0)return 1; elseif(x==0) return 0; elsereturn -1;

相关文档
相关文档 最新文档