文档库 最新最全的文档下载
当前位置:文档库 › 直升机的起飞方法

直升机的起飞方法

直升机的起飞方法
直升机的起飞方法

5.1直升机的起飞方法

通常,直升机在垂直离地2~3米后稍作悬停,则转入斜爬升前飞。在有风情况下,直升机是迎风起飞,这是因为,根据相对运动原理,相当于直升机以风速飞行。如上述,直升机需用功率随前飞速度的增加而快速减小,迎风起飞,发动机剩余功率更多些,爬升速度更大些,起飞更安全。

此外,迎风起飞直升机的稳定性要好一些。

由于直升机常常要在其它运输工具不能去的地方执行任务,其起飞环境可能相当复杂,所以,应视起飞场地面积大小和场地周围有无障碍物、大气条件、起飞场地高度和飞行重量的不同,一句话,应视剩余功率的多少,而采用不同的起飞方法。主要的起飞方法有:

A. 正常起飞

直升机对准风向停在场地上,启动发动机,飞行员加大油门、提总距,直升机垂直离地2~3米悬停,飞行员略作检查之后,则推杆前飞、爬升。正常起飞飞行航迹如图5-1所示。

图5-1 正常起飞飞行航迹

如果因场地原因,在起飞前直升机又不能对正风向,那么飞行员不得不在侧风或顺风情况下起飞,此时就要考虑侧风或顺风的影响。

-------侧风起飞

以右旋旋翼为例,若在右侧风下起飞,由于机身横截面大,机身阻力大,和迎面来风相比,直升机需用功率要大一些;同时,尾桨处在相当于旋翼垂直爬升的状态,尾桨需用功率大,整个直升机需用功率又增大。这就意味着发动机剩余功率小。此外,在风的作用下,旋翼顺风的方向倒,即吹风挥舞,为克服此挥舞,飞行员要向右压杆;为平衡侧风产生的向左阻力,旋翼还需右压杆,产生向右分力,使操纵变得复杂化。如果风速和风向不稳定,尾桨的推力也在变,为保持航向和横向平衡,要对尾桨和横向操纵随时进行修正,使得操纵更加复杂。因此,直升机应尽量避免在侧风下起飞。

-----顺风起飞

在顺风悬停时,直升机后带杆,风越大则后带杆量越大;若重心靠前,为克服旋翼升力垂直分量对重心所产生的低头力矩,则后带杆量还要大一些。在从悬停转前飞的过程中,纵向操纵经历从后带杆到前推杆的过程。后来风,直升机的稳定性比较差。

直升机允许的最大后带杆量决定了起飞时的最大顺风风速。尾桨的操纵范围决定了起飞时的最大侧风风速。起飞时所允许的最大风速,是直升机的性能指标

之一,直升机飞行员手册中都有明确规定。

在地面,旋翼的反扭矩由尾桨拉力和机轮摩擦力所产生的力矩共同平衡。在起飞离地过程中,随着旋翼升力增加,机轮对地面的压力减小,机轮摩擦力减小。机轮离地瞬间,机轮与地面间的摩擦力突然消失,由它产生的力矩也突然消失,这时旋翼反扭矩完全由尾桨拉力来平衡,此时容易出现航向摆动,飞行员要及时修正航向,特别是在侧风情况下。

直升机在垂直离地的过程中,是旋翼从较强的地面效应到较弱的地面效应,再到无地面效应的过程。根据地效原理,也是直升机需用功率逐渐增大的过程。为了保持直升机相对地面的位置,为了保持直升机的平衡,飞行员要不停地修正各个操纵。

B. 地效起飞

关于地面效应的原理将在第九章阐述。直升机处在地效作用范围内,产生同样的升力要比无地效时需用的功率小;或者说,同样的发动机功率可使旋翼产生较大的升力。地效起飞就是利用这一特点起飞的。当发动机剩余功率小时,直升机离地后,在1.0~2米高度上,不是转入斜爬升,而是在地面效应范围内水平增速。随着飞行速度的增大,直升机需用功率降低,当出现剩余功率时,直升机便由邻近地面的水平飞行逐渐转入爬升。此时,有了剩余功率和备份操纵量,直升机就容易保持平衡和实施所需的机动。使用此种起飞方法,应密切注意,直升机增速时不要向前推杆太多,以免下掉高度,并在一开始就使用发动机起飞功率,这样剩余功率会大一些。

早期的直升机安装的是活塞式发动机,剩余功率小,多半采用地效起飞。C. 滑跑起飞

即像飞机那样滑跑起飞。当直升机剩余功率相当小,不能垂直离地时而采用的起飞方法。滑跑时,发动机处于最大功率状态。沿地面滑跑,在滑跑中增大直升机运动速度一直到需用功率小于发动机可用功率为止。第一阶段增速可保证直升机离地,在1.5~2米高度上水平飞行中进行后一阶段增速,一直达到有利上升速度。这时直升机才能上升到所需的高度。

在地效起飞和滑跑起飞都要避免过大增加总距,以免需用功率增加过快。

滑跑起飞仅限于轮式起落架。

D.垂直起飞

离地并在地面效应范围以外垂直上升。当起飞场地受到高障碍物的限制和发动机剩余功率很大时才能采用此种起飞方法。采用此种起飞方法,飞行员应柔和增大总距,使直升机转入垂直上升,同时要特别注意发动机转速,以避免因提距过大而掉高度。高出障碍物2~3米后,直升机转入平飞增速并爬升。

应当指出,采用此种方法起飞,保持直升机平衡时是相当复杂的,显然,只有技术水平非常高的飞行员才能做到这一点。

E. 机场类型

由于直升机能到各种地方去执行任务,所以直升机起飞、着陆所用的机场类型比较复杂,归纳起来可分为下述三种类型:

(1)无障碍机场----

(2)直升机机场----供直升机起飞、降落、停放和组织、保障飞行活动的场所;

(3)直升机平台-----供直升机起降的高架场地,如楼房屋顶、舰船甲板、钻井平台、拖车平台等。

5.2 爬升

5.2.1 起飞航迹

为保证直升机安全起飞,直升机是按一定航迹起飞的。在第六章《自转飞行》中,将要介绍高度-速度(H-V )图,即回避区。回避区分为高速回避区和低速回避区,直升机起飞是在二者之间的通道中飞行,见图5-2。因为在回避区内一旦发动机停车直升机将产生严重后果。

飞行速度飞行高度

图5-2 起飞通道

直升机起飞、悬停,然后转入前飞、加速,在此阶段必然通过小速度区,通常小速度h km V /50~200 。

如第三章所述,在悬停状态空气流从上到下通过旋翼,由于在旋翼上、下表面形成压力差,气流形状宛如一漏斗状。在前飞时,诱导气流还是从上向下通过旋翼但尾迹向后倾斜,随着飞行速度的连续增加尾迹连续向后倾斜,在悬停时建立的稳定流转入前飞加速时就要重建,在旋翼涡系重建过程中是不稳定的,致使振动增大。

振动的大小还与飞机重量有关,飞机越重,振动越大。此外,这一振动的大小与持续时间还与加速速率有关,加速越慢,振动幅值越大,持续时间越长;所以在飞行中要快速通过这一区域。

直升机从某一速度减速到悬停状态时,即所谓的消速飞行,由于要从前飞涡系重建悬停涡系也会出现振动大的现象,而且其振动幅值大于加速状态。

直升机在起飞加速过程中,究竟到速度多大、高度多高才算起飞成功呢?这取决于发动机是单发、双发还是多发。一般来说,要飞出H-V 图(回避区、危险区)的‘鼻’部才算起飞成功。对单发直升机,‘鼻’部速度(起飞安全速度)约为90km/h 左右,高度约35米左右。如果在起飞的航路上有障碍物,那么加速到起飞安全速度时,至少应高出障碍物9~10米才算起飞成功。典型起飞剖面图如图5-3所示,图中给出正常起飞、垂直起飞和滑跑起飞的飞行剖面,当可用功率超过无地效悬停的需用功率,直升机就可进行垂直起飞和正常起飞,当直升机的可用功率小于有地效悬停的需用功率,直升机可使用滑跑起飞。

可用功率小于无地

图5-3 典型起飞剖面图

带前飞速度爬升是直升机的基本爬升形式,如果条件允许,在所有情况下都采用这种型式起飞爬升。因为斜爬升比垂直爬升需用功率少,或者,在同样发动机可用功率下,比垂直爬升速度快。此外,与垂直爬升相比,斜爬升时直升机稳定性比较好,操纵余量也比较大,驾驶起来比较容易。

对于装有双台发动机的直升机,在起飞航迹上,当飞行到起飞安全速度和安全高度后,一台发动机故障,利用另一台发动机加速到最大功率仍可完成正常起飞。此速度和高度点便是起飞决断点(CDP ),见图5-4(A )。此点必须在单发停车时的H-V 图之外。起飞时,一台发动机在起飞决断点之前停车,必须停止起飞;在这个起飞决断点上和起飞决断点之后,可按一定程序继续起飞。在以单台发动机向外爬升时,飞行航迹最小飞行高度不小于2H ,与障碍物的最小距离不小于3H ,321,,H H H 的大小取决于不同的任务要求,并由使用方提供。准备的着陆场地大小是根据放弃起飞的距离加上飞机的长度确定的,一台发动机不工作的着陆距离也必须加以考虑。着陆时,同样存在一着陆决断点(LDP ),见图5-4

(B ),一台发动机在着陆决断点之前停车,可继续着陆,或按一定程序,利用将另一台发动机加速到最大功率进行复飞。在这个着陆决断点上和之后,一台发动机停车,直升机必须立即着陆。准备的着陆场地大小是根据飞机通过1H 高度的点到飞机完全停止的距离加上飞机的长度确定的,适用这个距离的安全系数要考虑许多因素,如跑道状况等。

准备的着陆场地

(B)

(A)

图5-4 起飞、着陆临界决断点

直升机在不同类型的机场起飞和着陆,其起飞和着陆决断点亦不同,表5-1给出直8型机的数据。

达到最大垂直爬升率。真实的续航速度随高度增加而有些增大,但为了便于驾驶,通常只用一个速度爬升。随着高度的增高,剩余功率越来越小,爬升率也越来越小,直至为零,此高度就是理论实用升限。实际上,是达不到理论实用升限,另外此升限也没有使用价值,所以一般规定爬升率为0.5m/s的那个高度为实用升限。显然,对同一架直升机,飞行重量越大,实用升限越低。

在斜爬升时,一般采用发动机最大连续功率状态,因为用此功率可实现长时间的爬升、可得到较大的爬升率,只有在应急情况才使用起飞功率状态。

在爬升时总距一直处在高位。因为在爬升时,有一股等于垂直速度的向下气流,使桨叶剖面迎角减小,为保持旋翼升力基本等于直升机重量,就必须提总距,以补偿因垂直速度而减小的叶剖面迎角。

5.2.2 在有高障碍物条件下的爬升

在有些情况下,根据周围障碍物的情况确定爬升方式。

在山地飞行的条件下,当直升机要从周围都是山岭和山峰的深谷处起飞时会遇到此种情况(见图5-4)。在这些条件下,或是从低谷垂直上升到一定高度然后向障碍物方向飞去(图5-4中c),或是向较高的山岭上空飞行(图5-4中b),都要对准风的方向。当然,在某些情况下,还有可能采用第三种上升方式——盘旋上升。但是,不是在任何时候都能采用此种上升方法的。

向障碍物方向爬升时,飞行状态应符合两个要求:

(1)飞行航迹与地平线所成的倾斜角,应在飞过障碍物时的飞行高度比障碍物高出不低于300米;

(2)上升时间应最短。

可以认为,这时不可能利用有利速度(续航速度)保持最大上升率上升。实际上,如果地形如同图5-4的地貌,则地平线与直线A (山峰与起飞场地连成的直线)之间的夹角等于14°,这一角度大于以最大上升率上升时的爬升角,一般直升机的爬升角不超过10°~12°,为安全飞过障碍物,直线A 还必须有一个不低于300米的高出量,为此,需降低前飞速度,沿直线B 飞行。

图5-4 高障碍物条件下的爬升

如果山峰或山岭的高度低于直升机的静升限,则飞行员可以在起飞后立即转入垂直上升,并在上升到接近障碍物高度时转入斜爬升。直升机利用这种方式上升时,要使曲线C (见图5-4)带有相当安全的高出量穿越山岭,但是垂直上升时上升率很小,持续的时间很长,只有到万不得已时才采用。

然而,还会遇到下列情况。山峰或山岭的高度高于直升机的静升限。此时可采用小于最有利上升速度实施倾斜爬升。为了使用这种方法上升,必须预先计算出从零到续航速度con V 的各种飞行速度的剩余功率N ,该值等于可用功率与平飞需用功率之差。然后根据(4-55)式计算上升率,计算出上升角和上升时间。

下面以某直升机为例,说明飞越山岭的计算方法。该机飞行重量G=2300公斤,设障碍物高度700米,续航速度con V =100公里/小时,从表5-2和图5-4中可见,以con V 速度爬升可获得最大上升率(5.7米/秒),但直升机不能飞越障碍物,因为上升角(~12°)小于向障碍物顶峰方向的直线与水平直线之间的夹角(14°)。但是,当飞行速度为60公里/小时时,尽管这时上升率(4.55米/秒)小于续航速度con V 时的上升率(5.7米/秒),但上升角(曲线B )却大于向障碍物顶峰方向的直线与水平直线之间的夹角。虽然保持此上升速度沿直线升高1000米比以续航速度con V =100公里/小时上升时用的时间长一些(长1分15秒),可是直升机能够飞过障碍物。

实际上,为保持一定上升角选择最有利的上升速度的可能性是十分有限的。因此,在山地条件下采用续航速度进行盘旋上升是比较有利的。

5.2.3 爬升

关于直升机的垂直爬升和静升限的介绍见第三章。

关于直升机的斜爬升和使用升限的介绍见第四章。

关于直升机在爬升时的平衡计算见第十一章。

5.2.4 影响直升机起飞重量的因素

众所周知,直升机的起飞重量越大则直升机所载的有效载荷越大,大的有效载荷可多载任务载荷,或多装燃油使直升机飞的更远或飞的时间更长。那么那些因素影响直升机的起飞重量呢?综合上述分析,归纳如下:

A.起飞方式

在5.1节给出4种起飞方式:正常起飞、地效起飞、滑跑起飞和垂直起飞,显然,起飞方式不同就是起飞时直升机的需用功率不同,在同样发动机可用功率情况下,使直升机起飞重量从最大到最小的起飞方式依次是:滑跑起飞、地效起飞、正常起飞和垂直起飞。

B.风的影响

直升机起飞一般都是迎风起飞。如前述,在小速度时,直升机的需用功率随飞行速度的增加而快速降低,根据相对运动原理,风速就是空速,所以风速对起飞是有利的,特别是无地效悬停起飞。利用地效起飞,风的作用使地效效果有所减弱,但还是有利的,只不过利小一些(见第9章)。

C. 温度的影响

在第13章将阐述温度对发动机功率的影响。无论是涡轮轴发动机还是活塞式发动机,其功率均随温度的升高而下降,而活塞式发动机下降的更快一些。由于温度升高导致发动机可用功率下降,而直升机需用功率基本不变,所以直升机的起飞重量下降。图5-5中给出在不同大气温度下飞行重量随垂直爬升率的变化,从图中可见,在同一飞行重量下,温度越高,垂直爬升率越小;或者说,在同一垂直爬升率下,温度越高,飞行重量越小。

垂直爬升率飞

图5-5 在不同大气温度下飞行重量随垂直爬升率的变化

D. 高度的影响

在第13章将阐述高度对发动机功率的影响。发动机的功率随高度的升高而减小,活塞式发动机减小的更快一些(带增压的除外),而直升机的需用功率却略有增加,所以直升机的起飞重量随飞行高度的增加而减小。图5-6给出在不同飞行重量下压力高度随垂直爬升率的变化。从图中可见,在同一飞行重量下,压力高度越大,垂直爬升率越小;在同一高度下,飞行重量越小则垂直爬升率越大。 E. 湿度的影响

对于涡轮轴发动机可不考虑湿度的影响,而活塞式发动机应考虑,其功率随湿度的增大而降低,所以,装有活塞式发动机的直升机,随湿度增大而起飞重量减小。

垂直爬升率

图5-6 在不同飞行重量下压力高度随垂直爬升率的变化

5.3 着陆

直升机从一定高度下降,减速、降落到地面直至直升机运动停止的过程称为着陆,是起飞的逆过程。

带前飞速度下降(下滑)是直升机下降的主要形式,如果条件允许适用于所有情况。与垂直下降相比,无论从直升机的稳定性和操纵性来看,还是从飞行安全的观点来看,下滑都是比较有利的。因为下滑需用功率低,比较经济,可得到低的垂直下降率和很小的下滑角,而且具有好的稳定性和较大的操纵余量,也便

于飞行员驾驶。在以小的前飞速度下降时,由第9章知,若垂直下降速度过大,直升机易进入涡环状态,进入涡环状态是非常危险的,所以应在涡环边界外的前飞速度和下降速度着陆。典型着陆剖面图如图5-7所示。图中给出正常进场着陆、 滑跑进场着陆和垂直着陆的剖面图。只有在可用功率大于悬停需用功率时才可采用垂直着陆。

图5-7 典型着陆剖面图

A. 直升机的下降率

直升机的垂直下降率y V 取决于:发动机的可用功率、直升机平飞的需用功率、直升机的飞行重量和大气条件。对于给定直升机,直升机的垂直下降率y V :

G

N N V re av y --≈ 式中:av N -----发动机可用功率,kw

re N -----直升机平飞时需用功率,kw

G ------直升机重量,kg

在飞行重量、大气条件一定时,图5-8(a )中给出直升机需用功率re N 随前飞速度0V 的变化,以及不同的发动机可用功率av N 。图中1,2,-----7,表示发动机可用功率级别,‘1’表示可用功率av N =0 ;‘7’表示发动机的额定状态。级别越高,则可用功率越大。按照上式,图5-8(b )中给出对应不同的发动机可用功率级别,下降速度y V 随前飞速度0V 的变化。

从图中可见,发动机可用功率的级别越大,则下降速度越小。当级别为‘7’

时,在所有前飞速度,发动机可用功率均大于直升机需用功率,直升机不但不下降,反而爬升。随着发动机可用功率的级别的减小,下降速度逐渐增大。当可用功率的级别为‘1’(av N =0)时,垂直下降速度y V 达到极限状态,即自转状态。从图中还发现,在不同的发动机可用功率级别,其最小下降(或爬升)率都是在续航速度。

从上式可见,垂直下降速度是av N 、re N 和G 的函数。当可用功率av N 和直升机重量G 一定时,需用功率re N 越大则垂直下降速度V Y 越大,而续航速度时re N 最小,大于或小于续航速度的速度需用功率re N 都比较大,所以只有以续航速度下降时,垂直下降速度才最小。如果可用功率av N =0,即自转状态,则是垂直下降速度V Y 的极限状态,此时也是在续航速度时垂直下降速度最小。有关自转飞行详见第六章。

直升机在下滑时由发动机传给旋翼的功率小,此时旋翼的反扭矩同样也小。这就是说,为了平衡反扭矩,尾桨拉力也应减小。

直升机在下滑时总距很小,因为下滑时相对旋翼有一股向上气流,该气流使桨叶剖面迎角增加,在稳定下降时为保证旋翼升力等于直升机重量,要降低总距。总距下降的越多则下降速度越大。

图5-8 直升机的飞行状态

(a ) 飞行时的可用功率和需用功率

(b ) 在不同的发动机功率状态、不同飞行速度下,垂直下降

速度和爬升速度的变化

B.正常着陆

直升机在下滑时由以下几部分组成(见图5-9):

-----下滑阶段,在该阶段以某一速度稳定下滑;

-----拉平阶段,直升机的轨迹由下滑倾斜轨迹转入保持接地飞行时的水平状态;

-----保持阶段,减小平飞速度至悬停;

-----悬停,垂直下降着陆。

拉平时必须减小下降率,即减小下滑轨迹的斜率。用后拉杆可以做到这一点,这时旋翼旋转平面向后倾斜,直升机抬头。同时,迎角增大,旋翼拉力增大。旋翼拉力在短时间大于直升机的重量,因此下降率就减小很多。拉平时不需要很长时间,拉平时终点高度一般2~3米。

图5-9 直升机下滑着陆的过程

保持阶段直升机向后倾斜,向后倾斜越大,则速度减小越多。如果旋翼拉力的垂直分力等于直升机重量,则直升机的飞行轨迹保持水平。保持阶段要逐步增大总距,以便随着垂直速度和水平速度的减小保持旋翼拉力不变。

如果直升机滑跑着陆,由于桨盘后倾,产生一向后的分力,再加机身阻力,机轮磨擦力,直升机的运动速度逐渐减慢。在滑跑时使用刹车可大大缩短滑跑距离。

在保持阶段结束,直升机离地1~3米,在此高度必须使直升机处于水平状态,并观察接地点,经短时间悬停后,飞行员柔和减小旋翼总距。这时旋翼拉力减小,直升机在重力作用下,缓慢地垂直下降并使全部机轮接地。当直升机刚接地后,飞行员敏捷地减小总距,以避免直升机接地后的跳动和摇摆。

C. 超越障碍物的垂直着陆

当着陆场地狭小,周围又有高大障碍物(如树林、建筑物、陡峭的地形等)时,直升机在接近场地空间不允许做近地飞行,此时就必须采用超越障碍物的垂直着陆,其飞行航迹如图5-10所示。从图中可见,为实施着陆,它必须在较高高度作无地效悬停,因此较正常着陆需用功率大。在作垂直下降时,为避免进入涡环状态,垂直下降速度应不大于1~2m/s(视具体直升机而定)。随着直升机的下降,快接近地面时,地面效应增大,会使旋翼拉力增大,为使直升机均匀地下降,必须逐渐减小旋翼总距。在垂直下降过程中,横向操纵不允许有较大位移,操纵难度大一些。

h

km V /60~50=

图5-10 超越障碍物的垂直着陆

D. 滑跑着陆

直升机在高原、高温地区,或载重量较大时,可用功率不足以允许用正常着陆方式着陆,而有足够的空间作有前飞速度进场和着陆时,可以像固定翼飞机那样进行滑跑着陆。其着陆飞行轨迹如图5-11所示。滑跑着陆与垂直着陆不同,直升机不但有垂直速度,还有水平速度。直升机在接地后有一滑跑过程,可进一步利用旋翼产生一减速的水平分力和刹车使直升机继续减速直至停止。着地后的滑跑距离与着陆速度有关,显然,速度越大,滑跑距离越大。

滑跑着陆不仅限于轮式起落架,滑橇起落架也可滑跑着陆,此时橇筒与地面摩擦。

图5-11 滑跑着陆

飞机操纵原理

一、飞行原理 飞机在空气中运动时,是靠机翼产生升力使飞机离陆升空的。机翼升力是怎样产生的呢?这首先得从气流的基本原理谈起。在日常生活中,有风的时候,我们会感到有空气流过身体,特别凉爽;无风的时候,骑在自行车上也会有同样的体会,这就是相对气流的作用结果。滔滔江水,流经河道窄的地方时,水流速度就快;经过河道宽的地方时,水流变缓,流速较慢。空气也是一样,当它流过一根粗细不等的管子时,由于空气在管子里是连续不断地稳定流动,在空气密度不变的情况下,单位时间内从管道粗的一端流进多少,从细的一端就要流出多少。因此空气通过管道细的地方时,必须加速流动,才能保证流量相同。由此我们得出了流动空气的特性:流管细流速快;流管粗流速慢。这就是气流连续性原理。 实践证明,空气流动的速度变化后,还会引起压力变化。当流体稳定流过一个管道时,流速快的地方压力小。流速慢的地方压力大。 飞机在向前运动时,空气流到机翼前缘,分为上下两股,流过机翼上表现的流线,受到凸起的影响,使流线收敛变密,流管(把两条临近的流线看成管子的管壁)变细;而流过下表面的流线也受凸起的影响,但下表面的凸起程度明显小于上表面,所以,相对于上表面来说流线较疏松,流管较粗。由于机翼上表面流管变细,流速加快,压力较小,而下表面流管粗,流速慢,压力较大。这样在机翼上、下表面出现了压力差。这个作用在机翼各切面上的压力差的总和便是机翼的升力(见图)。其方向与相对气流方向垂直;其大小主要受飞行速度、迎角(翼弦与相对气流方向之间的夹角)、空气密度、机翼切面形状和机翼面积等因素的影响。当然,飞机的机身、水平尾翼等部位也能产生部分升力,但机翼升力是飞机升空的主要升力源。飞机之所以能起飞落地,主要是通过改变其升力的大小而实现的。这就是飞机能离陆升空并在空中飞行的奥

飞机飞行的原理图解

飞机飞行的原理图解 飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。 飞机飞行原理: 1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。 2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。 3、当飞机前进的速度越大,这个压强差,即升力也就越大。所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。

飞机的组成: 大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。 机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。在机翼上一般安装有副翼和襟翼。操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。另外,机翼上还可安装发动机、起落架和油箱等。 1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。 3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 4.动力装置:主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞机的起飞原理

飞机起飞模型 伴随着科学技术的高速发展,给交通事业也带来了蓬勃的生机。特别是航天事业的发展。自1877年,在美国的代顿地区,莱特兄弟驾驶人类历史上第一架飞机飞行成功开始,到现在航天飞机宇宙飞船的上天,都给历史留下了美好的一页。但是,现今还有许许多多的人不理解飞机为什么能飞?为了让人们更好的了解飞机起飞原理,更好的接受科学知识,我特别制作了飞机起飞的模型。 一、模型的结构图和尺寸 飞机起飞模型的结构图飞机起飞模型的结构图 二、实验模型的原理说明 飞机能起飞依靠的是伯努力原理和机翼的升力。 两张纸在内外压强差作用下靠拢气流从机翼上下方流过的情况 飞机机翼的剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,流线分布情况如图所示。原来是一股气流,由于机翼地插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就

是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。 所以,飞机能起飞,最重要的是机翼的制作,模型中机翼上表面凸起,下表面平整,当给它在水平方向受到风力时,机翼上表面的气流运动较下表面的慢,从而使下表面的压强大于上表面的压强,机翼获得向上的升力。 三、制作方法及实物图介绍 1.取cm cm 20150 的木板做飞机的水平轨道,另取两根长cm 40的钢筋做支架。如实物图所示。 2.用费旧的展板做飞机的机翼,尾翼和舵,如实物图所示。 3.用泡沫做飞机的机身和机舱。如实物图所示。 4.用一根长cm 90的长直铜管做水平支架,并在支架的一端连接一只铁球,作为动力。如实物图所示。 5.将铜管的另一端与飞机相连(在飞机重心位置处)。如实物图所示。 6.在飞机前端装一个风源(电风扇)。如实物图所示。 四、模型的使用说明 1、将模型放置于桌上,调节机身,使它处于飞行轨道中央。 2、打开电风扇,将风力调节到最高档——第三档。 3、观察飞机的起飞。 此模型的制作简单,它所需要的原材料简单易得,比如机身所需的是废旧泡沫,机翼是废旧展板。但是它能很好的展示飞机的起飞,很清楚的解释飞机的起飞原理,让人一看即明。另外模型使用简单,安全方便,适合各类人群演示,具有普遍性。 五、相关拓展知识 (一)影响飞机起飞的因素及注意事项 影响起飞滑跑距离的困素有:油门位置、离地迎角、襟翼反置、起飞重量、机场标高与气温、跑道表面质量、风向风速、跑道坡度等。这些因素一般都是通过影响离地速度 或起飞滑跑的平均加速度来影响起飞滑跑距离的。 1.油门位置 油门越大,螺旋桨拉力或喷气推力越大,飞机增速快,起飞滑跑距离就短。所以,一般应用最大功率或最大油门状态起飞。

飞机起降过程物理过程分析

飞机起降过程物理过程分析 摘要:随着经济的发展,人们生活水平的提高,越来越多的人选择方便快捷的飞机作为主要出行方式。中国低空领域的开放,将会进一步促进整个行业的大发展。人们的生活也越来越离不开飞机。飞机涉及到非常多的知识和原理。文章将对飞机的原理和相关的运行规定进行整理分析,以及理想情况下飞机降落过程的受力分析来展示飞机降落的整个过程。 关键词:飞机;着陆;起飞;标准降落;受力分析 1 起飞着陆具体过程 在飞机的整个飞行中起飞着陆是最复杂、最危险的阶段,在这一阶段发生事故的概率最高。 当飞机得到起飞命令以后,飞行员加大飞机的油门开始滑跑,当滑跑速度达到一定数值(离地速度)时,飞行员向后拉驾驶杆使飞机的迎角增加,这样飞机的升力就随着滑跑速度和迎角的增加而增大。当升力增加到大于飞机的重力时,飞机便开始离开地面。以后,飞机继续加速爬升,当飞机爬升到离地面10~15米时,飞行员便开始收起落架以减小飞行阻力。当飞机爬升到安全高度以后,起飞阶段就结束了。

飞机着陆过程是指飞机从安全高度以3度下降角下降,发动机慢车,飞机近似等速直线飞行。在离地6到12米时,开始将飞机拉平。飞机减速平飞,继续增加迎角接近护尾迎角,速度继续降低。当升力小于重力时,飞机飘落主轮接地后,保持两点滑跑,利用空气阻力减速到一定速度后,飞机前轮接地,三点滑跑并开始刹车直到停止。整个过程可概括为:下降、拉平、平飘、接地、滑跑。 2 升力产生的物理过程 空气在机翼迎风时的流向图。如图1所示。 空气在机翼上方要随机翼的形状走过更多的行程,于是机翼上方的流速小于机翼下方,根据气体性质,那么机翼上方的气体压强要小于机翼下方,于是形成了上下的气压差,飞机的升力本质上由此产生。 3 起飞性能参数 提高飞机起飞时的加速度,使它尽快地达到离地速度,以缩短起飞滑跑距离。飞机起飞是一个直线加速运动,它分两个阶段,即最大功率地面滑跑阶段,以及加速爬升阶段。飞机起跑速度继续增加到一定数值时,机翼的升力和重量大致相等,驾驶员拉杆向后,飞机抬起机头,前轮离地,这个速度称为抬前轮速度。这时飞机开始升空,起飞的第一阶段滑跑完成,转入第二阶段即飞机飞到规定的高度,起飞阶段结束。

飞行原理论文

飞行原理论文 ——张兴鹏 要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。这些问题将分成几个部分简要讲解。 一、飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1.机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2.机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3.尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。

文档飞机转弯原理

从飞机爬升和下降的操作情况来看,似乎只要驾驶员踩踩脚蹬和控制一下方向舵,飞机就可以左转或右转了。但实际上比这要复杂的的多。与地上行驶的汽车相比,飞机多出来一个侧倾转动,而除非在路面倾斜的情况下,汽车自身是不会倾斜的。飞机在空中倾斜运动是自由的,驾驶杆向右转飞机向右倾斜,这时飞机的重力与地面垂直,可是机翼上的升力却是垂直于机翼的,此刻的升力不再指向地面的正上方而是指向斜上方。由于重力和升力的方向不同,它们不再互相平衡,于是就产生了一个垂直于机身指向右方的力,在这个力的作用下,飞机沿着一条圆弧向后右转动,这与人骑自行车的经验相近似,骑车人的身体如向一侧倾斜,自行车会随之倾斜并且自动向倾斜方向转弯无须转动车把。这就是驾驶员利用驾驶杆操纵副翼使飞机转弯的道理。同理,驾驶杆向左转时飞机也会向左转弯。从上面的描述,大致可以看出在飞机转弯时,驾驶杆的使用与汽车转弯时方向盘的使用是完全一致的。既然使用驾驶杆和使用脚蹬控制方向舵都能使飞机转弯,那它们之间有什么差别呢?下面让我们再进一步了解一下:如果驾驶员只用驾驶杆控制副翼使飞机转弯,例如右转弯,此时飞机向右侧倾斜,有一个心力拉着飞机向右转,但机头所对的方向并未改变(实际上它可能由于右侧倾斜导致略向左侧偏转),于是就出现了机头向前而飞机的整体向右转的状态。恰如同一条船面向前行而整个船体却沿圆弧行进。这样会使阻力增大,造成不必要的燃料浪费。如果驾驶员仅用脚蹬控制转弯,在机身不倾斜的状况下机头突然转向,此时机翼上的气流方向发生剧变,升力下降、机身受力增大,导致飞机高度快速下落,机舱内的乘客会感觉很不舒服。所以要实现一个平稳的、使人感到舒适的转弯(航空上称为直辖市转弯),驾驶员必须同时使用驾驶杆和脚蹬。假如飞机需要右转弯,驾驶员就把驾驶杆向右转动同时踩右脚蹬,此时飞机机可靠垂尾,机的任何动作可以分为三个基本动作,滚转、偏航和俯仰,三个动作依次需要副翼、方向舵和升降舵来实现。实际上飞机在空中转弯很复杂,同样包括了这三个动作。以向左转为例,飞行员踩左脚蹬,方向舵发生偏转,同时向左压杆,副翼偏转,飞机左滚转一定角度后,回杆,这个过程叫做压坡度。此时由于机翼不水平所以升力已经存在一个很小的左分量,飞机已经在左转,但转弯半径大而且在掉高度,所以飞行员此时要拉杆使升降舵偏转,飞机做俯仰动作,机头上抬,产生了更大的升力,这样飞机就可以在不丢高度的情况下实现小半径左转。在转弯到一定角度后,飞行员将杆复位,松开脚蹬,同时向右压杆,又滚转至水平位置,回杆。这样就完成了一个左转动作。很多时候飞机的转弯只是利用操作杆完成,我们玩航模的人都应该清楚,方向舵不过是起飞和降落时和前起联动调整划跑时才会用到,空中转弯完全依靠副翼和升降舵完成。如今大部分书都没有详细讲过飞机转弯的过程,但通过看一些录像还是能够发现蛛丝马迹,飞机转弯过程可以很清楚地看出开始的压坡度和后来的回正过程。头向右转、机身向右倾,飞机在天空中画中一条高度不变的平滑圆润的向外弯曲的美丽弧线。左转弯也是如此。以上就是飞机转弯的奥妙。第一种使用垂尾--飞机屁股上高高翘起的那个。就像船舵一样,垂尾后部向左折,飞机就左转,反之右转第二种。这种比较复杂,但比第一种效率高。先是飞机主机翼两端的翻滚控制翼张开,例如左翼向下,右翼向上,这样一来飞机就会以机头到机尾的轴线顺时针旋转,当旋转到90度左右时,主翼恢复正常,水平尾翼向上翘起,飞机就开始大幅度转向。这个动作本身和飞机起飞没什么区别。问题在于起飞动作处于垂直位面,转向动作处于水平位面。当机头指向你想转的方向时,水平尾翼恢复正常,翻滚控制翼再次张开,左翼向上,右翼向下,飞机逆时针旋转至恢复水平状态,主翼恢复正常,完成转向。转向控制翼只是主机翼的一小部分,并不是整个主翼转动

飞机靠什么原理起飞的

飞机靠什么原理起飞的? 飞机的机翼翼型不是一个平面,而是略向外凸,机翼的上表面外凸引起了上表面空气流管缩小,空气流速加快,与下表面的气流产生了流速差,根据伯努力原方程,流体流速越大,压强越小,因此,机翼上就有了升力,当飞机速度越快,流速差就越大,升力就越大,当升力超过重力,飞机就能起飞了 飞行原理一. 滑行 飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。 滑行的基本要求是飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。 二. 起飞 飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。 飞机起飞的操纵原理飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结 果。而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。可见飞机的起飞是一个速度不断增加的加速过程。;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。 (一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。起飞中,为尽快地增速,应把油门推到最大位置。 机翼起飞时,速度加快,因为机翼上方比下放曲,呈留线形.速度大,流速就大,流 速大,则上方气压大于下方的气压,于是下放的气压机翼有向上的托力!因此,飞机起飞是靠形成的上下气压差起飞的.

飞机的起飞原理

伯努利方程原理以及在实际生活中的运用 2011444367 陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。伯努利方程 p+ρgh+(1/2)*ρv 2=c 式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据伯努利方程在水平流管中有 p+(1/2)*ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用:

1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 伴随着科学技术的高速发展,给交通事业也带来了蓬勃的生机。特别是航天事业的发展。自1877年,在美国的代顿地区,莱特兄弟驾驶人类历史上第一架飞机飞行成功开始,到现在航天飞机宇宙飞船的上天,都给历史留下了美好的一页。但是,现今还有许许多多的人不理解飞机为什么能飞?为了让人们更好的了解飞机起飞原理,更好的接受科学知识,我特别制作了飞机起飞的模型。 一、模型的结构图和尺寸 飞机起飞模型的结构图飞机起飞模型的结构图 二、实验模型的原理说明

飞行必备知识:详解飞机机翼原理与功能图文

机翼各翼面的位置图图片说明:上图为机翼各翼面的位置图,民航飞机的机翼各翼面位置一般类似。机翼上各操纵面是左右对称分布,部分由于图片受限未标出 机翼的基本概念 机翼的主要功用是产生升力,以支持飞机在空中飞行;同时也起一定的稳定和操纵作用。是飞机必不可少的部件,在机翼上一般安装有飞机的主操作舵面:副翼,还有辅助操纵机构襟翼、缝翼等。另外,机翼上还可安装发动机、起落架等飞机设备,机翼的主要内部空间经密封后,作为存储燃油的油箱之用。 相关名词解释: 翼型:飞机机翼具有独特的剖面,其横断面(横向剖面)的形状称为翼型,称为翼型 前缘:翼型最前面的一点。后缘:翼型最后面的一点。翼弦:前缘与后缘的连线。弦长:前后缘的距离称为弦长。如果机翼平面形状不是长方形,一般在参数计算时采用制造商指定位置的弦长或平均弦长 迎角(Angleofattack):机翼的前进方向(相当与气流的方向)和翼弦(与机身轴线不同)的夹角叫迎角,也称为攻角,它是确定机翼在气流中姿态的基准。 翼展:飞机机翼左右翼尖间的直线距离。 展弦比:机翼的翼展与弦长之比值。用以表现机翼相对的展张程度。 上(下)反角:机翼装在机身上的角度,即机翼与水平面所成的角度。从机头沿飞机纵轴向后看,两侧机翼翼尖向上翘的角度。同理,向下垂时的角度就叫下反角。 上(中、下)单翼:目前大型民航飞机都是单翼机,根据机翼安装在机身上的部位把飞机分为上(中、下)单翼飞机也有称作高、中、低单翼。机翼安装在机身上部(背部)为上单翼;机翼安装在机身中部的为中单翼,机翼安装在机身下部(腹部)为下单翼。 上单翼的飞机一般为运输机与水上飞机,由于高度问题,此时起落架等装置一般就不安装在机翼上,而改在机身上,使用上单翼的飞机一般采用下反角的安装。中单翼因翼梁与机身难以协调,几乎只存在理论上;下单翼的飞机是目前民航飞机常见的类型,由于离地面近,便于安装起落架,进行维护工作,使用下单翼的飞机一般采用上反角的安装。 机翼在使飞机升空飞行中的重要作用 飞机在飞行过程中受到四种作用力: 升力----由机翼产生的向上作用力重力----与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生推力----由发动机产生的向前作用力阻力----由空气阻力产生的向后作用力,能使飞机减速。 由此可见,机翼的主要功用就是产生升力,以支持飞机在空中飞行。它为什么能产生升力呢?首先要从飞机机翼具有独特的剖面说起,前面名词解释已提到,机翼横断面(横向剖面)的形状称为翼型,机翼剖面的集合特性与机翼的空气动力有密切的关系。从侧面看,机翼顶部弯曲,而底部相对较平。机翼在空气中穿过将气流分隔开来。一部分空气从机翼上方流过,另一部分从下方流过。 空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,而下表面比较平,流过机翼上表面的气流就类似于较窄地方的流水,流速较快,而流过机翼下表面的气流正好相反,类似于较宽地方的流水,流速较上表面的气流慢。根据流体力学的基本原理,流动慢的大气压强较大,而流动快的大气压强较小,这样机翼下表面的压强就比上表面的压强高,换一句话说,就是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。

飞机起飞的原理

飛機起飛的原理 [白努力定律] 班級:四光電二A 姓名:許家偉 學號:4980B020

大綱: 飛機能在空中飛行是因為有機翼(Wing)產生升力(Lift),機翼之所以能產生升力是因為有曲度,為了觀察翼面曲度和空氣流動的關係,常將機翼剖開,所得到的側面形狀即為翼剖面(Airfoil)。觀察翼剖面時發現當氣流平滑的通過翼剖面上、下方時會產生壓力差,使得機翼產生向上的升力。當氣流在某些情形下不能平滑的通過翼面時升力會減少,當整各翼面產生的升力不足以負擔飛機本身的重量時,即造成「失速」(Stall)的情形,大部份失速是在低速或大角度爬升、迴轉時發生,此時所有控制面將暫時失去作用,直到氣流揮復平滑為止。

飛機起飛降落運用的原理: 主要是靠機翼對空氣取得昇力,飛機的機翼斷面形狀有很多種,依造每種形 狀適用於不同功用的飛機,飛機的機翼從斷面來看,通常機翼上半部曲面及下半部曲面不一樣,通常為上半部曲面弧長較長,空氣流經飛機機翼截面,因空氣流過機翼表面時被一分為二,經過機翼上面的空氣流速較快,因此壓力會變的比較低(柏努力定律),,而經過機翼下面的空氣流速較慢,壓力就會比較高(柏努力定律),壓力高的地方會往壓力低的部分移動,這就是昇力的由來。但是至於昇力大小由昇力公式Y =(1/2)ρV2SCy[註V2是V的平方] ρ為空氣密度、V為飛機與氣流的相對速度、S為翼面積、Cy 為升力係數 由公式可知影響昇力大小的有1.機翼的面積2.機翼形狀的昇力係數3.空氣相對於機翼的流速4.當時的空氣密度,其中已空氣相對於機翼的流速影響最大,它直接影響到飛機起飛時的昇力取得,也就是說為什麼飛機起飛前總是要高速滑行的原因,且是逆風滑行,如此才能取得更高的相對速度,好取得更高的昇力,還有一般飛機會有襟翼,可以增加機翼面積,飛機在起飛或降落的時候,伸出襟翼(有興趣可以在搭飛機時往機翼看,起飛降落時飛機機翼前緣及後緣會伸展開來),亦是增加昇力方法,除此之外,飛機的昇力,還和攻角有關。攻角就是機翼前進方向與氣流的夾角,因為角度變化,氣流會在上翼面後端產生低壓區(與空氣分離有關),造成更大的壓力差,所以升力變大。但達到臨界攻角(約12~14 度,依造機翼斷面形狀不同)後,低壓區轉為亂流,造成失速。以上都是談飛機機翼如何產生昇力,至於是什麼東西在推動飛機使機翼產生昇力?那就是所謂的發動機了,空氣流出發動 機向後噴出時候,相對的對於飛機機體產生一個作用力,在地面使飛機往加速前進(地面滑行),達到起飛空速(機翼產生足夠的昇力),駕駛員拉起機鼻,飛機就這樣起飛了,當然發動機還是一直作動,一方面產生往前飛的力量,一方面換取速度使機翼產生昇力,一但發動機熄火,飛機失去前進的力量,也就失去昇力。還有為什麼直升機不用滑行就可以產生昇力?一般飛機如747,IDF,幻象2000,諸如此類的飛機我們稱為定翼機,也就是機翼固定不動,而直升機我們稱為旋翼機,機翼高速旋轉,產生昇力使飛機往上飛,再經由旋翼轉動角度改變,產生往前的力量。 飛機是藉著機翼所產生的上升力,以及飛機引擎所產生的推動力,而讓飛機可以在 白努利定律-當流體(在這文章裡是指空氣)經過一面積時,速度慢的流體將產生較大的壓力,相對的,速度快的流體因為密度較小,所以壓力就相較較小。

飞机原理及构造

第一章 1、飞机的主要组成及其功能? 组成:机翼、尾翼、机身、起落架、动力系统、飞行控制系统、航空电子系统及机载设备。 功能:机翼,产生升力的主要部件,可以安装发动机、起落架、油箱。 尾翼:保证飞机的平衡、稳定并操纵飞机。 机身:装载设备、乘员、和货物,并将机翼、尾翼、发动机、起落架等部件连接为一个整体。 起落架:用于飞机的起飞、降落和地面停放时支持飞机的装置。动力系统:提供推力或拉力使飞机克服飞行时受到的阻力。 飞行控制系统:用于操纵和控制飞机。 2、飞机研制过程? 1)拟定技术要求2)飞机设计过程3)飞机制造过程4)飞机的试飞、定型过程。 第二章 1、介绍流体特性,气体动力学基本概念? 流体特性:压缩性、粘性、传热性。 概念:用流体流动过程中的各个物理量描述的基本物理定律(质量守恒定律、牛顿运动三定律、热力学第一定律)就组成了空气动力学的基本方程组。 2、流体流动的基本规律,飞机升力的产生?

规律:流体绕物体流动时他的各个物理量,如速度、压力和温度等都会发生变化,但这些变化必须遵循基本的物理定律。 升力的产生:主要由机翼产生。而升力的产生又主要是由于上下翼面的压力差,因此压力差所作用的“机翼面积”越大,升力也越大。 3、飞机的升力和阻力? 升力:除了与翼型及迎角有关外,还与飞机机翼的平面形状,相对气流速速、空气密度有关。 阻力:飞机上不但机翼会产生阻力,机身、起落架、尾翼等都可能产生阻力。 摩擦阻力、压差阻力、干扰阻力与升力无关,故又统称为零升阻力。 诱导阻力:伴随升力的产生而产生的。 4、飞机翼型参数? 几何弦长,弯度分布,厚度分布 5、什么是流体的压缩性? 对流体施加压力,液体的体积会发生变化,在一定温度条件下,具有一定质量流量的体积或密度随压力变化而改变的特性,叫做可压缩性或弹性。 6、大气层的结构是什么? 从海平面起,最低一层是对流层,上层是平流层,再上是中间大

飞机仪表和起飞流程

在进行完例行的飞行前外部检查之后,我和教练坐进了飞机驾驶舱。我坐在驾驶室左侧,教练坐在驾驶室右侧。飞机两个座位上各有一套操作系统,每个人各有一套刹车装置。 <刹车转向踏板和操纵杆> FAR要求在飞行中驾驶员必须系上安全带背带。然后调整座位和刹车位置,使得双脚可以直接将两个刹车同时踩到底。 在滑行起飞之前,我们得简要的介绍一下飞机驾驶舱内的各种操纵杆和仪表。 Sports cruiser有两种不同的操纵台,老式的依靠传统的皮托管和惯性导航系统显示,随着技术的推进,新式的飞机基本上都用传感器和液晶屏代替了老式的仪表。但是基于介绍基本的原理,我们还是从老式的仪表作为一个引子。

<六大仪表> 红色框里是飞行最基本的六大仪表。主要分成两类:皮托管仪表和惯性导航设备。 皮托管仪表 1.空速表(Air Speed Indicator) 第一排左起第一个设备是空速表。这个设备通过测量伸出机身的空速管处的总压与静压的压差,间接测出空速,也就是飞机在空气中的相对运动速度。仪表盘上的数字单位是Knots (nm/h,海里每小时、节) 。

外圈绿色的范围是飞机正常的巡航速度范围,高于这个速度,进入黄色告警区域或超过红色危险区域,飞机就有损坏和解体的危险。如果收起襟翼时,75节是飞机最小的巡航速度,低于这个速度 飞机就会失速。右侧67-120节白色的区域代表飞机打开襟翼时的安全飞行速度,飞机伸出襟翼(大 家在坐民航飞机起飞降落时很容易在机翼后端观察到),增大了机翼的面积,降低了失速速度,使 得飞机能在较小的速度下起飞和降落。如果飞机展开襟翼,低于67节,就有可能失速;如果大于120节,飞机襟翼就有被破坏的危险。 2.气压高度表(Altimeter) 左数第三个表是气压高度表。顾名思义,这个仪表显示飞机的气压高度。仪表有三根指针,分别表 示数字的万、千、百读数,这里单位是英尺。高度表右侧有一个小窗,里面数字29.9叫做高度表 拨正值。主要的作用就是在不同的大气条件下,把相应的海平面气压修正到标准大气条件下。这样,飞机在机场地面时,高度表应当显示机场海拔高度(场高)。高度表拨正值应当按照由空中交通管 制席位的要求或航图要求及时调整。如下图高度计显示当前高度为10,180英尺。 3.升降速度表(Vertical speed indicator) 第二排最右侧是升降速度表。这个设备就是显示爬升或者下降率,通过检测气压高度表变化的情况 给出指示数字,单位:百英尺每分钟

相关文档