文档库 最新最全的文档下载
当前位置:文档库 › 激光表面熔覆技术的研究及其在轧辊表面修复中的应用

激光表面熔覆技术的研究及其在轧辊表面修复中的应用

激光表面熔覆技术的研究及其在轧辊表面修复中的应用
激光表面熔覆技术的研究及其在轧辊表面修复中的应用

Applied Physics 应用物理, 2018, 8(7), 331-335

Published Online July 2018 in Hans. https://www.wendangku.net/doc/2416774940.html,/journal/app

https://https://www.wendangku.net/doc/2416774940.html,/10.12677/app.2018.87042

The Study and Application in Roller Surface Repaired of Laser Cladding Technology

Rui Zhou

Rizhao Company in Shandong Iron and Steel Group, Rizhao Shandong

Received: Jul. 3rd, 2018; accepted: Jul. 16th, 2018; published: Jul. 23rd, 2018

Abstract

Laser cladding technology is a new type of surface engineering technology. The research status of the laser cladding is summarized, and the existing problems and solution of the technology are re-viewed. Finally, the development trend and industrial application prospect of the technology in the future are put forward.

Keywords

Laser Cladding, Coating Properties, Powder Particles, Lasers

激光表面熔覆技术的研究及其在轧辊表面修复中的应用

周瑞

山东钢铁集团日照有限公司,山东日照

收稿日期:2018年7月3日;录用日期:2018年7月16日;发布日期:2018年7月23日

摘要

激光熔覆技术是一种新型的表面工程技术。本文介绍了激光表面熔覆技术的研究现状,提出了激光表面熔覆技术领域存在的主要问题及解决途径,展望了激光表面熔覆技术的发展趋势及工业应用前景。

关键词

激光熔覆,熔覆层性能,粉末材料,激光器

周瑞

Copyright ? 2018 by author and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.wendangku.net/doc/2416774940.html,/licenses/by/4.0/

1. 前言

上世纪中叶,世界上第一台激光器研制成功,随后在各个领域的应用不断拓宽。作为新兴的表面改性技术,激光熔覆技术在进入80年代后得到了迅速的发展。激光表面熔覆技术是利用高能密度的激光束所产生的极快速的动态熔化与凝固过程,将预先涂覆或输送到基体表面的涂层材料在其表面形成与基体相互溶合的、具有完全不同成分与性能的合金覆层,与之形成冶金结合,彻底改变表面组成成分,以改善材料表面性能的一种工艺。与传统的机械加工去除法、电弧堆焊法、热喷涂技术[1]等比较,激光表面熔覆技术作为一种新的技术,具有改性层厚度大、工件变形量小、处理层与基体为冶金结合且结合强度高、可在大气中实施且难易程度低等优点[2],覆层具有优异的耐磨、耐蚀、耐热的性能,因此具有广阔的工业应用前景。

轧辊作为轧机的重大关键部件,其表面质量对轧钢的品质和生产效率有很大影响。在轧制过程中轧辊经历力循环和热循环的双重作用,表面会产生氧化、裂纹、磨损、甚至断辊等失效缺陷。如何利用激光熔覆技术对轧辊进行有效修复,是目前轧钢行业一直努力探究的方向。

2. 轧辊表面激光熔覆层的组织及性能

合金、陶瓷、复合熔覆粉末经激光束处理后,和轧辊基材表面金属一起溶化,凝固成具有优异性能的熔覆层,其表面硬度明显提高,为熔覆层获得优良的耐磨性提供了保证。除了熔覆材料本身硬度较高外,由于激光熔覆的快速加热和快速冷却远远偏离了平衡过程,所以激光熔覆所具有的过饱和固溶强化、组织细化、弥散强化、沉淀强化也起着不可忽视的作用。陶瓷颗粒増强金属基复合激光熔覆层以金属或合金为基体,陶瓷颗粒作为第二相分布其中,陶瓷颗粒和金属基体发挥各自的优势,使熔覆层材料能兼有二者的良好性能。杨胶溪[3]等用激光熔覆技术对9Cr2Mo轧辊表面进行修复,制备出了由碳化物、硼化物増强Fe基激光熔覆层,熔覆层致密无缺陷,硬度比轧辊高,能够满足轧辊使用条件下的硬度要求。

陈长军[4]等在冶金精密轧辊表面激光熔覆了Ni + WC粉末,结果表明:熔覆层组织细化,与基材属于冶金结合,硬度高达HV1076,比轧辊硬度提高了近一倍。

因此激光熔覆技术适用于轧辊这种局部磨损、冲击、剥蚀、氧化腐蚀的表面修复。激光熔覆所形成的涂层具有结合强度高、致密度高、稀释度低、涂层部位可控、组织细小及性能优良等特点,有着广阔的应用前景。利用激光熔覆的手段,在低成本材料表面熔覆金属陶瓷,在保留基体金属高的强韧性的同时,使表面获得耐磨、耐蚀、抗疲劳及良好的高温性能,达到节约贵重材料的目的。

3. 熔覆材料、方式及设备的研究

目前应用最广的是粉末材料。熔覆粉末一般根据材料的组分构成可以分为自熔性合金粉末、陶瓷粉末和复合粉末。自熔性合金粉末根据粉末体系的不同,包括Co基、Ni基、Fe基合金。由于Fe基复合材料具有和轧辊成分接近、能够在钢铁、铁合金表面有较好的润湿性、与基材结合牢固、价格低廉等优点,在轧辊的修复或者表面耐磨强化方面应用广泛。陶瓷粉末材料由于其热膨胀系数等热物理性能与轧辊基材差异较大,由于内应力的作用易导致熔覆层开裂甚至局部脱落,限制了陶瓷材料的应用,基本上还处于实验室研究阶段。在金属合金粉末中加入具有各种优异性能的陶瓷粉末组成的金属—陶瓷复合材料是

周瑞

激光熔覆中应用最为广泛的一种材料,这种结构的熔覆层既具有韧性较好金属基体,又有硬度高、耐磨性和热稳定性好的陶瓷增强相,综合性能较好。

熔覆材料的引入方式主要分预置式和同步送粉式两种。预置涂层法是先采用某种工艺如粘接剂预涂覆、热喷涂、电镀等在基材表面预置一层金属或合金涂层材料,然后用激光束使其熔化并与表面微熔的基材一同快速冷却而获得与基材良好冶金结合的熔覆层。同步送粉法则是在激光束照射基材的同时,将待熔覆的材料送入激光熔池,经熔融、冷凝后在基材表面形成熔覆层的工艺过程。两种工艺方法各有优劣,预置涂层法操作简单,使用方便;同步送粉法具有工艺参数、过程易实现自动化控制,激光能量吸收率高(为预置法所需能量的一半),降低覆层的稀释率和基材的热影响,覆层宏观质量可控,生产效率高等优点。在进行激光熔覆的过程中,可以通过调节粉末流速、粉末喷嘴形状以及激光束聚焦点相对基体表面的高度等工艺参数,实现熔覆层和基体的良好结合。

目前应用于激光熔覆的设备主要是CO2激光器和固体激光器。CO2激光器因其功率高、效率高、光束质量高,成为应用最广、种类最多的一种激光器。固体激光器(光纤激光器、碟片激光器、二极管激光器)具有转换效率高、性能可靠、寿命长、输出光束质量好等特点,而碟片激光器更适合高反射率材料的熔覆。

在光路系统方面国外已研制出矩形积分反射镜、点状振动反射镜和透射式或透反射式的导光系统,且国外光导纤维已可传输的激光功率达千瓦;国内已有适于千瓦级CO2激光器的宽带熔覆扫描转镜,在2 kw下的单道熔覆宽度可达15 mm。在送粉装置方面,Grunenwald等[5]设计了一种新的送粉系统,配套测量装置可反馈信息,保证整个处理过程供给速率恒定。由于其高度集成和重量较轻,整个供给装置可安装在激光工作头上。国内由于受送粉设备发展的限制,主要采用预置粉末法,同步送粉法也有一定程度的发展,天津工业大学研制成功转镜宽带涂覆系统,清华大学研制成功TH系列送粉激光熔覆系统,文献[6] [7]介绍了自动化送粉装置及其工艺和反射宽带聚焦镜激光熔覆装置。

4. 熔覆层质量控制的研究

熔覆层的质量直接影响其性能。影响熔覆层质量的主要因素有材料特性、光束质量、工艺参数、外界环境等。熔覆层的质量问题主要有裂纹、氧化烧损、粗糙度、稀释率等。

4.1. 裂纹

在激光熔覆过程中,高能密度的激光束的快速加热熔化使熔融层与基材间产生了很大的温度梯度。在随后的快速冷却中,这种温度梯度会造成熔凝层与基材的体积胀缩的不一致性,使其相互牵制形成了熔凝层的内应力。这种应力通常为拉应力,往往导致熔覆层的开裂和基材的变形。裂纹按产生的位置分成3类:熔凝层裂纹、界面基体裂纹、和搭接区裂纹。以界面基体裂纹为最常见。国内外专家围绕如何降低熔覆层的开裂敏感性,开展了许多研究[8] [9] [10]。对熔覆的基体材料进行一定温度的预热和后续处理,将会有效地将低温度梯度,降低热应力,有利于抑制熔覆层裂纹的产生。但预热和缓冷削弱了激光快速加热和快速冷却的优势。增加含Ni量,能有效降低Fe-Cr-Ni-B-Si熔覆层的开裂敏感性。适当提高能量密度可显著降低开裂倾向,在熔池中施加电磁搅动也可使裂纹减少。每次涂覆尽量降低涂覆层厚度,以平面应力状态代替应变状态,可以降低开裂倾向。复合涂覆技术也可以降低开裂倾向,是目前研究的热点。其原理是在基体与涂覆层间引入一个中间过渡层,使涂层组成与性能沿厚度方向连续梯度变化,金属基体与陶瓷相涂层间无明显界面,可有效地削弱涂层中的应力,提高涂层和基材的结合强度,减少裂纹的产生。但该技术较为复杂,生产成本也很高。

4.2. 基材变形

对于防止基材变形,一般采用以下措施:用热处理法消除基材的内应力;尽量选择较薄的熔覆层;

周瑞

采用预热和后热工艺;采用预应力拉伸、预变形或夹具固定的方法减少或防止基材的变形。

4.3. 氧化与烧损

在高能激光的作用下,如何减少合金元素的氧化与烧损也是一个问题。目前最常采用的方法是实施Ar气氛保护。但应注意气体流变问题。文献[11]发现氦气保护优于氩气和氮气,能产生最好的表面光洁度,最细化的微观组织,最高的冷却速率,最高的表面硬度,但氦气的成本也最高。

4.4. 表面粗糙度

激光熔覆易造成表面凹凸不平,即折皱现象,导致表面粗糙度增大。引起折皱现象的主要原因是在激光作用下,合金熔池表面存在大的径向表面张力梯度。这种大的径向表面张力梯度具有双重效应,它不仅引起了高温下合金元素的快速混合,而且导致了其凝固表面的凹凸不平。研究表明[12],高功率密度(107W/cm2)和短的相互作用时间有助于降低表面粗糙度。在功率给定的情况下,表面粗糙度与扫描速度的关系存在一个极大值。也可以采用低功率密度或快扫描速度进行激光二次重熔处理的方法降低表面粗糙度。

4.5. 稀释率

降低稀释率也是激光熔覆技术的重要研究方向。众多研究认为,激光熔覆时希望稀释率在5%以内,以保证获得高性能的表面。采用同步送粉法时,粉末流量是决定稀释率的最重要因素。当送粉速度较小时,随扫描速度的增加,稀释率减小;当送粉速度较大时,随扫描速度的增加,稀释率反而增加,这可通过粉末流产生的热屏蔽效应加以解释[13]。采用矩形光束可以降低熔覆层的稀释率。但稀释率也不宜过小,否则基材熔化不足,与熔覆层的结合力下降,易使涂层剥落。

5. 激光熔覆技术的发展趋势及工业应用前景

激光熔覆作为激光表面改性处理的一种最重要的技术,可以在廉价基体上制成高性能表面,代替大量的贵重合金,优化资源配置,降低能源消耗。与传统或新兴的诸多材料表面改性技术如等离子喷涂、火焰喷涂等比较,激光熔覆显示出许多优异之处。激光熔覆技术在近十几年来得到迅速发展,它可应用于机械制造与维修、冶金、汽车、航海与航天和石油化工等领域。在刀具、模具、阀体上熔覆陶瓷涂层已获得广泛的应用。在激光熔覆基础上发展起来的激光快速柔性制造技术能利用计算机CAD模型快速制造出立体金属零件。

激光熔覆技术是当前国内外研究应用的热点,国内西北工业大学、清华大学、北京工业大学、上海交通大学和中国科学院等高校或单位在激光熔覆过程控制方面都有很强的研究实力,广州富通公司在冶金行业、沈阳大陆公司在石油行业都走在应用的前列。激光熔覆技术在生产中的推广和应用,是今后的重要攻关方向,如开发商品化的专用熔覆材料,研制合乎工业生产条件的同轴送粉激光熔覆设备,以及熔覆层质量的在线控制等。相信随着问题的不断解决,激光熔覆技术将在工业生产中得到越来越广泛的应用。

参考文献

[1]潘继岗, 樊自拴, 孙东柏, 等. 轧辊修复技术的研究现状和展望[J]. 新技术新工艺, 2005(3): 60-62.

[2]Ray, A., Arora, K.S., Lester, S., et al. (2014) Laser Cladding of Continupus Caster Lateral Rools: Microstructure, Wear

and Corrosion Characterization and On-Field Performance Evaluation. Journal of Materials Processing Technology,

214, 1566-1575. https://https://www.wendangku.net/doc/2416774940.html,/10.1016/j.jmatprotec.2014.02.027

[3]杨胶溪, 左铁钏, 王喜兵, 等. 9Cr2Mo冷轧辊激光宽带熔覆修复强化[J]. 应用激光, 2008, 28(1): 1-6.

周瑞

[4]陈长军, 张敏, 张诗昌, 等. 轧辊的失效及其激光修复与强化技术[J]. 物理测试, 2009, 27(1): 1-4.

[5]Grunenwald, B., et al. (1993) New Technological Development in Laser Cladding. ICALEO, 934.

[6]曾晓雁, 等. 一种自动送粉激光感应复合熔覆装置[P]. 中国专利: 200720085225.7, 2008-04-30.

[7]史建军. 激光宽带熔覆装置及工艺研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2006.

[8]傅戈雁, 刘义伦, 石世宏. 激光熔覆层开裂行为的影响因素及控制方法[J]. 光学技术, 2010, 26(1): 84-86.

[9]宋武林, 周刚, 曾大文, 等. 铁基合金中Cr eq/Ni eq对其激光熔覆层组织结构和开裂敏感性的影响[J]. 激光技术,

2009, 23(3): 142-145.

[10]刘其斌, 陈江, 朱维东, 等. 稀土含量对激光表面熔铸涂层开裂敏感性的影响[J]. 贵州工学院学报, 1996, 25(6):

71-81.

[11]钟敏霖, 等. 45 kW CO2激光器大面积CSiB + NiMoCo合金化研究[J]. 金属热处理, 2000(1): 11-15.

[12]Yadroitsev, I., Gusarov, A., Yadroitsava, I., et al. (2010) Single Track Formation in Selective Laser Melting of Metal

Powders. Journal of Materials Processing Technology, 210, 1624-1631.

https://https://www.wendangku.net/doc/2416774940.html,/10.1016/j.jmatprotec.2010.05.010

[13]樊增彬. WC/Ni基合金激光熔覆工艺及熔覆层特性研究[D]: [硕士学位论文]. 济南: 山东大学, 2012.

1. 打开知网页面https://www.wendangku.net/doc/2416774940.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2160-7567,即可查询

2. 打开知网首页https://www.wendangku.net/doc/2416774940.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.wendangku.net/doc/2416774940.html,/Submission.aspx

期刊邮箱:app@https://www.wendangku.net/doc/2416774940.html,

轧辊失效形式

铸轧辊失效的形式:①热龟裂;②裂纹扩展快;③表面局部塑形变形;④断裂。 在轧制中,裂纹扩展速度快,有时纵向裂纹长300mm,深2-4mm,是辊套过早的失效,原因是:辊套热处理工艺不合格,内部较大的残余应力为消除,在轧制过程中,受铝液热应力与辊芯内冷却水冷应力的交替作用,加速了裂纹的生成和扩展。 辊套的正常失效按下公式计算:有效厚度=(Dmax-Dmin)/2 Dmax为铸轧辊的最大的外径,Dmin为最小外径,每次车磨4mm左右,直至有效厚度接近于零,此辊套就认为失效为重新更换。 辊芯失效形式:①水槽阻塞;②水槽破裂,辊芯的材质:42CrMo 辊芯硬度HB在500左右。 调质硬度范围为2000MPa<HB<4000MPa 辊套:需具有良好的导热性,线性膨胀系数及弹性模数小,较高的抗拉强度、屈服强度及硬度,较好的耐热性、抗热疲劳及热变形等。辊套粗糙度Ra为0.8-1.2μm。 辊套硬度HB为370-400左右,目前国内使用的辊套材质为PCrNi3Mou和32Cr3Mo1V钢。 冷却说的要求:水硬度:硬度总和不大于7. PH值:6-8 水压:0.4-0.6MPa 悬浮物:不大于50PPM 水温:一般控制在15-28℃辊芯辊套热装时温度的计算:t=I/αD内·C 式中:I=σ+Δmin σ-过盈量;Δmin-热装的最小间隔;α材料线膨胀系数过盈量配合量的经验公式为:过盈量一般为铸轧辊辊径的0.09%-0.11%。 辊芯尺寸在φ500mm-φ700mm,过盈量(mm)=辊芯尺寸x1/650 辊芯尺寸在φ700mm-φ850mm, 过盈量(mm)=辊芯尺寸x1/700 当传递的轧制力矩一定时,辊套越薄,需要的过盈配合量越大。辊套越薄所能产生的过盈压力越小,传递的轧制力矩越小。 对新辊(包括重新研磨的辊)进行热处理,首先用无水乙醇擦掉七表面的油污,后用自行配制的腐蚀溶液(只要成分是硝酸)均匀涂抹与辊面,待接近干燥,用清水洗净,此时辊面呈亮黑色,在轧辊完全干燥后,用800″砂纸沿轧制方向用力将其面的黑色物质打磨去掉。 下辊面比上辊面提前出现龟裂的原因是:下辊辊套温度梯度比上辊面大。 辊面车削深度为H+0.5mm,H为龟裂深度。用液化石油气火焰润滑辊面。冷石墨液喷涂润滑会对辊面产生一次冷冲击。 每生产600t-1000t铸轧板则需对铸轧辊进行车磨,磨削加工。每次车磨的加工量为3mm-5mm。现一般的辊套厚度为30mm-40mm,允许使用的最小厚度问为15mm,所以实际车磨只能进行6次到8次,每对辊套约生产铝板坯5000t-6000t。 Cr、Mn、Ni、W、V、Mo等元素可以提高钢的,淬透性,硬度,强度和耐磨性,并使刚才的韧性和抗热度疲劳性得以改善,目前国内铸轧辊套材料大多采用PCrNi3MoV和32Cr3Mo1V 钢。 过盈量过小,轧辊容易打滑,过盈量过大,轧辊容易炸裂。 精车、粗车、精磨、粗磨。精车时预留0.60mm加工余量,精磨后预留0.15mm加工余量,精磨时只要辊套内孔表面园跳动小于0.04mm,直线度小于0.02mm表面粗糙度小于0.9μm,无明显烧伤、斑块,便可终止加工。 辊芯精车后预留0.1-0.15mm加工余量。 轧辊中部受力比边部大,塑形变形比较重,辊芯凸度定为1/10000左右为宜。辊套在车削时尽可能采用一次车削法,以保证辊套两端同心度,磨削时必须采用一次磨削法,即一次从辊套的一端磨到另一端。 辊套的热装配:辊套从室温慢加热到300℃左右有时,用时8-10h,并在300℃左右保

铝合金的激光熔覆修复

铝合金的激光熔覆修复 郭永利梁工英’李路 (西安交通大学理学院,陕西西安710049) 摘要:通过对航空航天用超高强7050铝合金进行激光熔覆修复的实验研究,探讨了激光熔覆修复铝合金的可行性。实验采用5 kW COz连续激光器作为加热源,在惰性气体保护隔离箱中,对7050铝合金的板状试样进行了激光单道熔覆、多道搭接熔覆、多层堆积熔覆的实验研究。得到优化的激光熔覆工艺参数,制备了激光熔覆修复试样,并观察了不同激光熔覆区的微观组织以及拉伸断口形貌。实验结果表明,优化激光熔覆工艺参数是:激光功率密度为1.84×104~2.12×104 W/ cm2,扫描速度为5 mm/s,送粉量为1.8~2.4 g/min。搭接宽度为1.5 mm。采用优化工艺 参数熔覆,基底和熔覆区形成良好的冶金结合,熔覆后工件表面平整且基底没有变形。同时,采用干燥的氩气加强对激光熔池的保护可以有效消除铝合金激光熔覆中的缺陷。 关键词:激光技术;激光熔覆;修复;显微组织;铝合金 Laser Cladding Reparation of Aluminum Alloy Guo Yongli Liang Gongying Li Lu (School of Sciences,Xi’an Jiaotong University,Xi’an,Shaanxi 710049,China) Abstract :Experiment of repairing aluminum(A1)alloy 7050(AI 7050)by laser-cladding techniques was investigated.A5 kW C02 laser was used as the heat source.Experiemnts of single trace cladding,multi —trace overlapping cladding,and multi—layer cladding were performed on the Al 7050 plates shielded in a closed box with inertgas.A set of optimized laser-eladding repairation parameters for damaging Al 7050 samples were found,and the microstructures in differentcladding regions and micro-appearances of fracture surface were studied.The optimized laser-cladding repairation parameters were laser power of 1.84X104~2.12×104 W/cm2。scanning speed of 5 mm/s,powder feeding rate of 1.8~2.4 g /min,and overlapping width of 1.5mm.With the optimized repairing parameters,the cladding zone displayed a superior metallurgical bonding with its substrate,the repaired sample surface appeared smooth without any substrate distortion,and the defect formation in the cladding zone was effectively prevented by strengthening shielding of the molten pool with dry argon. Key words :laser technique; laser cladding; repairing; microstructure; A1 alloy 1引言 零件在使用过程中容易产生应力开裂、机械磨损等情形,在制造过程中也会因误加工引起缺陷,这些缺陷的存在将显著影响整个工程构件的使用性能,甚至导致报废,从而造成巨大的经济损失。面对这种情况,人们对修复技术做了大量的研究,如激光熔覆、焊接、钨极氩弧堆焊和热喷涂等。而激光熔覆修复技术以其质量高、操作方便、热影响区小等优点受到人们的普遍关注口~3]。 目前,人们对激光熔覆技术用作修复和表面改性等方面做了大量研究[4~1引,但是大都集中在钢铁材料、高温合金和钛合金领域。而铝合金在熔覆过程中易氧化、且易产生裂纹和气孔,本文研究了在惰性气体保护下,通过优化激光熔覆参数,避免了修复铝合金试样中容易出现的宏观和微观缺陷。因此,将激光熔覆修复技术应用到铝合金领域,具有广阔的发展前景。 2实验材料、装置及方法 实验选取超高强7050铝合金板材为基底材料,试样尺寸为40 mm×50 mm×10 mm,成分如表1 所示。为提高铝合金表面对激光能量的吸收,在激光熔覆前,对试样表面进行喷砂处理。熔覆材料为球形粉末,颗粒直径为50~100肛m,成分为98%A1,2%Cu(质量分数)。 表1铝合金7050的化学成分(质量分数) Table 1 Chemicalcompositionof 7050 A l-alloy (mass fraction)(%) Zn Mg Cu Zr Si Fe AI 6.2 2.25 2.3 0.1≤O.12≤O.15 Bal. 实验用的激光器为ROFIN-SINA R850型5kw横流式连续CO2激光器,该激光器稳定的输出功率

激光熔覆技术介绍

激光熔覆是一种新型的涂层技术,是涉及到光、机、电、材料、检测与控制等多学科的高新技术,是激光先进制造技术最重要的支撑技术,可以解决传统制造方法不能完成的难题,是国家重点支持和推动的一项高新技术。目前,激光熔覆技术已成为新材料制备、金属零部件快速直接制造、失效金属零部件绿色再制造的重要手段之一,已广泛应用于航空、石油、汽车、机械制造、船舶制造、模具制造等行业。 为推动激光熔覆技术的产业化,世界各国的研究人员针对激光熔覆涉及到的关键技术进行了系统的研究,已取得了重大的进展。国内外有大量的研究和会议论文、专利介绍激光熔覆技术及其最新的应用:包括激光熔覆设备、材料、工艺、监测与控制、质量检测、过程的模拟与仿真等研究内容。但到目前为止,激光熔覆技术还不能大面积工业化应用。分析其原因,这里有政府导向的因素、激光熔覆技术本身成熟程度的限制、社会各界对激光熔覆技术的认可程度等因素。因此,激光熔覆技术欲实现全面的工业化应用,必须加大宣传力度,以市场需求为导向,重点突破制约发展的关键因素,解决工程应用中涉及到的关键技术,相信在不远的将来,激光熔覆技术的应用领域及其强度将不断的扩大。下面介绍激光熔覆技术几个发展的动态,以飨读者。 激光熔覆的优势 激光束的聚焦功率密度可达1010~12W/cm2,作用于材料能获得高达1012K/s的冷却速度,这种综合特性不仅为材料科学新学科的生长提供了强有力的基础,同时也为新型材料或新型功能表面的实现提供了一种前所未有的工具。激光熔覆所创造的熔体在高温度梯度下远离平衡态的快速冷却条件,使凝固组织中形成大量过饱和固溶体、介稳相甚至新相,已经被大量研究所证实。它提供了制造功能梯度原位自生颗粒增强复合层全新的热力学和动力学条件。同时激光熔覆技术制备新材料是极端条件下失效零部件的修复与再制造、金属零部件的直接制造的重要基础,受到世界各国科学界和企业的高度重视和多方面的研究。 目前,利用激光熔覆技术可以制备铁基、镍基、钴基、铝基、钛基、镁基等金属基复合材料。从功能上分类:可以制备单一或同时兼备多种功能的涂层如:耐磨损、耐腐蚀、耐高温等以及特殊的功能性涂层。从构成涂层的材料体系看,从二元合金体系发展到多元体系。多元体系的合金成分设计以及多功能性是今后激光熔覆制备新材料的重要发展方向。 最新的研究表明,在我国工程应用中钢铁基的金属材料占主导地位。同时,

轧辊系列问题解决方法

什么是检测? 为什么要对轧辊实施检测?其基本要求是什么? 对轧辊实施测量的主要项目有哪些? 为什么在生产中要测量轧辊的同轴度? 测量轧辊的同轴度常用测量方法有哪些? ZTC系列轧辊同轴度测量仪是如何使用的? 为什么要测量板带钢轧辊的辊型 测量板带钢轧辊的辊型常用测量器具有那些? 测量板带钢轧辊辊型的现状如何? 便携式高精度智能辊形测量仪的结构形式如何?具有哪些特性?测量原理是什么?如何进行数据处理的? 便携式高精度智能辊形测量仪的上位计算机能做哪些工作? ZDC系列轧辊多参数测量仪的主要用途是什么?其结构特征如何?它的数学模型(测量原理)是如何建立的? 怎样使用轧辊多参数测量仪测量轧辊的各种参数? 如何用鞍式辊型测量仪(马鞍仪)测量轧辊辊型? 通常的轧辊轴颈锥度的锥度值是多少? 如何测量轧辊轴颈锥度? 为什么要检测轧辊的轴承箱参数? 怎样检验轧辊轴承箱(与轧机牌坊配合处)的外尺寸? 为什么要测量轧辊的轴向各长度尺寸(台阶长度)? 测量轧辊的轴向各长度尺寸(台阶长度)常使用哪些测量器具? 如何使用轧辊台阶长度测量尺测量轧辊的轴向各长度尺寸? 跨辊身的大长度尺寸如何测量? 什么是检测? 答:检测是"检验"与"测量"的统称。 所谓"测量",就是将被测的量与作为单位或标准的量,在数量上进行比较,从而确定二者比值的实验认识过程。如果以Q表示被测量,u表示计量单位,二者比值为x=Q/u,则有 Q=Xu 即测量所得量值为用计量单位表示的被测的量的数值。 所谓"检验",通常是指采用"综合量规"(如轧辊辊型测量样板)检查被测要素是否在图样上规定的公差带内,从而判断其合格与否,而不要求确切知道被测要素的具体尺寸。

Magics修补

Magics是一个强大的STL文件自动化处理工具。通过使用Magics中的修复工具,可以快速地对含有各种错误的STL文件进行修复,修复文件格式转换过程中产生的三角面片损坏。 Magics也是目前唯一一个能很好满足快速成型工艺要求和特点的软件。Magics RP作为一款强大而高效的3D工具,它可以在最短的时间内生产出高质量的原型,并为您和您的客户提供详尽的工艺过程文档。】 图1 Magics可以对STL文件进行各种不同的操作,包括:-STL 文件的显示、测量和处理;STL文件修复、壳体合并、平面闭合以及重合三角面片探测;STL文件的切割、打孔、拉伸和面的偏移;布尔操作、减少三角面片数量、平滑、标签功能等。 Magics RP 的优势 Magics软件是不断研发创新,并与实际生产经验相结合的产品。 Magics能够帮助实现最复杂零件的快速成型加工。 Magics在保证模型精度的情况下可以最大的加快文件处理速度 Magics界面直观、友好、人性化。 高效的内存管理模式能让客户轻松的处理大文件。 Magics强大的STL文件修复工具使用户在模型质量上无后顾之忧。 Magics允许用户直接在STL数据上进行设计和修改,最大限度的提高工作效率。 Magics能让用户在几分钟之内准备好生产用的数据。 Magics模块化的功能结构,能满足不同机器用户的不同需求。 Magics提供全工作流程解决方案。 文件准备过程 1 导入模型 在导入其它CAD软件生成的文件时,Magics需要首先对该文件进行格式转换,把非STL 文件转换为STL文件。用户可以定义文件转换的精度,获得理想的转换结果。除了可以定义精度,导入功能可以对零件做一些基本的前处理,包括三角面片法向修复、缝隙缝合等。 注:Magics支持多种格式的导入,包括Pro/E、UG、Catia等软件生成的文件、IGS、STEP 等标准格式。除此之外,还支持点云数据、犀牛数据、切片文件等多种文件的导入。 2 分析 导入零件以后,除了在工作区对零件进行外观上的错误检查以外,最重要的是对文件进行深入分析,通过查看零件的错误信息判断模型的损坏情况。使用修复向导(Fix Wizard)中的错误诊断(Diagnostics)可以对STL文件进行整体分析,诊断结果如图3所示。可发现,模型中包含532个法向错误的三角面片、26个损坏边界组成了3个孔以及8个损坏轮廓,还有多达491个的壳体(其中有481个是需要清除掉的干扰壳体)。 STL文件中的错误主要分为以下几种: 图2 Ineverted normals:三角面片的法向错误。

激光熔覆技术毕业设计(论文)

1. 引言 1.1 本课题的研究背景及意义 激光熔覆技术(Laser cladding technology)是指在被涂覆机体表面上,以不同的添料方式放置选择的涂层材料,经激光辐照使之和机体表面薄层同时熔化,快速凝固后形成稀释度极低、与基体材料成冶金结合的涂层,从而显著改善机体材料表面耐磨、耐热、耐蚀、抗氧化等性能的工艺方法[1]。按涂层材料的添加方式不同,激光熔覆技术可分为预置法和同步送粉法,如图1所示。激光熔覆技术因具有应用灵活、耗能小,热输入量低、引起的热变形小,不需要后续加工或加工量小,减少公害等优点,近年来已在材料表面改性上受到高度重视[2]。特别是上个世纪80年代以来,该技术得到了很大进步和发展。激光熔覆的最终目的是改善材料的使用性能,使其更好地满足使用要求。与堆焊、热喷涂和等离子喷焊等表面改性技术相比,激光熔覆具有下述优点:(1)熔覆层晶粒细小,结构致密,因而硬度一般较高,耐磨、耐蚀等性能亦更为优异;(2)熔覆层稀释率低,由于激光作用时间短,基材的熔化量小,对熔覆层的冲淡率低(一般仅为5%-8%),因此可在熔覆层较薄的情况下获得所要求的成分与性能,节约昂贵的覆层材;(3)激光熔覆热影响区小,工件变形小,熔覆成品率高;(4)激光熔覆过程易实现自动化生产,覆层质量稳定,如在熔覆过程中熔覆厚度可实现连续调节,这在其他工艺中是难以实现的。由于激光熔覆的上述优点,它在航空、航天乃至民用产品工业领域中都有较广阔的应用前景,已成为当今材料领域研究和开发的热点。

图1.1 激光熔覆原理示意图 1.2 本课题国内外研究现状 激光熔覆技术的发展当然离不开激光器。目前,激光器主要有3种:CO2激光器、YAG 固体激光器和准分子激光器。国内外常用于激光熔敷的激光器主要有两种:一种是输出功率为0.5-10KW的CO2气体激光器,另一种是输出功率为500W左右的YAG固体激光器。其中工业上用来进行表面改性的多为CO2大功率激光器。近年来,华中科技大学、中国科学院、清华大学、西北工业大学等国内多家单位在激光熔覆设备及过程控制方面做了许多研究工作,如华中科技大学激光加工国家工程研究中心已相继成功研制出500 - 10000W大功率CO2气体激光器、100-500W固体激光器等系列激光产品,中科院则开发出集成化激光智能加工系统,清华大学激光加工研究中心已研制出各种规格的同轴送粉喷嘴和自动送粉器等。在激光熔覆技术上,国内的研究主要表现在以下几个方面:1.激光熔覆同轴送粉器以及利用CCD红外检测激光熔覆温度场,如天津工业大学杨洗尘教授[3];2.激光熔覆制备耐磨涂层[4];3.激光熔覆工艺参数的研究;4.激光熔覆过程中添加某重金属元素对特定合金组织的影响[5];5.扫描速度对熔覆层硬度和厚度的影响[6];6.激光熔覆制备金属基复合涂层以提高机械性能[7];7.Mg表面熔敷不同金属材料涂层的机械性能[8];国外的研究状况:国外对激光熔覆技术的研究其实与上世纪80年代,比我国早十年左右,国外的研究主要集中在欧洲、北美和亚洲。欧洲的主要研究内容包括:1.对激光熔覆过程的基础研究与理解,如葡萄牙先进技术研究所和英国利物浦大学,如图2;2.激光熔覆制备金属基复合涂层以提高机械性能[9];3.激光熔覆恢复零件和工具性能[10];4.激光熔覆过程显微裂纹和残余

轧辊多种磨损问题的快速解决

轧辊多种磨损问题的快速解决 关键词:钢铁轧辊快速维修磨损 一. 轧辊简介 轧辊是轧钢厂轧钢机上的重要零件,利用一对或一组轧辊滚动时产生的压力来轧碾钢材。它主要承受轧制时的动静载荷,磨损和温度变化的影响。 常用冷轧辊中工作辊的材料有9Cr,9Cr2,9Crv,8CrMoV等,冷轧辊要求表面淬火,硬度为HS45~105。热轧辊常用的材料有55Mn2,55Cr,60CrMnMo,60SiMnMo等,热轧辊使用在开坯,厚板,型钢等加工中。它承受了强大的轧制力,剧烈的磨损和热疲劳影响,而且热轧辊在高温下工作,并且允许单位工作量内的直径磨损,所以不要求表面硬度,只要求具有较高的强度,韧性和耐热性。热轧辊只采用整体正火或淬火,表面硬度要求HB190~270。 轧辊硬度是一个间接的物理值,它的高低受到轧辊本身内部组织状态的影响,如轧辊材料的基体硬度,轧辊材料中碳化物的种类和数量,轧辊的残余应力等等;同时,由于轧辊硬度检测常用的肖氏和里氏硬度检测均为反弹式硬度检测,受检测仪器的状态,操作者的心理因素等其他因素的影响较大。所以无论是轧辊的制造和使用部门,需要配备专人负责硬度的检测工作,注意硬度计的选型,与其他硬度的对比关系要稳定,同时要注意经常送检和校对硬度检测仪器和标准试块,有条件的企业可以推广利用标准轧辊来进行硬度计的校对工作。 轧机部件中轧辊的工作条件最为复杂。轧辊在制造和使用前的准备工序中会产生残余应力和热应力。使用时又进一步受到了各种周期应力的作用,包括有弯曲、扭转、剪力、接触应力和热应力等。这些应力沿辊身的分布是不均匀的、不断变化的,其原因不仅有设计因素,还有轧辊在使用中磨损、温度和辊形的不断变化。此外,轧制条件经常会出现异常情况。轧辊在使用后冷却不当,也会受到热应力的损害。所以轧辊除磨损外,还经常出现裂纹、断裂、剥落、压痕等各种局部损伤和表面损伤。 一个好的轧辊,其强度、耐磨性和其他各种性能指标间应有较优的匹配。这样不仅在正常轧制条件下持久耐用,又能在出现某些异常轧制情况时损伤较小。所以在制造轧辊时要严格控制轧辊的冶金质量或辅以外部措施以增强轧辊的承载能力。合理的辊形、孔型、变形制度和轧制条件也能减小轧辊工作负荷,避免局部高峰应力,延长轧辊寿命。 二. 美嘉华技术产品在钢铁刚也轧机中的部分应用 传动部位磨损问题是生产型企业目前存在的普遍的设备问题,并且数量较大,损坏频繁,其中包括各种轴类、辊类、减速机、电机、泵类等轴承位、轴承座、轴承室、键槽及螺纹等等部位,传统的补焊机加工方法易造成材质损伤,导致部件变形或断裂,具有较大的局限性;刷镀和喷涂再机加工的方法往往需要外协,不仅修复周期长、费用高,而且因修补的材料还是金属材料,不能从根本上解决造成磨损的原因(金属抗冲击能力及退让性较差);更有许

电脑光驱修复技术及方法

电脑光驱修复技术及方法 电脑光驱由于经常读盘产生的摩擦,以及其他的一些原因,会出现不能读盘,下面为大家讲解一下光驱不读盘的可能原因与解决方法!如果一个光驱不读盘,我们首先加电并放入一张正版的碟片后看看面板灯有没有闪烁,有没有“达、达、达”的声音,如果有,那么我们可以断定是激光头与主轴承之间的感应器坏了。因为当我们放入一张光盘时,光头首先需要通过感应器定位,如果感应器坏了,那么光头就不停地寻道,从而出现“达、达、达”的声音。如果出现了上述情况,我们只要打开光驱的外壳,以LG光驱为例,在主轴承的旁边凹进去的地方有一个铅笔芯粗3MM长的细柱,它要与位于光头上相对位置的白色的塑料片的前端相吻合。如果是接合不上,您可以用胶或其它物体小心地把白色的塑料片的前端加长,问题会得到解决。 如果面板灯亮并且没有异响,那么打开外壳在加电后放入光盘,观察主导电机的工作情况,如果主导电机无动作,就要先检查主导电机的电源供给是否正常、电机的传动皮带是否打滑、断裂。状态开关是否开关自如,因为如果开关不到位,主导电机得不到启动信号也不能启动。判断光驱是电路有故障,还是激光头有故障,可以放入一张质量好的正版光盘,应该有下述动作发生: 1,激光发射管亮(红色),光驱面板指示灯亮; 2,激光头架有复位动作(回到主轴电机附近); 3,激光头由光盘的内圈向外圈步进检索,然后回到主轴电机附

近; 4,激光头聚焦透镜上下聚焦搜索三次,主轴电机加速三次寻找光盘。 如果以上动作发生后,激光发射管熄灭,主轴电机停转,则光驱控制电路和伺服电路正常,有可能是激光头组件有故障。否则,请检查光驱控制电路和伺服电路是否正常。 对于DVD的激光头,一般都有二个发光管。要是二个发光管都正常,发的光应为纯红色光,也称为全光,可以读普通CD盘,也可以读DVD盘。如果光色偏暗偏白,说明有一个发光管坏,那么后果是不读DVD盘或不读普通CD盘。如果是激光头的故障,那您可就惨了! 如果光驱比较老,可以考虑换新的了。因为激光头是光驱内最精密的部分,也是最贵的部分,个人一般无法修复! 对于LG的DVD光驱控制电路和伺服电路,如果主轴承不转,要检查轴承与电路板之间的数据线(右图上)连接是否完好,电路板上连接处到驱动芯片之间的电路是否畅通。如果光头自检时发出了红色的光,但是不寻道,那么看看控制光头进退的步进马达与电路板的连接线(右图下)是否连接好,连接处到驱动芯片之间的电路是否通畅。最后检查是否为驱动芯片损坏。 如果一切正常,仍然不读盘,请检查一下激光头到电路板的数据线是否松动?用万用表测一下上次我们说的中间的server(那个大的)芯片是否损坏! 再说光驱的读盘差。对于普通的CD-ROM,首先要检查光盘托

激光表面熔覆技术的研究及其在轧辊表面修复中的应用

Applied Physics 应用物理, 2018, 8(7), 331-335 Published Online July 2018 in Hans. https://www.wendangku.net/doc/2416774940.html,/journal/app https://https://www.wendangku.net/doc/2416774940.html,/10.12677/app.2018.87042 The Study and Application in Roller Surface Repaired of Laser Cladding Technology Rui Zhou Rizhao Company in Shandong Iron and Steel Group, Rizhao Shandong Received: Jul. 3rd, 2018; accepted: Jul. 16th, 2018; published: Jul. 23rd, 2018 Abstract Laser cladding technology is a new type of surface engineering technology. The research status of the laser cladding is summarized, and the existing problems and solution of the technology are re-viewed. Finally, the development trend and industrial application prospect of the technology in the future are put forward. Keywords Laser Cladding, Coating Properties, Powder Particles, Lasers 激光表面熔覆技术的研究及其在轧辊表面修复中的应用 周瑞 山东钢铁集团日照有限公司,山东日照 收稿日期:2018年7月3日;录用日期:2018年7月16日;发布日期:2018年7月23日 摘要 激光熔覆技术是一种新型的表面工程技术。本文介绍了激光表面熔覆技术的研究现状,提出了激光表面熔覆技术领域存在的主要问题及解决途径,展望了激光表面熔覆技术的发展趋势及工业应用前景。 关键词 激光熔覆,熔覆层性能,粉末材料,激光器

轧辊失效方式及其原因分析

轧辊失效方式及其原因分析 摘要:介绍了轧辊存在剥落、断裂、裂纹等几种失效方式,并重点分析了轧辊剥落和断裂产生的机理,为分析生产实践中轧辊失效原因和采取相应改进措施以提高轧辊使用寿命提供了依据。 关键词:轧辊;失效原因;剥落;断裂;裂纹 1 前言 轧机在轧制生产过程中,轧辊处于复杂的应力状态。热轧机轧辊的工作环境更为恶劣:轧辊与轧件接触加热、轧辊水冷引起的周期性热应力,轧制负荷引起的接触应力、剪切应力以及残余应力等。如轧辊的选材、设计、制作工艺等不合理,或轧制时卡钢等造成局部发热引起热冲击等,都易使轧辊失效。 轧辊失效主要有剥落、断裂、裂纹等形式。任何一种失效形式都会直接导致轧辊使用寿命缩短。因此有必要结合轧辊的失效形式,探究其产生的原因,找出延长轧辊使用寿命的有效途径。 2 轧辊的失效形式 2.1 轧辊剥落 轧辊剥落为首要的损坏形式,现场调查亦表明,剥落是轧辊损坏,甚至早期报废的主要原因。轧制中局部过载和升温,使带钢焊合在轧辊表面,产生于次表层的裂纹沿径向扩展进入硬化层并多方向分枝扩展,该裂纹在逆向轧制条件下即造成剥落。 2.1.1支撑辊辊面剥落支撑辊剥落大多位于轧辊两端,沿圆周方向扩展,在宽

度上呈块状或大块片状剥落,剥落坑表面较平整。支撑辊和工作辊接触可看作两平行圆柱体的接触,在纯滚动情况下,接触处的接触应力为三向压应力,如图1所示。在离接触表面深度(Z)为0.786b处(b为接触面宽度之半)剪切应力最大,随着表层摩擦力的增大而移向表层。 图1 滚动接触疲劳破坏应力状态 疲劳裂纹并不是发生在剪应力最大处,而是更接近于表面,即在Z为0.5b的交变剪应力层处。该处剪应力平行于轧辊表面,据剪应力互等定理,与表面垂直的方向同样存在大小相等的剪应力。此力随轧辊的转动而发生大小和方向的改变,是造成接触疲劳的根源。周期交变的剪切应力是轧辊损坏最常见的致因。在交变剪切应力作用下,反复变形使材料局部弱化,达到疲劳极限时,出现裂纹。另外,轧辊制造工艺造成的材质不均匀和微型缺陷的存在,亦有助于裂纹的产生。若表面冷硬层厚度不均,芯部强度过低,过渡区组织性能变化太大,在接触应力的作用下,疲劳裂纹就可能在硬化过渡层起源并沿表面向平行方向扩展,而形成表层压碎剥落。 支撑辊剥落只是位于辊身边部两端,而非沿辊身全长,这是由支撑辊的磨损型式决定的。由于服役周期较长,支撑辊中间磨损量大、两端磨损量小而呈U 型,使得辊身两端产生了局部的接触压力尖峰、两端交变剪应力的增大,加快了疲劳破坏。辊身中部的交变剪应力点,在轧辊磨损的推动作用下,逐渐往辊身内

光驱修理

DVD光驱能弹出托盘,但不读盘是怎么回事? 标签:光驱dvd光驱托盘驱动器光盘 回答:1 浏览:14646 提问时间:2008-11-02 15:29 当我把光盘放入光驱,光驱指示灯亮,也能听到光盘旋转的声音,但屏幕上没有光盘的信息,过一会光驱指示灯熄灭,我点击G盘(光驱盘),提示我:请将磁盘插入驱动器G 还想问一下,DVD影碟机的光头和光驱的光头是一样的吗? 相关资料:光驱弹出或关闭.exe 更多资料>> 最佳答案此答案由提问者自己选择,并不代表爱问知识人的观点 揪错┆评论 低抛高吸_1976 [文曲星] (1)光驱挑盘的故障排除方法如下: 光驱跳盘一般是由于光驱的激光头脏或老化。首先用酒精将光驱的激光头擦拭一下,一般情况下可以解决挑盘的故障。如果还挑盘只能调整激光头的功率(如果调整不当将造成光驱报废)。调整激光头功率时,使用小十字螺丝刀,向顺时针方向,轻轻旋转5-10度,最好结合万用表测量电位器的电阻值,调至原阻值的2/3即可。 (2)光驱不读盘的故障排除: 光驱不读盘一般是由于光驱的激光头脏了或老化所致。光驱不读盘故障排除方法为清洗光驱的激光头,如果不行更换光驱。 (3)“我的电脑”中找不到光驱或刻录机的图标的故障排除: “我的电脑”中找不到光驱或刻录机的图标,一般是由于光驱或刻录机的驱动程序损坏、光驱或刻录机与电脑接触不良所致。“我的电脑”中找不到光驱或刻录机的图标故障排除方法如下。首先检测光驱或刻录机与电脑接触不良,重新安装光驱。如果光驱或刻录机接触良好,则可能是光驱或刻录机的驱动程序损坏,接着重新启动电脑到安全模式,启动后再重新启动到正常模式,如果故障依旧可以通过恢复注册表来修复故障。 为什么我的DVD光驱间隔性地不读盘? 问:我的DVD光驱间隔性地不读盘了,有时候好盘都读不出来。最近则干脆不认盘,灯闪几下就灭了,DOS里也启动不了。我该怎么办啊? 答:读盘能力变差或无法读盘,是光驱最常见的故障。首先要检查光盘托架上面的光盘臂的压力是否够大,光驱随着使用时间的增加,光盘臂的压力逐减小,导致盘片在光驱里打滑,当然读盘能力不好了。可以在光盘转动时轻轻地按压光盘臂,如果有所改善,就可以断定光盘臂的压力太小,不足以夹住盘片。调整时可以将光盘臂轻轻向下折动或将光盘臂根部的小弹簧取出拉长后再装入就可以了。

激光熔覆成形技术及其在汽车工业中的应用

激光熔覆成形技术的研究进展 1基本概念 激光熔覆成形(Laser cladding forming, LCF)技术集激光技术、计算机技术、数控技术、传感器技术及材料加工技术于一体,是一门多学科交叉的边缘学科和新兴的先进制造技术。该技术把快速原型制造技术和激光熔覆表面强化技术相结合,利用高能激光束在金属基体上形成熔池,将通过送粉装置和粉末喷嘴输送到熔池的金属粉末或事先预置于基体上的涂层熔化,快速凝固后与基体形成冶金结合,根据零件的计算机辅助设计模型,逐线、逐层堆积材料,直接生成三维近终形金属零件。激光熔覆成形系统主要由计算机、粉末输送系统、激光器和数控工作台四部分组成,其原理如图1 所示。由于该技术可以直接制造全密度金属零件,从20 世纪90 年代中期开始,就成为快速成形领域的研究热点和发展方向,具有广阔的应用前景。激光熔覆成形技术在产生后的短短几年内获得了飞速发展,并被冠以不同的名称:如送粉方式的激光工程化近成形(Laser Engineered Net Shaping, LENSTM)、直接光制造技术(Directed light fabrication, DLF)、直接金属沉积(Direct metal deposition, DMD)、堆积成形制造(Shape deposition manufacturing, SDM),激光固结(Laser consolidation, LC),激光增材制造(Laser additive manufacturing, LAMSM),以及粉末预置方式的选择性激光熔化(Selective laser melting, SLM)和金属直接激光烧结(Direct laser sintering of metals ,DSM)等,这些技术的原理和加工方法基本相同,将它们统称为激光熔覆成形技术。 图1 激光熔覆成形原理示意图

轧辊拆装工艺过程

轧辊拆装工艺过程集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

轧辊装配工艺过程

目录 目录 (1) 1.工作辊装配操作规程 (2) 工作辊驱动侧止推轴承装配操作规程 (2) 工作辊驱动侧四列圆锥滚子轴承装配操作规程 (3) 工作辊操作侧四列圆锥滚子轴承装配操作规程 (7) 工作辊轴承座装配操作规程 (7) 2.支撑辊装配操作规程 (10) 支撑辊四列圆柱滚子轴承装配操作规程 (10) 支撑辊止推轴承装配操作规程 (13) 支撑辊轴承座装配操作规程 (15) 3.工作辊拆卸操作规程 (17) 4.支撑辊拆卸操作规程……………………………………………… 18

1工作辊装配操作规程 说明:由于工作辊只有驱动侧有止推轴承,并且该止推轴承与四列圆锥滚子轴承装在同一个轴承座中,因此以驱动侧工作辊轴承座的安装为主,操作侧的四 列圆锥滚子轴承参考驱动侧四列圆锥滚子轴承的安装即可。 工作辊驱动侧止推轴承装配操作规程 作业准备: 装配时,准备图纸L76986。 清洗剂、修磨工具、量具、吊具、吹扫用气体备好。 清洗、检查、测量,修正、确认轴承已修复可以使用后,在轴承滚子及各表面 涂上润滑油。该润滑油为壳牌460润滑油,如有变化,以冷轧车间使用的润滑 油为准。 轴承装配 1)将轴承座内侧朝下放置,装入油封压盖。

承座孔的键对中,把外圈“A- BA”和外圈隔圈放在轴承座中。如图所示。 图图 6)在内圈“A-C”上涂润滑油。将内圈“A-C”放在轴承座中。如果必要的话可使 用吊装工具。如图所示。 7)外圈“BC-C”涂润滑油后装入轴承座。如图所示。 图图 工作辊驱动侧四列圆锥滚子轴承装配操作规程 作业准备 装配时,准备图纸L76986 清洗剂、修磨工具、量具、吊具、吹扫用气体备好。 清洗、检查、测量,修正、确认轴承已修复可以使用后,在轴承滚子及各表面涂上润滑油。 该润滑油为壳牌460润滑油,如有变化,以冷轧车间使用的润滑油为准。 轴承装配 1)按本手册中所述装好止推轴承。 2)在止推轴承的上面放上止推轴承与四列圆锥滚子轴承之间的隔环。如图所示。 3)在轴承座的内孔表面上涂上润滑油以后,在整个挡圈表面也涂上润滑油。 将“A-BA”外圈放在轴承座中,用塞尺检查外圈是否靠紧轴承座挡肩,对好 负荷位置号,小心将外圈装入轴承座,确认负荷位置记号是否处在最大负荷 位置。如图所示。(如果外圈发生倾斜,用铜棒修正位置) 图图

彻底修复激光头诀窍电子版本

彻底修复激光头诀窍

作为一名专业维修人员,我能理解各位渴望充分利用抽屉里大堆废旧激光头的心情。从1996年,我就开始尝试修理激光头的方法,不知拆坏了多少个激光头,终于在1997年初总结出了全套修理方法。经几年维修实践,修复了无数“报废”激光头,产生了较大经济效益。为了让同行们少走弯路,充分利用巨大的废旧激光头资源,现将自己这套修理方法无保留介绍如下。 激光头损坏的情况有以下几种: 1.激光头机械结构及电路元件没坏,仅光学通道受到油污、灰尘、水蒸气的污染。 这是绝大多数激光头的“损坏”原因,特别是飞利浦激光头,这种故障占90%以上。另外,需要热机或加热后才能使用的机器均属此种故障。 2.光管老化。 光管老化的情况在索尼、三洋、夏普等激光头中很常见,飞利浦激光头中极少见。 3.物镜损坏。 激光头清洗碟是激光头的杀手,该清洗碟碟片上装有毛刷,沾上清洗液后让它在高速旋转时清洗光头物镜,前几次使用这种清洗碟能收到较明显效果,但多次使用后会导致物镜磨损报废或物镜向一边倾斜变形。另外,使用电吹风加热、烟头或镜头纸擦拭、酒精或其他有机溶液擦洗物镜也是损坏物镜的一大原因。 4.拆装时损坏。 常见是把飞利浦光头排线拉断。 5.其他原因造成的物理变形和电路损坏。

这种情况很少。 以上几种情况基本包括了所有损坏原因,分析手中激光头属于哪种情况,然后对症医治,就能修好它。注意,不管坏到什么程度的激光头上面都有可取下利用的元件,故废光头勿丢弃。 检修光头的第一步是首先检查激光头损坏程度,将其分类。测量循迹、聚焦线圈是否开路(20Ω左右);斜视物镜中央是否有不可恢复的磨损黑斑;线路是否破损,不能修复;将这些明确损坏的激光头与已知光管老化的激光头放在一边暂不修理(这里不再详谈测老化电流的方法)。 将飞利浦激光头的光管用针头等小工具小心撬下,切记不要损坏排线、光管表面,不要除去光管上的密封树脂。在一清洗容器中装入清水,以能浸过激光头为宜,在清水中滴入少量洗洁精(洗碗筷餐具用的),不能用劣质的,不能太浓,能起泡即可。 将好的“报废”激光头浸入水中15分钟后,用干净的带针头注射器仔细用力射洗物镜、光管,尽量将水射到激光头内部的反光镜上(针头不能碰到激光头)。一只激光头最少要冲洗5分钟以上,这样才能将光学通道中所有污渍彻底冲洗干净。洗完以后,将激光头放到自来水龙头下冲洗,自来水要开得较急,但不能损坏激光头的物理结构,特别是物镜支架(也可以用注射器注清水冲洗)。再将激光头在清水(纯净水更好)中浸泡漂洗几分钟后,将激光头小心轻握在手中,小心将水尽量甩干。最后用电吹风吹干激光头,吹干时要将激光头握在手中来掌握温度以防止光头塑件过热变形。吹5~15分钟,估计内部水分除尽后就可试机了,这时物镜清澈透明、表面蔚蓝。把飞利浦光管用力按入,使树脂与原来位置完全重合即可。如果没有电吹风,也可以在阳光下晒

激光熔覆技术分析与展望讲解

激光熔覆技术分析与展望 作者:张庆茂激光熔覆是一种新型的涂层技术,是涉及到光、机、电、材料、检测与控制等多学科的高新技术,是激光先进制造技术最重要的支撑技术,可以解决传统制造方法不能完成的难题,是国家重点支持和推动的一项高新技术。目前,激光熔覆技术已成为新材料制备、金属零部件快速直接制造、失效金属零部件绿色再制造的重要手段之一,已广泛应用于航空、石油、汽车、机械制造、船舶制造、模具制造等行业。为推动激光熔覆技术的产业化, 作者:张庆茂 激光熔覆是一种新型的涂层技术,是涉及到光、机、电、材料、检测与控制等多学科的高新技术,是激光先进制造技术最重要的支撑技术,可以解决传统制造方法不能完成的难题,是国家重点支持和推动的一项高新技术。目前,激光熔覆技术已成为新材料制备、金属零部件快速直接制造、失效金属零部件绿色再制造的重要手段之一,已广泛应用于航空、石油、汽车、机械制造、船舶制造、模具制造等行业。 为推动激光熔覆技术的产业化,世界各国的研究人员针对激光熔覆涉及到的关键技术进行了系统的研究,已取得了重大的进展。国内外有大量的研究和会议论文、专利介绍激光熔覆技术及其最新的应用:包括激光熔覆设备、材料、工艺、监测与控制、质量检测、过程的模拟与仿真等研究内容。但到目前为止,激光熔覆技术还不能大面积工业化应用。分析其原因,这里有政府导向的因素、激光熔覆技术本身成熟程度的限制、社会各界对激光熔覆技术的认可程度等因素。因此,激光熔覆技术欲实现全面的工业化应用,必须加大宣传力度,以市场需求为导向,重点突破制约发展的关键因素,解决工程应用中涉及到的关键技术,相信在不远的将来,激光熔覆技术的应用领域及其强度将不断的扩大。下面介绍激光熔覆技术几个发展的动态,以飨读者。 激光熔覆的优势 激光束的聚焦功率密度可达1010~12W/cm2,作用于材料能获得高达1012K/s的冷却速度,这种综合特性不仅为材料科学新学科的生长提供了强有力的基础,同时也为新型材料或新型功能表面的实现提供了一种前所未有的工具。激光熔覆所创造的熔体在高温度梯度下远离平衡态的快速冷却条件,使凝固组织中形成大量过饱和固溶体、介稳相甚至新相,已经被大量研究所证实。它提供了制造功能梯度原位自生颗粒增强复合层全新的热力学和动力学条件。同时激光熔覆技术制备新材料是极端条件下失效零部件的修复与再制造、金属零部件的直接制造的重要基础,受到世界各国科学界和企业的高度重视和多方面的研究。 目前,利用激光熔覆技术可以制备铁基、镍基、钴基、铝基、

激光熔覆技术在行业中的应用

激光熔覆技术在行业中的应用 1、涡轮动力设备修复和改造 在冶金、石油、化工、电力、铁路、船舶、矿山、航空等国民经济支柱产业中使用着大量的涡轮转动设备,例如:汽轮机、离心压缩机、轴流风机、螺杆压缩机、高炉透平发电TRT、烟气轮机、发电机、往复式压缩机、飞机发动机、地面燃机、水轮机、制氧机、水泵、柴油机、工业透平、增速机等等。特别是70年代末以来引进的大量进口涡轮转动设备(机组),经过长周期各种工况条件下服役,因腐蚀、磨损和疲劳等因素,所有设备(机组)均存在着使用中的损伤失效,有的则处在报废或即将报废状态。而常规的技术和工艺方法不能,也不敢动及这些关键的、价值贵重的设备(机组),稍有失误将造成设备(机组)失效和破坏,从而带来的是潜在的巨大的产值和经济损失。 在钢铁冶金行业,涡轮转动设备(机组)是提供能源和动力的载体。钢铁企业拥有的各种规格进口和国产的轴流压缩机(风机),单级、多级离心鼓风机、引风机、除尘风机、H型氧压机、氮压机、螺杆压缩机、自备电厂的各种型号汽轮机、高炉能量回收使用的单级、双级透平发电TRT机组、各种发电及电动机、大型水泵等涡轮动力设备。再制造工程技术为这些重大关键设备(机组)提供了安全可靠,质量保障,性能稳定提升的综合技术。激光熔覆仿形技术和激光快速成形技术在这些关键设备和零部件修复及再造应用,又使再制造工程技术得到发展。例如,2007年11月份,天津大族烨峤激光公司应用再制造工程技术和激光熔覆仿形技术修复津西钢铁公司AV40-12型轴流压缩机的动、静叶片;2008年3月份,修复津西钢铁公司2MPG4.5-175/145型高炉透平“一拖二”式TRT机组的动、静叶片并进行两台机组的拆装、调试和检测的全方位“交钥匙”工程。现在,经修复的两台机组已经投入生产服役,运行良好,平稳可靠。而且,采用激光熔覆仿形技术修复后的两台机组的所有动、静叶片都可比原设计制造的新叶片提高使用寿命50-100%,仅此两台设备可为津西厂节省约500多万元维修资金。 近两年来,采用再造应用工程技术和激光熔覆技术及快速成形技术等高新技术为宝钢、鞍钢、本钢、首钢、武钢、唐钢、太钢、攀钢、包钢等全国近95%钢铁企业修复和改造大量的涡轮转动设备(机组),特别是各种进口的关键机组(设备)。为各企业保障设备的正常有效运转,提高了设备的使用寿命,延长了其服役周期。同时,也为钢铁行业各企业节约了大量维修费用,创造了可观的经济效益。 2、高载荷、低转速、高精度、高合金零部件的修复和强化 钢铁企业炼钢、各种热轧、冷轧生产线、镀锌线等生产过程中使用着大数量的高载荷、低转速、高精度、高合金的承载设备,其零部件在生产工况环境下服役,产生腐蚀、磨损和疲劳损伤或失效报废。而这些大量的设备零部件在钢铁生产中形成了最大的生产消耗,占据着非常大的生产成本和资源浪费。据初步估算,全国钢铁行业每年仅各种轧钢生产线上的重要零部件消耗达100亿元。传统办法主要是更换这些设备零部件,甚至因零部件无法使用报废或者更换整机,必须储备大量的备件,占用巨额的资金和资源。同时,损伤失效和报废的零部件或者整机基本上作为废品处理,如此连锁叠加造成的资源和资金浪费非常惊人。 激光熔覆技术、激光快速成形制造技术、激光纳米合金化和表面强化技术等高科技技术的有效应用,为这类设备和零部件的修复再造开辟了一条崭新的途径。既能使失效或报废设备及零部件“起死回生”,又可以使新品延长使用寿命,甚至可以达到多寿命周期的效果。例如:在冷、热轧钢各种生产线上使用的传动接轴、叉头、中间轴、传动齿轮、万向节、扁头套、轧辊轴、飞剪、辊端轴套、卷取机弹簧座箱,减速机齿轮轴和壳体等等大量易磨损和疲劳零部件,经过激光仿形熔覆技术和快速成形技术修复后,使用性能恢复了原有新件的技术指标。

相关文档
相关文档 最新文档