文档库 最新最全的文档下载
当前位置:文档库 › 音乐中的数学

音乐中的数学

音乐中的数学
音乐中的数学

音乐中的数学

孙佳琛(04012605)

(东南大学信息科学与工程学院)

摘要:当我们沉浸在美妙的音乐中时,你是否曾想到音乐与数学有着密切的联系。在计算机和信息技术飞速发展的今天,音乐和数学的联系更加密切, 在音乐理论、音乐作曲、音乐合成、电子音乐制作等等方面, 都需要数学。本文将围绕数学与音乐的历史渊源、数学与节拍的联系、数学与音乐的融合、大自然音乐中的数学等展开论述。

Abstract:When we are immersed in the wonderful music,did you ever think that music and mathematics are closely linked.With the rapid development of computer and information technology,music and math are more closely linked inmusic theory’music composition,music synthesis,electronic music production and so on.This article will focus on the history between Mathematics and music,contact with mathematics and beat, fusion of mathematics and music, Mathematics in the natural music.

关键词:音乐、数学、历史、节拍、融合

Keyword:Music,Mathematics,History,Beat,Fusion.

一、引言

《梁祝》优美动听的旋律,《十面埋伏》的铮铮琵琶声,贝多芬令人激动的交响曲,田野中昆虫啁啾的鸣叫……这些美妙而看似普通的音乐实际上都与数学有着密不可分的联系。

从古至今,无论是在音符的音调上,亦或是在音乐的节拍上,都存在着十分巧妙的数学联系。

同样在音乐界,有一些数学素养很好的音乐家也为音乐的发展做出了重要的贡献。

二、数学与音乐的历史渊源

人们对数学与音乐之间联系的研究和认识可以说源远流长。

这最早可以追溯到公元前六世纪,当时毕达哥拉斯学派用比率将数学与音乐联系起来。故事可以追溯到这里,有一天,毕达哥拉斯经过一家铁匠铺,被里面传出的高高低低、富有节奏的打铁声所吸引,于是他走进铺子,细心观察,发现音响的和谐与发声体体积的比例有关。回家后,他又在琴弦上做了很多次试验,寻找琴弦发声协调动听的规律,最终发现了音乐数。同时他还进一步发现,只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1∶2产生八度,2∶3产生五度,3∶4产生四度等。继而发现弦的每一和谐组合都可表示

成整数比,按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C 的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C 的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。由此他认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。”于是,毕达哥拉斯音阶(thePythagorean Scale) 和调音理论诞生了,而且在西方音乐界占据了统治地位。

虽然托勒密(C. Ptolemy,约100 —165 年) 对毕达哥拉斯音阶的缺点进行了改造,得出了较为理想的纯律音阶(the Just Scale) 及相应的调音理论,但是毕达哥拉斯音阶和调音理论的这种统治地位直到十二平均律音阶(the temperedScale) 及相应的调音理论出现才被彻底动摇。

而在我国,最早产生的完备的律学理论是三分损益律,时间大约在春秋中期《管子·地员篇》和《吕氏春秋·音律篇》中分别有述;明代朱载(1536 - 1610) 在其音乐著作《律学新说》对十二平均律的计算方法作了概述,在《律吕精义·内篇》中对十二平均律理论作了论述,并把十二平均律计算的十分精确,与当今的十二平均律完全相同,这在世界上属于首次。由此可见,在古代,音乐的发展就与数学紧密地联系在了一起。从那时起到现在,随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深,感觉的音乐中处处闪现着理性的数学。

三、数学与节拍的联系

乐谱的书写是数学在音乐上显示其影响的最为明显的地方。在乐谱中,我们可以找到拍号、每个小节的拍子、全音符、二分音符、四分音符、八分音符等等。谱写乐曲要使它适合于每音节的拍子数,这相似于找公分母的过程——在一个固定的拍子里,不同长度的音符必须使它凑成一个特定的节拍。然而作曲家在创造乐曲时却能极其美妙而又毫不费力地把它们与乐谱的严格构造有机的融合在一起。对一部完整的作品进行分析,我们会看到每一个音节都有规定的拍数,而且运用了各种合适长度的音符。

因此一段看似没有规律的乐曲,其实潜在却符合严密的数学规律。我们不禁要问,数学中存在着类似平移变换的规律,在音乐中是否也存在呢?我们可以通过两个音乐小节来寻找答案。显然可以把第一个小节中的音符平移到第二个小节中去,就出现了音乐中的平移,这实际上就是音乐中的反复。把两个音节移到直角坐标系中,那么就表现数学中的平移。我们知道作曲者创作音乐作品的目的在于想淋漓尽致地抒发自己内心情感,可是内心情感的抒发是通过整个乐曲来表达的,并在主题处得到升华,而音乐的主题有时正是以某种形式的反复出现的。比如西方乐曲《When the Saints Go Marching In》的主题,显然,这首乐曲的主题就可以看作是通过平移得到的。

当然,音乐中不仅仅只出现平移变换,可能会出现其他的变换及其组合,比如反射变换等等。通过以上分析可知,一首乐曲就有可能是对一些基本曲段进行各种数学变换的结果。更另人惊奇的是十九世纪的一位著名的数学家——约瑟夫·傅里叶 (Joseph Fourier),正是他的努力使人们对乐声性质的认识达到了顶峰。他证明了所有的乐声,不管是器乐还是声乐,都可以用数学式来表达和描述,而且证明了这些数学式是简单的周期正弦函数的和。

四、数学与音乐的融合

音乐中出现数学、数学中存在音乐并不是一种偶然,而是数学和音乐融和贯通于一体的一种体现。我们知道音乐通过演奏出一串串音符而把人的喜怒哀乐或对大自然、人生的态度等表现出来,即音乐抒发人们的情感,是对人们自己内心世界的反映和对客观世界的感触,

因而它是用来描述客观世界的,只不过是以一种感性的或者说是更具有个人主体色彩的方式来进行。而数学是以一种理性的、抽象的方式来描述世界,使人类对世界有一个客观的、科学的理解和认识,并通过一些简洁、优美、和谐的公式来表现大自然。因此可以说数学和音乐都是用来描述世界的,只是描述方式有所不同,但最终目的都是为人类更好地生存和发展服务,于是它们之间存在着内在的联系应该是一件自然而然的事。

我们也可以做一些尝试来验证这样的结论。由一段三角函数图像出发,我们只要对它进行适当的分段,形成适当的小节,并在曲线上选取适当的点作为音符的位置所在,那么就可以作出一节节的乐曲。由此可见,我们不仅能像匈牙利作曲家贝拉.巴托克那样利用黄金分割来作曲,而且也可以从纯粹的函数图像出发来作曲。最典型的代表人物就是20 世纪20 年代的哥伦比亚大学的数学和音乐教授约瑟夫·希林格(JosephSchillinger),他曾经把纽约时报的一条起伏不定的商务曲线描述在坐标纸上,然后把这条曲线的各个基本段按照适当的、和谐的比例和间隔转变为乐曲,最后在乐器上进行演奏,结果发现这竟然是一首曲调优美、与巴赫的音乐作品极为相似的乐曲。这位教授甚至认为,根据一套准则,所有的音乐杰作都可以转变为数学公式。他的学生乔治·格什温(George Gershwin) 更是推陈出新,创建了一套用数学作曲的系统, 据说著名歌剧《波吉与贝丝》(Porgy and Bess) 就是他使用这样的一套系统创作的。

因此,某些音乐家拥有很高的数学天赋,又或者数学家对音乐有自己独到的理解,也都不是奇怪的偶然,而是数学与音乐融会贯通的必然。

五、大自然音乐中的数学

以上说到的都是乐曲或声乐与数学的影响,都是人类创造出来的艺术作品,都不是天然的。也许你还有理由质疑它们之间太过匹配的巧合,但当大自然中的音乐与数学再次发生这样的联系时,你也不得不相信这样的真理了。

大自然中的音乐与数学的联系更加神奇,通常不为大家所知。例如蟋蟀鸣叫可以说是大自然之音乐,殊不知蟋蟀鸣叫的频率与气温有着很大的关系,我们可以用一个一次函数来表示:C =4 t–160。其中 C代表蟋蟀每分钟叫的次数,t 代表温度。按照这一公式,我们只要知道蟋蟀每分钟叫的次数,不用温度计就可以知道天气的温度了。

六、结语

在平时学习数学的过程中,我们常常对着曲线、方程无从下手,觉得数学越学越枯燥无趣。而其实,数学在生活的方方面面都发挥着它的作用,处处展现着它深刻而正确的规律。因此,我们不应该把数学仅仅看成是一门单调的工具学科,而应该细细体会它的奇妙之处,不仅仅局限于课堂所学,而是朝着自己喜欢的方向思考探索,这样才能真正学到知识,真正学好数学。当然,有志于音乐事业的同学更应该学好数学,就如同本文所说,在将来的音乐事业中,数学将起着非常重要的作用。

参考文献:

【1】余开基.音乐文化趣谈.长沙:湖南人民出版社,1997.

【2】《数学通报》.2009.

浅谈数学与音乐之关系

浅谈数学与音乐之关系 众所周知,音乐是心灵和情感在声音方面的外化,数学是客观事物高度抽象和逻辑思维的产物。那么,看似风马牛不相及的“多情”的音乐,与“冷酷”的数学也有关系吗?答案是肯定的。甚至可以说音乐与数学是相互渗透,互相促进的。 其实,人们对数学与音乐之间联系的研究和认识可以说源远流长. 这最早可以追溯到公元前六世纪,古希腊的毕达哥拉斯学派用比率将数学与音乐联系起来. 他们不仅认识到所拨琴弦产生的声音与琴弦的长度有着密切的关系,从而发现了和声与整数之间的关系,而且还发现谐声是由长度成整数比的同样绷紧的弦发出的. 于是,毕达哥拉斯音阶和调音理论诞生了,而且在西方音乐界占据了统治地位. 虽然托勒密对毕达哥拉斯音阶的缺点进行了改造,得出了较为理想的纯律音阶及相应的调音理论,但是毕达哥拉斯音阶和调音理论的这种统治地位直到十二平均律音阶及相应的调音理论出现才被彻底动摇。 在我国,最早产生的完备的律学理论是三分损益律, 时间大约在春秋中期《管子·地员篇》和《吕氏春秋·音律篇》中分别有述;明代朱载在其音乐著作《律学新说》对十二平均律的计算方法作了概述,在《律吕精义·内篇》中对十二平均律理论作了论述,并把十二平均律计算的十分精确, 与当今的十二平均律完全相同, 这在世界上属于首次. 孔子说的六艺“礼、乐、射、御、书、数”,其中“乐”指音乐,“数”指数学,即孔子就已经把音乐与数学并列在一起。由此可见,在古代,音乐的发展就与数学紧密地联系在了一起. 从那时起到现在, 随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学的影子。 乐谱的书写是数学在音乐上显示其影响的最为明显的地方。在乐谱中,我们可以找到拍号、每个小节的拍子、全音符、二分音符、四分音符、八分音符等等。谱写乐曲要使它适合于每音节的拍子数,这相似于找公分母的过程——在一个固定的拍子里,不同长度的音符必须使它凑

数学与音乐

数学与音乐 2500年前的一天,古希腊哲学家毕达哥拉斯外出散步,经过一家铁匠铺,发现里面传出的打铁声响,要比别的铁匠铺更加协调、悦耳。他走进铺子,量了又量铁锤和铁砧的大小,发现了一个规律,音响的和谐与发声体体积的一定比例有关。尔后,他又在琴弦上做试验,进一步发现只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1:2产生八度,2:3产生五度,3:4产生四度等等。就这样,毕达哥拉斯在世界上第一次发现了音乐和数学的联系。他继而发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。千百年来,研究音乐和数学的关系在西方一直是一个热门的课题,从古希腊毕达哥拉斯学派到现代的宇宙学家和计算机科学家,都或多或少受到“整个宇宙即是和声和数”的观念的影响,开普勒、伽利略、欧拉、傅立叶、哈代等人都潜心研究过音乐与数学的关系。数学几何与哲学相契携行,渗进西方人的全部精神生活,透入到一切艺术领域而成为西方艺术的一大特色。圣奥古斯汀更留下“数还可以把世界转化为和我们心灵相通的音乐”的名言。现代作曲家巴托克、勋伯格、凯奇等人都对音乐与数学的结合进行大胆的实验。希腊作曲家克赛纳基斯(1933~)创立“算法音乐”,以数学方法代替音乐思维,创作过程也即演算过程,作品名称类乎数学公式,如《S+/10-1.080262 》为10件乐器而作,是1962年2月8日算出来的。马卡黑尔发展了施托克豪森的“图表音乐”(读和看的音乐)的思想,以几何图形的轮转方式作出“几何音乐”。

数学是研究现实世界空间形式的数量关系的一门科学,它早已从一门计数的学问变成一门形式符号体系的学问。符号的使用使数学具有高度的抽象。而音乐则是研究现实世界音响形式及对其控制的艺术。它同样使用符号体系,是所有艺术中最抽象的艺术。数学给人的印象是单调、枯燥、冷漠,而音乐则是丰富、有趣,充溢着感情及幻想。表面看,音乐与数学是“绝缘”的,风马牛不相及,其实不然。德国著名哲学家、数学家莱布尼茨曾说过:“音乐,就它的基础来说,是数学的;就它的出现来说,是直觉的。”而爱因斯坦说得更为风趣:“我们这个世界可以由音乐的音符组成也可以由数学公式组成。”数学是以数字为基本符号的排列组合,它是对事物在量上的抽象,并通过种种公式,揭示出客观世界的内在规律:而音乐是以音符为基本符号加以排列组合,它是对自然音响的抽象,并通过联系着这些符号的文法对它们进行组织安排,概括我们主观世界的各种活动罢了,正是在抽象这一点上将音乐与数学连结在一起,它们都是通过有限去反映和把握无限。 数学和音乐位于人类精神的两个极端,一个人全部创造性的精神活动就在这两个对立点的范围之内展开,而人类在科学和艺术领域中所创造出来的一切都分布在这两者之间。音乐和数学正是抽象王国中盛开的瑰丽之花。有了这两朵花,就可以把握人类文明所创造的精神财富。被称为数论之祖的希腊哲学家、数学家毕达哥拉斯认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。”世界上哪里有数,哪里就有美。数学像音乐及其它艺术能唤起人们的审美

艺术中的数学

数学简史论文 —艺术中的数学【35】 班级:园艺(一)班 :元伟 学号:2011014014

艺术中的数学 引言: 数学——抽象的思辨、严密的推理、逻辑的论证、精确的计算,总揽全局而又步步为营的思维方式构造起号称为“思维的体操”的数学大 厦的地基。而艺术是对哲学思想的变迁和艺术家们对多变的技术环境的反应的最直接的表现形式,艺术是浮想联翩、潇洒不羁、蔑视规律,跳跃的思维律动弥漫出若即若离的艺术图景。乍一看数学与艺术看作水火不容,但细细品味艺术家们开始使用数学的语言和思想并将其贯穿于五彩缤纷的艺术生活之中,鉴于辩证唯物论任何事物都是辨证统一的数学与艺术也蕴涵着在的统一。美国代数学家P.R.Halmos说“数学是创造性的艺术,因为数学家创造了美好的概念。数学是创造性的艺术因为数学家像艺术家一样的生活一样的工作一样的思索数学是 创造性的艺术因为数学家这样对待它。”可见无论是数学还是艺术都是一种创造性的活动并且包含了对于美的直接追求。继平教授说“美是人性的追求。”艺术是美的表达方式数学是美的语言数学追求美也创造美。数学与艺术的结合使美更加简明。随着人们物质生活的日益提高对自然精神生活的享受也会提升到更高的层次。就算我们日常生活中随处可见到的广告、海报、宣传品等实用艺术新兴出现的现代媒体艺术中。为吸引观众的眼球就必须运用数学鬼斧神工的创造力来产生艺术的无穷魅力。近几十年来在我国和许多国家出现了一种应用数学方法研究艺术的思潮。本文就从数学在音乐文学建筑绘画等方面的应用来研究艺术中渗透的数学思想和精神。

一、数学在音乐中的应用音乐是心灵和情感在声音方面 的外化数学是客观事物高度抽象和逻辑思维的产物那么“多情”的音乐 与“冷酷”的数学有关系吗。回答是肯定的西尔威斯特说过“难道不可以把音乐描述为感觉的数学把数学描述为理智的音乐吗拉莫说过“音乐是一种必须掌握一定规律的科学这些规律必须从明确的原则出发这个原则没有 数学的帮助就不可能进行研究我必须承认虽然我在相当长时期的实践活 动中获得许多经验但是只有数学能帮助我发展我的思想照亮我甚至没有 发觉原来是黑暗的地方。”君不是也听说过微积分被称为“无限的交响乐” 1、黎曼几何与普兰克的钢琴合奏曲一样优美的感叹吗。从古至今数学与音 乐一直联系在一起。世界著名波兰作曲家和钢琴家肖邦很注意乐谱的数学规则形式和结构有位研究肖邦的专家称肖邦的乐谱“具有乐谱语言的 数学特征”。事实上乐谱的书写是表现数学对音乐的影响的第一个显著的领域。在乐稿上我们看到速度节拍4/4拍、3/4拍等等;全音符、二分音 符、四分音符、八分音符、十六分音符等等。书写乐谱是确定每小节的 某分音符数与求公分母的过程相似---不同长度的音符必须与某一拍所规 定的小节相适应。在毕达哥拉斯时代音乐是数学的一部分。毕达哥拉斯可以说是音乐理论的一位始祖他阐明了单弦的调和乐音与单弦长之间的 关系。两根绷得一样紧的弦若一根长是另一根长的两倍就产生谐音而且 两个谐音正好相差八度。若两弦长之比为32则产生另一种谐音此时短弦发出的音比长弦发出的音高五度。事实上产生每一种谐音的各种弦的长 度都成正整数比这被认为是美丽旋律中的数学。乐器的形状和结构与各种数学概念有关。不管是弦乐器还是有空气柱发声的管乐器它们的结构 都反映出一条指数曲线的形状。此外18世纪的数学家通过用数学结构分析音乐使常微分方程的研究取得了一定进展。黄金分割在作曲的应用在一些乐曲的创作技法上将高潮或者是音程节奏的转折点安排在全曲的黄 金分割点0.618处,例如要创作89节的乐曲其高潮便在55节处,如果 是55节的乐曲高潮便在34节处。 2、学家傅立叶研究证实无论乐音复杂的还是简单的都可以用数学语言给以 完全的描述。对乐声性质的研究中发现所有乐声---器乐和声乐---都可用数

音乐是数学的奇迹

前一阵校内上流行一个matlab演奏《卡农》的帖子,写法蛮帅的,用的还是纯律而非平均律。回想起我初中时候在少科站无聊也用Turbo Pascal编过《亚洲雄风》来着,当时就觉得一串数字转化成音乐是件很神奇的事情。来聊聊音乐和数学哈~ 音乐之所以和谐美妙,很大程度上得益于两个数学上的约等式同时成立: 1) 2 ^ (7/12) = 1.4983 ≈ 3/2,误差0.1% 2) 2 ^ (4/12) = 1.2599 ≈ 5/4,误差0.8% 听起来很邪乎吧?待我慢慢道来…… 【陪音】 唱歌的时候如果唱不上去了我们经常会―唱低八度‖,这时候虽然声音低了许多,但与原唱并不冲突,与伴奏也仍然和谐。那为什么―八度‖那么特殊呢?或者说,为什么差八度的音听着那么像呢?原来差八度的两个音其频率正好差两倍——比如中音do(钢琴正中的C,记作C4或c’)是261.6赫兹,而高音do(记作C5或c’’)是它的两倍523.3赫兹。 那为什么频率差两倍就听起来像呢?这里需要引入陪音(upper partials)的概念,也称为泛音(overtone)。除了一些音色很纯的音(比如机器发出的正弦波)外,多数乐器演奏中除了激活原本频率的声波(基音)之外还会激活这些频率的整数倍,也就是陪音。当你按下钢琴的C4,这时空气中激荡着的不只有261.6赫兹的声波,还有523.3赫兹、784.9赫兹、1046.5赫兹等等(称为泛音列),而泛音列中各个音的不同强度和相位正反映了乐器的音色。注意523.3赫兹是C5,1046.5赫兹是C6,但784.9赫兹并不是一个C音,我们后文会讲到784.9赫兹比较接近G5。也就是说,同一音名的两个音之间肯定有陪音的关系,但反之不成立——陪音不必须是同一音名。回到八度的问题:C5本身就是C4最近的一个陪音,C5的陪音也都是C4的陪音,所以弹C5时激活的音频弹C4时也会激活(当然强度不同),两个音听起来自然像啦~ 【平均律】 搞清楚了啥是八度,那一个八度里的音又是怎么分的呢?大家知道七声调式中一个八度是7个基本音级、12个半音,2个半音等于一个全音。大调是―全全半全全全半‖,小调是―全半全全半全全‖。在巴赫开始提倡、现代普遍采用的十二平均律中,这12个半音是均匀分布的——从物理上讲,也就是半音阶中的音的频率形成一个等比数列。比如说C4是261.6赫兹,C5是523.3赫兹,而两者之间的11个音每个的频率是上一个的2 ^ (1/12) = 1.0595倍——C?4是261.6 * 1.0595 = 277.2赫兹,D4是277.2 * 1.0595 = 293.7赫兹,依此类推。一个半音又可以分成100个音分(cent),差一个音分相当于频率差2 ^ (1/1200) = 1.00058倍,一个八度也就是1200个音分。普通人对音高的辨别阈大概是20音分(0.2个半音),而音乐家可以达到5音分(0.05个半音),不同音高下的辨别阈还有所不同。 为什么要用平均律,让所有音均匀分布呢?一个重要的原因是方便转调。比如周杰伦的《安静》,开始一直是B?调,在唱到第二遍副歌―你要我说多难堪‖的时候突然升了一个全音变成了C调——也就是之前的B?变成C,C变成D,D变成E等等,但尽管音高变了旋律听起来还是一样的,唱也还是一个感觉,区别最多也就是转一下调情绪激动一点。这种转调后的不变性是平均律特有的,在其他一些律制(比如五度相生律、纯律和中庸全音律)中不成立。同时这也意味着除平均律外,其他律制中每个调号的色彩都略有不同。这就是为什么亨德尔会偏好F大调和G小调(当时还没有平均律),而lady gaga就不那么在乎。

音乐与数学

音乐是数学的奇迹作者:于悦 前一阵校内上流行一个matlab演奏《卡农》的帖子,写法蛮帅的,用的还是纯律而非平均律。回想起我初中时候在少科站无聊也用Turbo Pascal编过《亚洲雄风》来着,当时就觉得一串数字转化成音乐是件很神奇的事情。来聊聊音乐和数学哈~ 音乐之所以和谐美妙,很大程度上得益于两个数学上的约等式同时成立: 1) 2 ^ (7/12) = 1.4983 ≈ 3/2,误差0.1% 2) 2 ^ (4/12) = 1.2599 ≈ 5/4,误差0.8% 听起来很邪乎吧?待我慢慢道来…… 【陪音】 唱歌的时候如果唱不上去了我们经常会―唱低八度‖,这时候虽然声音低了许多,但与原唱并不冲突,与伴奏也仍然和谐。那为什么―八度‖那么特殊呢?或者说,为什么差八度的音听着那么像呢?原来差八度的两个音其频率正好差两倍——比如中音do(钢琴正中的C,记作C4或c’)是261.6赫兹,而高音do(记作C5或c’’)是它的两倍523.3赫兹。 那为什么频率差两倍就听起来像呢?这里需要引入陪音(upper partials)的概念,也称为泛音(overtone)。除了一些音色很纯的音(比如机器发出的正弦波)外,多数乐器演奏中除了激活原本频率的声波(基音)之外还会激活这些频率的整数倍,也就是陪音。当你按下钢琴的C4,这时空气中激荡着的不只有261.6赫兹的声波,还有523.3赫兹、784.9赫兹、1046.5赫兹等等(称为泛音列),而泛音列中各个音的不同强度和相位正反映了乐器的音色。注意523.3赫兹是C5,1046.5赫兹是C6,但784.9赫兹并不是一个C音,我们后文会讲到784.9赫兹比较接近G5。也就是说,同一音名的两个音之间肯定有陪音的关系,但反之不成立——陪音不必须是同一音名。回到八度的问题:C5本身就是C4最近的一个陪音,C5的陪音也都是C4的陪音,所以弹C5时激活的音频弹C4时也会激活(当然强度不同),两个音听起来自然像啦~ 【平均律】 搞清楚了啥是八度,那一个八度里的音又是怎么分的呢?大家知道七声调式中一个八度是7个基本音级、12个半音,2个半音等于一个全音。大调是―全全半全全全半‖,小调是―全半全全半全全‖。在巴赫开始提倡、现代普遍采用的十二平均律中,这12个半音是均匀分布的——从物理上讲,也就是半音阶中的音的频率形成一个等比数列。比如说C4是261.6赫兹,C5是523.3赫兹,而两者之间的11个音每个的频率是上一个的2 ^ (1/12) = 1.0595倍——C?4是261.6 * 1.0595 = 277.2赫兹,D4是277.2 * 1.0595 = 293.7赫兹,依此类推。一个半音又可以分成100个音分(cent),差一个音分相当于频率差2 ^ (1/1200) = 1.00058倍,一个八度也就是1200个音分。普通人对音高的辨别阈大概是20音分(0.2个半音),而音乐家可以达到5音分(0.05个半音),不同音高下的辨别阈还有所不同。 为什么要用平均律,让所有音均匀分布呢?一个重要的原因是方便转调。比如周杰伦的《安静》,开始一直是B?调,在唱到第二遍副歌―你要我说多难堪‖的时候突然升了一个全音变成

数学与音乐

数学与音乐 难道不可以把音乐描述为感觉的数学,把数学描述为理智的音乐吗?──J.J.西尔威斯特 数学与音乐与计算是分不开的,人们想到数学,想到数学家,说到陈景润与“哥德巴赫猜想”,都会自然想到计算,甚至觉得数学家简单到只需一只笔和一堆纸就可以工作。那么,数学计算对于科学发展有多大意义呢?音乐也需要数学计算吗?若干世纪以来,音乐和数学一直被联系在一起。在中世纪时期,算术、几何、天文和音乐都包括在教育课程之中。今天的新式计算机正在使这条纽带绵延不断。 有学者认为:西方音乐,在其发生之初便与数学有着不容忽视的血缘关系。这种血缘关系可以上溯到毕达哥拉斯时代,毕达哥拉斯认为“数”是世界万物的本源、根基。即使现有的音阶序列——五度音程或八度音程——也更多是出于推理而不完全是人耳分辨的纯粹“自然”的结果。也就是说音乐是社会的产物,与科技发展有着密切关系。人在成其为人之后,其发声不可能自然地形成五度或八度音程,最初的人的发声,同其他动物声音一样,是简单的。正如鲁迅所说,最早的音乐是“吭唷吭唷”派。由于推理和计算,形成了五度、八度音程,就西方来说,在最早的键盘乐器上得以体。在中国古代,则体现为多弦乐器上不同的弦及弦的不同部位或最早的打孔乐器不同的孔表示不同的音高。又由于西方音乐发展过程中逐渐把键盘乐器摆在“霸主”地位,这或许由于教堂管风琴的影响。使得键盘乐器同人声与弦乐器之间总存在着难以弥合的音差,比如键盘乐器就无法表达出弦乐器揉弦的声音。这给调音带来麻烦,于是不得不迁就钢琴,在有钢琴参与的演奏中,所有乐器的调音是以钢琴为准的。因为钢琴统领着一切乐器,是乐器之王,其形体也是个庞然大物。 键盘乐器每个音之间的音差,不是人耳自然分辨的结果,而是一种数学计算和推理。被小提琴大师梅纽因万分佩服的巴赫的赋格曲和平均律音阶,正是西方严肃音乐中所有基本逻辑和数学般严密的音响推理的集中体现。巴赫的48首十二平均律钢琴曲,实际上是数学计算得出的数据所显示的声音和谐,音乐的和谐与美感体现是的数字的和谐与美感。这种数学的或数字的关系,到勋伯格发展到了极端化——12音体系——也由听音乐产生美感转变为看乐谱看到美感,因而勋伯格的音乐也就排斥了普通人。乐谱的书写是表现数学对音乐的影响的第一个显著的领域。在乐稿上,我们看到速度、节拍(4/4拍、3/4拍,等等)、全音符、二分音符、四分音符、八分音符、十六分音符,等等。书写乐谱时确定每小节内的某分音符数,与求公分母的过程相似──不同长度的音符必须与某一节拍所规定的小节相适应。作曲家创作的音乐是在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体的。如果将一件完成了的作品加以分析,可见每一小节都使用不同长度的音符构成规定的拍数。 除了数学与乐谱的明显关系外,音乐还与比率、指数曲线、周期函数和计算机科学相联系。毕达哥拉斯学派(公元前585~前400)是最先用比率将音乐与数学联系起来的。他们认识到拨动琴弦所产生的声音与琴弦长度有关,从而发现了和声与整数的关系。他们还发现谐声是由长度成整数比的同样绷紧的弦发出的──事实上被拨弦的每一和谐组合可表示 成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C 的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。 你是否曾对大型钢琴为何制作成那种形状表示过疑问?实际上许多乐器的形状和结构与各种数学概念有关。指数函数和指数曲线就是这样的概念。指数曲线由具有y=k x形式的

音乐中的数学

音乐中的数学 孙佳琛(04012605) (东南大学信息科学与工程学院) 摘要:当我们沉浸在美妙的音乐中时,你是否曾想到音乐与数学有着密切的联系。在计算机和信息技术飞速发展的今天,音乐和数学的联系更加密切, 在音乐理论、音乐作曲、音乐合成、电子音乐制作等等方面, 都需要数学。本文将围绕数学与音乐的历史渊源、数学与节拍的联系、数学与音乐的融合、大自然音乐中的数学等展开论述。 Abstract:When we are immersed in the wonderful music,did you ever think that music and mathematics are closely linked.With the rapid development of computer and information technology,music and math are more closely linked inmusic theory’music composition,music synthesis,electronic music production and so on.This article will focus on the history between Mathematics and music,contact with mathematics and beat, fusion of mathematics and music, Mathematics in the natural music. 关键词:音乐、数学、历史、节拍、融合 Keyword:Music,Mathematics,History,Beat,Fusion. 一、引言 《梁祝》优美动听的旋律,《十面埋伏》的铮铮琵琶声,贝多芬令人激动的交响曲,田野中昆虫啁啾的鸣叫……这些美妙而看似普通的音乐实际上都与数学有着密不可分的联系。 从古至今,无论是在音符的音调上,亦或是在音乐的节拍上,都存在着十分巧妙的数学联系。 同样在音乐界,有一些数学素养很好的音乐家也为音乐的发展做出了重要的贡献。 二、数学与音乐的历史渊源 人们对数学与音乐之间联系的研究和认识可以说源远流长。 这最早可以追溯到公元前六世纪,当时毕达哥拉斯学派用比率将数学与音乐联系起来。故事可以追溯到这里,有一天,毕达哥拉斯经过一家铁匠铺,被里面传出的高高低低、富有节奏的打铁声所吸引,于是他走进铺子,细心观察,发现音响的和谐与发声体体积的比例有关。回家后,他又在琴弦上做了很多次试验,寻找琴弦发声协调动听的规律,最终发现了音乐数。同时他还进一步发现,只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1∶2产生八度,2∶3产生五度,3∶4产生四度等。继而发现弦的每一和谐组合都可表示

数学与音乐3

数学与音乐 数学是研究现实世界空间形式和数量关系的一门科学,符号体系的使用使数学具有高度的抽象性。而音乐则是研究现实世界音响形式及对其控制的艺术,它同样使用符号体系,是所有艺术中最抽象的艺术。从表面上看,音乐与数学是“绝缘”的,其实不然。那数学与音乐有什么关联吗?为了回答这个问题,有必要先来介绍一下“音乐数”。 声音是否悦耳动听,与琴弦的长短有关。弹琴时,手指在琴弦上移动,不断改变琴弦的长度,琴就会发出高低起伏、抑扬顿挫的声音。如果是三根弦同时发音,只有当它们的长度比是3∶4∶6时,声音才最和谐、最优美,于是人们便把3、4、6叫做“音乐数”。它是在2500年前由古希腊著名数学家毕达哥拉斯发现的。 有一天,毕达哥拉斯经过一家铁匠铺,被里面传出的高高低低、富有节奏的打铁声所吸引,于是他走进铺子,细心观察,发现音响的和谐与发声体体积的比例有关。回家后,他又在琴弦上做了很多次试验,寻找琴弦发声协调动听的规律,最终发现了音乐数。同时他还进一步发现,只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1∶2产生八度,2∶3产生五度,3∶4产生四度等。继而发现弦的每一和谐组合都可表示成整数比,按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C

的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。由此他认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。” 数学与音乐的交响诗从此唱响,千百年来让无数人流连陶醉。比如:乐器之王——钢琴的键盘上,从一个C键到下一个C键就是音乐中的一个八度音程,其中共包括13个键,有8个白键和5个黑键,而5个黑键分成两组,一组有两个黑键,另一组有3个黑键,2、3、5、8、13恰好就是数学史上著名的斐波拉契数列中的前几个数。此外,乐谱的书写表现数学对音乐的影响也非常显著。在乐稿上,我们看到书写乐谱时确定每小节内的音符数,与求公分母的过程相似。作曲家创作的音乐在书写出的乐谱的严密结构中非常美丽而又毫不费力地融为一体。 也正因为如此,研究音乐和数学的关系在西方一直是一个热门课题。现代作曲家巴托克、勋伯格、凯奇等人都对音乐与数学的结合进行过大胆的实验。希腊作曲家克赛纳基斯创立了“算法音乐”,以数学方法代替音乐思维,创作过程也即演算过程,作品名称类似于数学公式,如《S+/10-1.080262》为10件乐器而作,于1962年2月8日计算而得。马卡黑尔发展了施托克豪森的“图表音乐”的思想,以几何图形的轮转方式作出“几何音乐”。19世纪数学家约翰>傅里叶的

数学与音乐相融

数学与音乐的相融 千百年来,音乐和数学都被紧密的联系在一起。早在公元前500年的毕达哥拉斯时代,人们已经意识到乐音的和谐与否可以用其频率的数学关系来诠释。 在最近几十年,随着数学和计算机科学的发展,一种全新的音乐形式---MIDI音乐诞生了,越来越多的人再次注意到数学和音乐的完美融合。 本文从数学家毕达哥拉斯谈起,阐述了数学与音乐两个学科之间和谐关系,基于数理科学的音乐理论。同时,文章简单介绍了MIDI音乐的数学原理。 关键词:毕达哥拉斯十二平均律节拍MIDI音乐 Abstract: Music and mathematics always had a close relationship. Since Pythagoras it is known that harmony can be understood simply by the numerical relation of the frequencies. In the last years ,with the improvement of mathematics and computer science, a new field of music ,MIDI(Musical Instrument Digital Interface) boomed,they who are in an increasing number begun to focus on the intimate relationship of mathematics and music again. Keywords:Pythagoras,beat, Musical Instrument Digital Interface 一.音乐理论的鼻祖毕达哥拉斯 毕达哥拉斯是古希腊著名的数学家,公元前572年生于爱琴海中临近小亚细亚的萨摩斯岛,公元前500年卒于他林敦。毕达哥拉斯研究数学的目的并不在于实用,而是为了探索自然的奥秘,他以发现并证明勾股定理著称。 作为数学家,毕达哥拉斯可谓是功绩显赫,不过,他对音乐的贡献也不可低估。有传说,毕达哥拉斯经过一家铁匠铺,听到铁锤打击铁砧的声音,辨认出了四度、五度和八度三种和谐音,他猜想是由于铁锤重量的不同导致了声音的不同,并通过称量不同铁锤的重量确认了其间的关系。 毕达哥拉斯学派是最先用比率将音乐与数学联系起来的。他们发现谐声是由长度成整数比,绷得同样紧的弦发出的,整数比增加弦的长度,能产生整个音阶(音阶概念在下一部分详细阐述)。例如,从产生音符C的弦开始,C的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。 毕达哥拉斯将乐音与数字比例相对应,将一种抽象的感觉--声音的和谐----做了量化,率先建立了音乐理论基础的数学学说。从此,音乐和数学几乎是被注定的融合在了一起。

数学和音乐

数学和音乐 提起数学,很多人爱之恨之,一言难尽。数学总被人贴上严肃和枯燥的标签,其实任何事物都不能将其绝对化,数学也是如此,数学也有其美的一方面,只是缺少了发现数学美的眼睛。这里是我平时听歌时留意到的两首和数学有关的流行歌曲加上网上搜索的4首,大家看看数学和音乐的融合吧。 1.《哥德巴赫猜想》歌手:后弦专辑:古·玩 著名的歌德巴赫猜想和流行歌曲有关联吗,在这首歌中,两者之间被赋予了奇妙的联系,两个人一加一的感情复杂困惑,就算大师猜一辈子也没结果,《哥德巴赫猜》做了一次古典R&B的大胆尝试。歌曲以 一段十八世纪西方古典钢琴曲为开头,随即加入浓重R&B节奏,到高潮时甚至加入ng风格,做了一次新的尝试,过门和结尾出跳出的钢琴 吉他协奏,配上了戏曲腔调的吟唱,让整首歌曲充满了东西方大胆碰撞的火花。 歌词:歌德巴赫,沉思眉头紧锁 两个素数的和,一个假设,一七四二 数学方程传说,机关算尽怎么,难以突破? 简单复杂,两个人的几何, 推了又敲能有,什么结果,简单的谜 古今乐此不疲,算术大师的困惑

句句承诺,订下铁锁,信誓旦旦却又双双未果 哥德巴赫猜,猜不破情谜未来 哥德巴赫猜,三十六计走为上 哥德巴赫猜,脑袋半火一半海 哥德巴赫猜,他猜到头发已发白 多少,一加一的爱,哥德巴赫猜,有点无奈 算了,没结果也好,传说中真实的味道 2.《悲伤的双曲线》歌手:王渊超 很抒情的一首歌,旋律很美,包含了很多数学知识来表明两个人的所处的情况,也表明了人生的无奈,但愿人长久,千里共婵娟。 歌词: 如果我是双曲线,恩~你就是那渐近线 如果我是反比例函数,你就是那坐标轴 虽然我们有缘,能够生在同一个平面 然而我们又无缘,恩~慢慢长路无交点 为何看不见,等式成立要条件 难到正如书上说的,无限接近不能达到 如果我是双曲线,恩~你就是那渐近线 如果我是反比例函数,你就是那坐标轴 虽然我们有缘,能够生在同一个平面 然而我们又无缘,恩~慢慢长路无交点 为何看不见,等式成立要条件 难到正如书上说的,无限接近不能达到 为何看不见,明月也有阴晴圆缺

数学与音乐的交响诗

数学与音乐的交响诗 ——浅谈数学与音乐的联系 江苏江都国际学校初二(2)班绪梦莹 难道不可以把音乐描述为感觉的数学,把数学描述为理智的音乐吗? ——J.J.西尔威斯特 2500年前的一天,古希腊哲学家毕达哥拉斯外出散步,经过一家铁匠铺,发现里面传出的打铁声响,要比别的铁匠铺更加协调、悦耳。他走进铺子,量了量铁锤和铁砧的大小,发现了一个规律,音响的和谐与发声体体积的一定比例有关。 尔后,他又在琴弦上做试验,进一步发现只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1:2产生八度,2:3产生五度,3:4产生四度等等。他继而发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的——事实上被拨弦的每一和谐组合可表示成整数比。按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C 的16/15长度给出B,C的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。 他认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。” 就这样,毕达哥拉斯在世界上第一次发现了音乐和数学的联系。 数学与音乐的交响诗就此唱响。它是如此绚烂、磅礴,却又如一股涓涓细流,滋润着人们心中饥渴的田畴!没有琐碎的飞尘迷失自我,没有浅淡的风月撩人心神;只有抽象的符号撞击出的醉人声响,引无数人们在这儿留连,去揭开数学与音乐神秘的面纱。 千百年来,研究音乐和数学的关系在西方一直是一个热门的课题,从古希腊毕达哥拉斯学派到现代的宇宙学家和计算机科学家,都或多或少受到“整个宇宙即是声和数”的观念的影响,开普勒、伽利略、欧拉、傅里叶、哈代等人都潜心研究过音乐与数学的关系。数学与音乐相互交融的美与和谐,渗进西方人的全部精神生活,透入到一切艺术领域而成为西方艺术的一大特色。 19世纪数学家约翰·傅里叶的工作使乐声性质的研究达到顶点。他证明所有乐声——器乐和声乐——都可用数学式来描述,这些数学式是简单的周期正弦函数的和。每一个声音有三个性质,即音高、音量和音质,将它与其他乐声区别开来。 数学是研究现实世界空间形式的数量关系的一门科学,它早已从一门计数的学问变成一门形式符号体系的学问。符号的使用使数学具有高度的抽象。而音乐则是研究现实世界音响形式及对其控制的艺术。它同样使用符号体系,是所有艺术中最抽象的艺术。表面看,音乐与数学是“绝缘”的,风马牛不相及,其实不然。 这里引用翁瑞霖教授的一段话:“数学是推理中的音乐,而音乐则是感觉中的数学。代表理性的数学,其规律、和谐与秩序所产生的美感,虽无声音之传递,但与音乐是根本相通的;而代表感性的音乐,其音强、音高、音色、节奏、旋律、曲式及风格,虽无明确之数字表达,但数学的踪影却处处可见”。 乐谱的书写是表现数学对音乐的影响的第一个显著的领域。且先不谈简谱最直观的数字化

小学数学与音乐数学故事新讲

小学数学与音乐数学故事新讲生活中出处充满数学的趣味,在这里济南奥数网小编为大家整理了一些小学生数学故事,希望济南的家长和孩子能在快乐中了解数学,爱上数学。 小学生数学故事:数学与音乐 音乐是心灵和情感在声音方面的外化,数学是客观事物高度抽象和逻辑思维的产物。那么,多情的音乐与冷酷的数学也有关系吗?我们的回答是肯定的。甚至可以说音乐与数学是相互渗透,互相促进的。 孔子说的六艺礼、乐、射、御、书、数,其中乐指音乐,数指数学。即孔子就已经把音乐与数学并列在一起。我国的七弦琴(即古琴)取弦长l,7/8,5/6,4/5,3/4,2/3,3/5,1/2,2/5,1/3,1/4.1/5,1/6,1/8得所渭的13个徽位,含纯率的1度至22度,非常自然,足很理想的弦乐器。我国著名古琴家查阜西早就指出,要学好古琴,必须对数学有一定素养。世界著名波兰作曲家和钢琴家肖邦很注意乐谱的数学规则、形式和结构,有位研究肖邦的专家称肖邦的乐谱具有乐谱语言的数学特征。 其实,任何一门学科都离不开死记硬背,关键是记忆有技 巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基

础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。 数学的抽象美,音乐的艺术美.经受了岁月的考验,相互的渗透。如今,有了数学分析和电脑的显示技术,眼睛也可辨别音律,成就是多么激动人心啊!对音乐美更深的奥秘至今还缺乏更合适的数学工具加以探究,还有待于音乐家和数学家今后的合作和努力。 教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。 更多数学与音乐数学故事和其他相关复习资料,尽在查字典数学网!请大家及时关注! 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是

数学与音乐1

数学与音乐 贝多芬令人激动的交响曲, 田野中昆虫啁啾的鸣叫……当沉浸在这些美妙的音乐中时,你是否想到了它们与数学有着密切的联系? 数学是研究现实世界空间形式和数量关系的一门科学,符号体系的使用使数学具有高度的抽象性。而音乐则是研究现实世界音响形式及对其控制的艺术,它同样使用符号体系,是所有艺术中最抽象的艺术。从表面上看,音乐与数学是“绝缘”的,其实不然。 人们对数学与音乐之间联系的研究和认识最早可以追溯到公元前六世纪(约2500年前)。 有一天,毕达哥拉斯经过一家铁匠铺,被里面传出的高高低低、富有节奏的打铁声所吸引,于是他走进铺子,细心观察,发现音响的和谐与发声体体积的比例有关。回家后,他又在琴弦上做了很多次试验,寻找琴弦发声协调动听的规律,最终发现了音乐数。同时他还进一步发现,只要按比例划分一根振动着的弦,就可以产生悦耳的音程:如1∶2产生八度,2∶3产生五度,3∶4产生四度等。继而发现弦的每一和谐组合都可表示成整数比,按整数比增加弦的长度,能产生整个音阶。例如,从产生音符C的弦开始,C的16/15长度给出B,C 的6/5长度给出A,C的4/3长度给出G,C的3/2长度给出F,C的8/5长度给出E,C的16/9长度给出D,C的2/1长度给出低音C。由此他认为:“音乐之所以神圣而崇高,就是因为它反映出作为宇宙本质的数的关系。” 于是,毕达哥拉斯音阶(thePythagorean Scale) 和调音理论诞生

了,而且在西方音乐界占据了统治地位。 在古代,音乐的发展就与数学紧密地联系在了一起。从那时起到现在,随着数学和音乐的不断发展,人们对它们之间关系的理解和认识也在不断地加深.感觉的音乐中处处闪现着理性的数学。乐谱的书写离不开数学。 我们知道在钢琴的键盘上,从一个C 键到下一个C 键就是音乐中的一个八度音程。其中共包括13 个键,有8 个白键和5 个黑键,而5 个黑键分成2 组,一组有2 个黑键,一组有3 个黑键,2、 3、5、8、13 恰好就是著名的斐波那契数列中的前几个数。1、2、3、 4、5、6、7、i等音阶就是利用等比数列规定的。 音乐中的数学变换. 数学中存在着平移变换,音乐中也存在着平移变换。我们把第一个小节中的音符平移到第二个小节中去,就出现了音乐中的平移,这实际上就是音乐中的反复。作曲者创作音乐作品的目的在于想淋漓尽致地抒发自己内心情感,可是内心情感的抒发是通过整个乐曲来表达的,并在主题处得到升华,而音乐的主题有时正是以某种形式的反复出现的。 十九世纪的著名的数学家约瑟夫.傅里叶(Joseph Fourier)证明了所有的乐声,不管是器乐还是声乐,都可以用数学式来表达和描述,而且证明了这些数学式是简单的周期正弦函数的和音乐中不仅仅只出现平移变换,可能会出现其他的变换及其组合,比如反射变换等等。

数学文化之探秘音乐与数学

2019数学文化之探秘音乐与数学数学文化博大精深,涉及到我们生活的各个方面。查字典数学网为大家推荐数学文化之探秘音乐与数学,希望大家认真品阅。 音乐与数学 动人的音乐常给人以美妙的感受。古人云:余音绕梁,三日不绝,这说的是唱得好,也有的人五音不全,唱不成调,这就是唱得不好了。同样是唱歌,甚至是唱同样的歌,给人的感觉却是迥然不同。其重要原因在于歌唱者发声振动频率不同。 人类很早就在实践中对声音是否和谐有了感受,但对谐和音的比较深入的了解只是在弦乐器出现以后,这是因为弦振动频率和弦的长度存在着简单的比例关系。近代数学已经得出弦振动的频率公式是?W?=?,这里,P是弦的材料的线密度;T是弦的张力,也就是张紧程度;L是弦长;W是频率,通常以每秒一次即赫兹为单位。 那么,决定音乐和谐的因素又是什么呢?人类经过长期的研究,发现它决定于两音的频率之比。两音频率之比越简单,两音的感觉效果越纯净、愉快与和谐。 首先,最简单之比是2:1。例如,一个音的频率是160、7赫兹,那么,与它相邻的协和音的频率应该是2×260、7赫兹,这就是高八度音。而与频率为2×260、7赫兹的音和谐

的次一个音是4×260、7赫兹。这样推导下去,我们可以得到下面一列和谐的音乐: 260、7,2×260、7,22×260、7…… 我们把它简记为C0,C1,C2,……,称为音名。 由于我们讨论的是音的比较,可暂时不管音的绝对高度(频率),因此又可将音乐简写为: C0C1C2C3…… 20212223…… 需要说明的是,在上面的音列中,不仅相邻的音是和谐的,而且C与C2,C与C3等等也都是和谐的。一般说来这些协和音频率之比是2M。(其中M是自然数) 这就是我们为大家整理的数学文化之探秘音乐与数学,有没有哪一条触动了你呢?

音乐中的数学

音乐中的数学 一、音乐中的 1,2,3 并不是数字而是专门的记号,唱出来是 do, re, mi,它来源于中世纪意大利一首赞美诗中前七句每一句句首的第一个音节。而音乐的历史像语言的历史一样悠久,其渊源已不可考证。但令人惊异的是我们可以运用数学知识来解释音乐的许多规则其中包括音乐基本 元素──乐音的构成原理,也就是说 1,2,3……这些记号确实有着数字或数学的背景。 学习音乐总是从音阶开始,我们常见的音阶由 7 个基本的音组成: 1,2,3,4,5,6,7 或用唱名表示即 do, re, mi, fa, so, la, si 用 7 个音以及比它们高一个或几个八度的音、低一个或几个八度的音做成各种组合就是“曲调”。 美国著名音乐理论家珀西该丘斯(Percy Goetschius,1853-1943)说“对于求知心切的音乐学习者与音乐爱好者,再没有像音阶似的音乐要素,即刻而又持久地引起他们的好奇心与惊异的了”。 7 音音阶按“高度”自低向高排列,要搞清音阶的原理,首先须知道什么是音的“高度”?音与音之间的“高度”差 是多少?

物体发生振动时产生声音,振动的强弱(能量的大小)体现为声音的大小,不同物体的振动体现为声音音色的不同,而振动的快慢就体现为声音的高低。 振动的快慢在物理学上用频率表示,频率定义为每秒钟物体振动的次数,用每秒振动 1 次作为频率的单位称为赫兹。频率为 261.63 赫兹的音在音乐里用字母 c1 表示。相应地音阶表示为 c, d, e, f, g, a, b 在将 C 音唱成“do”时称为 C 调。 频率过高或过低的声音人耳不能感知或感觉不舒服,音乐中常使用的频率范围大约是 16~4000 赫兹,而人声及器乐中最富于表现力的频率范围大约是 60~1000 赫兹。 在弦乐器上拨动一根空弦,它发出某个频率的声音,如果要求你唱出这个音你怎能知道你的声带振动频率与空弦振动频率完全相等呢?这就需要“共鸣原理”:当两种振动的频率相等时合成的效果得到最大的加强而没有丝毫的减弱。因此你应当通过体验与感悟去调整你的声带振动频率使声带振动与空弦振动发生共鸣,此时声带振动频率等于空弦振动频率。 人们很早就发现,一根空弦所发出的声音与同一根空弦但长度减半后发出的声音有非常和谐的效果,或者说接近于“共鸣”,后来这两个音被称为具有八度音的关系。我们可以用

数学与音乐

数学与音乐 时间:2006-6-18 11:52:32 来源:天歌音响网站作者:徐志刚阅读311次 海王星的发现很好的说明数学对科学发展的重大作用。1781年天王星被发现之后,其观测的结果显示,这颗行星总是偏离预定的轨道。科学家根据行星之间的引力关系,断定有另外一颗行星干扰着天王星的运行。但这颗行星在哪儿?怎么才能找到这个行星呢?若干年后,一位就读于英国剑桥大学数学系的学生亚当斯,从格林尼治天文台找来全部观测资料,开始利用数学推算海王星的位置,并于1845年计算出海王星的位置。一年以后,巴黎天文台的勒威耶博士运用数学方法,也计算出了这颗行星的位置。并于1846年9月18日在柏林天文台观测到了海王星。所以海王星首先不是被观测到的,是先被“算”出来的。是没有看见,却先发现了。 数学史上还有一个著名的“分牛”故事。兄弟三人商量好分19头牛,老大得二分之一,老二得四分之一,老三得五分之一。既不能把牛杀死,也不能卖了分钱。兄弟三人怎么也想不出办法。这时候,见一位农夫赶着牛过来,兄弟三人向农夫请教如何分。农夫听了哈哈一笑说:“这还不容易!我借给你们一头牛,不就好分了!”这样,加上借给的1头牛就成了20头牛,老大得二分之一,即10头,老二得四分之一,即5头,老三得五分之一,即4头。最后剩下一头,农夫说:“剩下的一头,正好还给我。”这个故事是说,任何一个奇数,遇到极限问题时,只要加1就迎刃而解。这也是数学上的一条定律。 上面的故事,说明数学与计算是分不开的,因而它是科学研究中不可或缺的工具,科学发展中的每一项成果,往往最后通过数学的论证、推算才能得以证实或成立。爱因斯坦晚年一直想把狭义相对论和广义相对论统一起来,建立“统一场论”。其实就是把它们全部归入一个数学模型,但没有成功。有人说数学是科学交响曲中最后一个音符,缺少这一个音符,科学交响曲就没有真正结束。其实,音乐与数学,也有着非常密切的关系。 简单地说艺术与数学的关系,大概不会有人否认,比如雕塑、建筑、绘画(主要是西洋画法和大型绘画),都涉及到数学方面的知识,都需要计算。但如果说到音乐与数学的关系,或许有人感觉纳闷儿:数学还会与音乐有关系吗? 学者匡钊认为:西方音乐,在其发生之初便与数学有着不容忽视的血缘关系。这种血缘关系可以上溯到毕达哥拉斯时代,毕达哥拉斯认为“数”是世界万物的本源、根基。即使现有的音阶序列——五度音程或八度音程——也更多是出于推理而不完全是人耳分辨的纯粹“自然”的结果。这使得键盘乐器同人声与弦乐器之间总存在着难以弥合的音差,给调音带来麻烦,然后不得不迁就钢琴,因为钢琴统领着一切乐器,是乐器之王,其形体也是个庞然大物。我觉得这并不难理解,我们在听古典钢琴曲、或是交响乐时,我们能够在心里重复或想像某个旋律或乐句,这声音可以在我们心里流动,可是当我们试图用自己发出的声音予以重复时,却很难与心里想像、或是与所听到的乐曲、乐器所发出的声音一致。比如我们可以在心里把贝多芬的《命运交响曲》背下来,但无法让自己吟唱出来的声音全部与听到的声音吻合,想不“跑调”是不可能的。吟唱个别旋律还没问题。 键盘乐器每个音之间的音差,不是人耳自然分辨的结果,而是一种数学计算和推

相关文档