文档库 最新最全的文档下载
当前位置:文档库 › 中考几何中的最值问题

中考几何中的最值问题

中考几何中的最值问题
中考几何中的最值问题

2014中考总结复习冲刺练:“最值问题”集锦

●平面几何中的最值问题

例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?

分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB ∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R 的最大值即可.

解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry,

所以

所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.

-x2+2Rx+2R2=3R2-(x-R)2≤3R2,

上式只有当x=R时取等号,这时有

所以2y=R=x.

所以把半圆三等分,便可得到梯形两个顶点C,D,

这时,梯形的底角恰为60°和120°.

2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样

才能得出最大面积,使得窗户透光最好?

分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

若窗户的最大面积为S,则

把①代入②有

即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.

●几何的定值与最值

【例题就解】

【例1】如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.思路点拨如图,作CC′⊥AB于C,DD′⊥AB于D′,

1AB一常数,当CQ越小,CD越小,

DQ⊥CC′,CD2=DQ2+CQ2,DQ=

2

本例也可设AP=x,则PB=x

10,从代数角度探求CD的最小值.

注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:

(1)中点处、垂直位置关系等;

(2)端点处、临界位置等.

【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )

A .从30°到60°变动

B .从60°到90°变动

C .保持30°不变

D .保持60°不变

思路点拨 先考虑当圆心在正三角形的顶点C 时,

其弧的度数,再证明一般情形,从而作出判断.

注:几何定值与最值问题,一般都是置于动态背景下,

动与静是相对的,我们可以研究问题中的变量,考虑当变

化的元素运动到特定的位置,使图形变化为特殊图形时,

研究的量取得定值与最值.

学力训练

1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为 ,最小值为 .

2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均不同于点O),则△PQR 的周长的最小值为 .

3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .

4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )

A .1

B .2

2 C .2 D .13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )

A .212π+

B .2412π+

C .214π+

D .242π+

6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、 ⌒

RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( ) A.线段EF的长逐渐增大 B.线段EF的长逐渐减小

C.线段EF的长不改变 D.线段EF的长不能确定

7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于

点M,BD与CE相交于点N.

(1)求证:MN∥AB;

(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.

8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.

●最短路线问题

例1 如下图,侦察员骑马从A地出发,去B地取情报.在去B地之前需要先饮一次马,如果途中没有重要障碍物,那么侦察员选择怎样的路线最节省时间,

请你在图中标出来.

例2 如图一只壁虎要从一面墙壁α上A点,爬到邻近的另一面墙壁β上的B

点捕蛾,它可以沿许多路径到达,但哪一条是最近的路线呢?

解:我们假想把含B点的墙β顺时针旋转90°(如下页右图),使它和含A

点的墙α处在同一平面上,此时β转过来的位置记为β′,B点的位置记为B′,

则A、B′之间最短路线应该是线段AB′,设这条线段与墙棱线交于一点P,那

么,折线4PB就是从A点沿着两扇墙面走到B点的最短路线.

证明:在墙棱上任取异于P点的P′点,若沿折线AP′B走,也就是沿在墙转90°后的路线AP′B′走都比直线段APB′长,所以折线APB是壁虎捕蛾的最短路线.

由此例可以推广到一般性的结论:想求相邻两个平面上的两点之间的最短路线时,可以把不同平面转成同一平面,此时,把处在同一平面上的两点连起来,所得到的线段还原到原始的两相邻平面上,这条线段所构成的折线,就是所求的最短路线.

例3 景泰蓝厂的工人师傅要给一个圆柱型的制品嵌金线,如下左图,如果将金线的起点固定在A点,绕一周之后终点为B点,问沿什么线路嵌金线才能使金线的用量最少?

解:将上左图中圆柱面沿母线AB剪开,展开成平面图形如上页右图(把图中的长方形卷成上页左图中的圆柱面时,A′、B′分别与A、B重合),连接AB′,再将上页右图还原成上页左图的形状,则AB′在圆柱面上形成的曲线就是连接AB且绕一周的最短线路.

圆锥表面的最短路线也是一条曲线,展开后也是直线.请看下面例题.

例4 有一圆锥如下图,A、B在同一母线上,B为AO的中点,试求以A为起点,以B为终点且绕圆锥侧面一周的最短路线.

解:将圆锥面沿母线AO剪开,展开如上右图(把右图中的扇形卷成上图中的圆锥面时,A′、B′分别与A、B重合),在扇形中连AB′,则将扇形还原成圆锥之后,AB′所成的曲线为所求.

四、如何平分土地:

问题超市:水渠旁有一大块耕地,要画一条直线为分界线,把耕地平均分成两块,分别承包给两个人,BC 边是灌

溉用的水渠的一岸。两个人不知道怎么平分土地最能满足个人的需要,你看这个土地的形状(比较规则的L 形)(如右

图所示),应该怎样平分呢? 问题数学化:如何在由两个矩形所组成(割、补)的图形中寻找一条直线,使得图形被分成两部分,且两部分的面积相等,而且,均含有BC 边的一部分。

问题分析: 1、如何才能把一个矩形的面积等分。如图,可以应用矩形的两条对角线所在的直线AC 、BD ,每组对边的中点所在直线MP 、NQ ,且这四条直线都交于同一点O ,对矩形的对称

中心。即经过对称中心O 的任意一条直线都可以平分矩形的

面积。 2、利用这个结论,土地可以看成是两个矩形进行割、补得到的,分别在每个图中作两个矩形的对称中心,经过这两个点作一条直线,这条直线就可以把这两个矩形的面积进行平分,分别如上面三个图形所示:

问题的延伸:三个方案确定之后,两个农民并不满意,他们认为:“这三种方法只是把土地平分了,但是靠近水源的BC 边并没有被平分。”两人为了灌溉方使,都想把靠近水源的BC 边也平分了,谁会愿意要水源少的那块地呢?这三种分地的方法并不公平。那为了既平分土地,也平分水源,有什么办法呢?

问题的分析:(如右图所示) 直线QR 就是原来的分界线l ,取线段QR 的中点为S ,

取线段BC 的中点为P ,则直线PS 就是满足两个农民要求的分界线。 问题的证明:TRS ?与PQS ?中,三组内角对应相等,

且RS=PS ,则两个三角形全等,所以两个三角形的面积相等,于是经过直线TP 的分界仍保证了土地的平分,且过点P 也

使得水源得到了平分。

思考:如果用后两种方案,你是否也得出了可以既平分水源也平分土地的方案? F E C D B A

O Q P

N M C D B A l F

E C D B A

l F E C D B A l F E C

D B A R Q T P S

F E C

D B A

●数学最值题的常用解法

在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:

一. 二次函数的最值公式

二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有

①若a >0当x b a =-2时,y 有最小值。y ac b a

min =-442

; ②若a <0当x b a =-2时,y 有最大值。y ac b a

max =-442

。 利用二次函数的这个性质,将具有二次函数关系的两个变量建立二次函数,再利用二次函数性质进行计算,从而达到解决实际问题之目的。

例1. 某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为R x =+50030,P x =-1702。

(1)当日产量为多少时,每日获得的利润为1750元;

(2)当日产量为多少时,可获得最大利润?最大利润是多少? 解:(1)根据题意得 1750=-Px R

()()1702500301750--+=x x x

整理得x x 27011250-+=

解得x 125=,x 245=(不合题意,舍去)

(2)由题意知,利润为

Px R x x x -=-+-=--+2140500235195022()

所以当x =35时,最大利润为1950元。

二. 一次函数的增减性

一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。

例2. 某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少?

解:设招聘甲种工种的工人为x 人,则乙种工种的工人为()150-x 人,

由题意得: 1502-≥x x 所以050≤≤x

设所招聘的工人共需付月工资y 元,则有:

y x x x =+-=-+6001000150400150000()(050≤≤x ) 因为y 随x 的增大而减小

所以当x =50时,y min =130000(元)

●求最值问题

利用一次函数的性质来求最值问题

对于一般的一次函数,由于自变量的取值范围可以是全体实数,因此不存在最大最小值(简称“最值”),但在实际问题中,因题目中的自变量受到实际问题的限制,所以就有可能出现最大或最小值。求解这类问题除正确确定函数表达式外,利用自变量取值范围可以确定最大值或最小值。

例1、(2008年泉州市初中学业质量检查)红星服装厂准备生产一批A 、B 两种型号的演出服,已知每小时生产A 型演出服比B 型演出服少2套,且生产18套A 型演出服与生产24套B 型演出服所用的时间相同。

设该厂每小时可生产A 型演出服a 套,用含a 的代数式表示该厂生产24套B 型演出服所用的时间;求出a 的值。

若该厂要在8小时之内(含8小时)先后生产A 、B 两种型号的演出服50套,且生产一套A 、B 两种型号的演出服可得利润分别为40元和30元,问应如何安排生产A 、B 两种型号的演出服的套数,才能使获得的总利润最大?最大的总利润是多少元?

分析:(1) ①224+a 或a

18 ②a

a 18224=+解得6=a (2)设生产A 型演出服x 套,依题意得

88

506≤-+x x ,解得42≤x 。W 利润=()150010503040+=-+x x x W 利润是x 一次函数,利用一次函数的增减性

∵010 =k

∴W 随x 的增大而增大,

∵42≤x ,

∴当42=x 时,W 利润有最大值=192015004210=+?

例2 某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:

(1)该公司对这两种户型住房有哪几种建房方案?

(2)该公司如何建房获得利润最大?

(3)根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(a >0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?

注:利润=售价-成本

分析:(1)设A 种户型的住房建x 套,则B 种户型的住房建(80-x )套,根据题意:该公司所筹资金不少于2090万元,但不超过2096万元,可列出两个不等式,解不等式组,即可求出x 的取值范围,进而确定x 的正整数值. (2)根据一次函数的增减性解决. (3)要应用分类讨论的数学思想.从而做到不重复不遗漏,注意思维的缜密性.

解析:(1)设A 种户型的住房建x 套,则B 种户型的住房建(80-x )套.

由题意知2090≤25x +28(80-x )≤2096

48≤x ≤50

∵ x 取非负整数, ∴x 为48,49,50.

∴ 有三种建房方案:

A 型48套,

B 型32套;A 型49套,B 型31套;A 型50套,B 型30套

(2)设该公司建房获得利润W(万元).

由题意知W=5x +6(80-x )=480-x

∴ 当x =48时,W最大=432(万元)

即A 型住房48套,B 型住房32套获得利润最大

(3)由题意知W=(5+a )x +6(80-x )=480+(a -1)x

∴ 当O

即A 型住房建48套,B 型住房建32套

当a =l 时,a -1=0,三种建房方案获得利润相等

当a >1时,x =50,W最大,

即A 型住房建50套,B 型住房建30套.

答:略.

说明:此题的第(1)问是利用一元一次不等式组解决的,第(2) 、(3)问是利用一次函数的增减性解决问题的,要注意三问相互联系.

二、利用反比例函数的性质来求最值问题

例:一名工人一天能生产某种玩具3至5个,若每天须生产这种玩具400个,那么须招聘工人多少名?

分析:这是一道反比例函数模型的应用题,这里400是常量。设每人每天

生产x 个玩具,需要工人y 名。则有x

y 400=。(35≤≤x ,且x 为整数) ∵当0 x 时,y 随x 的增大而减小, ∴34005400≤≤y ,即3

113380≤≤y ∵y 为正整数,∴y 取80至134。即须招聘工人为80至134人。

三、利用二次函数的性质求最值问题

对于某些与二次函数有关的实际问题,如果我们能够将实际问题抽象为二次函数的数学模型,建立起二次函数的关系式,应用二次函数最值性质,可以解决许多实际问题。

例1.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商

品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?

解:设利润为y 元,每个售价为x 元,则每个涨(x -50)元,从而销售量

减少10(50),x -个共售出500-10(x-50)=100-10x(个)

∴y=(x-40)(1000-10x)

9000(50x +≤2=-10(x-70)<100)

∴max 709000x y ==时 答:为了赚取最大利润,售价应定为70元. 例2、(泉州市2008年中考题)某产品第一季度每件成本为50元,第二、第三季度每件产品平均降低成本的百分率为x

⑴ 请用含x 的代数式表示第二季度每件产品的成本;

⑵ 如果第三季度该产品每件成本比第一季度少9.5元,试求x 的值

⑶ 该产品第二季度每件的销售价...

为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、第三季度每件产品平均降低成本..

的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润..

为y 元,试求y 与x 的函数关系式,并利用函数图象与性质求y 的最大值(注:利润=销售价-成本)

分析:(1)()x -150 ⑵()5.9501502-=-x 解得1.0=x

(3)(),48160≥-x 解得2.0≤x 而0 x ,∴2.00≤x

而()()2150160x x y ---=

=1040502++-x x

=()184.0502+--x

∵当4.0≤x 时,利用二次函数的增减性,y 随x 的增大而增大,而2.00≤x , ∴当2.0=x 时,y 最大值=18(元) 说明:当自变量取值范围为体体实数时,二次函数在抛物线顶点取得最值,而当自变量取值范围为某一区间时,二次函数的最值应注意下列两种情形:

若抛物线顶点在该区间内,顶点的纵坐标就是函数的最值。

若抛物线的顶点不在该区间内,则区间两端点所对应的二次函数的值为该函数的最值。

四、利用对称性来求最值问题。

类这题涉及的知识面广,综合性强,解答有一定的难度。

(一)在几何题组中的应用

例1、如图,菱形ABCD 中,AB =2,,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小最是 分析:由菱形的性质知:点B与点D关于AC对称。因为P

在AC上支运动,所以PB=PD。 要求PE+PB 的最小最,即求P D+PB 的最小值。连接DE交AC于点1P ,则DE即为所求。又∠BAD =60°,AE=21AD,E为AB的中点,所以DE⊥AB,而AB=AD=2,所以DE=3,即 P D+PB 的最小值为3

例2、如图,∠AOB=45°角内有一点P,OP=10,在角的两边上有两点Q、R(均不同于点O),则△PQR的周长的最小值为

分析:作P关于OA,OB的对称点1P ,2P 。

连接1P 2P ,分别交OA,OB于Q,R。 如图所示,再连接PQ,PR。

易知 1P Q=PQ,2P R=PR,

所以△PQR的周长=1P Q+QR+2P R。

根据两点之间线段最短, △PQR的周长=1P 2P ,而∠POA=∠1

P OA, ∠POB=∠2P OB,且OP=O1P =O2P =10,

又∠AOB=45°,所以∠1P O2P =90°

即△1P O2P 为等腰直角三角形,故△PQR的周长的最小值为210

(二)在代数题组中应用

例1,如图,抛物线22

12-+=bx x y 与x 轴交于A 、B 两点,与Y 轴交于C 点, 且A (-1,0)。求抛物线的解析式及顶点D的坐标

判断△ABC的形状,证明你的结论。点M(m ,0) 是X轴上的一个动点,当MC+MD的值最小时,

求m 的值

分析:(1)将A (-1,0)代入22

12-+=bx x y 得23-=b ,所以抛物线的解析式22

3212--=x x y 配方得:825)23(212--=x y ,所以顶点D ??

? ??-825,23 (2)求出AC=5,BC=20,而AB=5

∴222AB BC AC =+,故△ABC为RT △

(3)作点C 关于X 轴的对称点E (2,0),

连接DE 交X 轴于点M ,通过两点式可求得直线DE 的 解析式:21241+-=x y ,当y =0时,解得x =41

24 ∴M(4124,0)即m=41

24

P O B A Q R 2

P 1P

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

中考数学《几何最值》

几何最值 要了解最值,关键要明白点的运动,以及最值产生的条件,共线状态是最值产生的那一刹那状态,思齐老师往往会说,最值出角度. 例1、在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值. C A B P E

巩固 以平面上一点O 为直角顶点,分别画出两个直角三角形,记作△AOB 和△COD ,其中∠ABO =∠DCO =30°.如图,若BO =,点N 在线段OD 上,且NO =2.点P 是线段AB 上的一个动点,在将△AOB 绕点O 旋转的过程中,线段PN 长度的最小值为_______,最大值为_______. 33B A D O N P C O C D N 备用图

例2、已知:△AOB 中,2AB OB ==, △COD 中,3CD OC ==,ABO DCO ∠=∠.连接AD 、BC ,点M 、N 、P 分别为OA 、OD 、BC 的中点. (1)如图1,若A 、 O 、C 三点在同一直线上,且60ABO ∠=?,则△PMN 的形状是___________,此时AD BC =____________; (2)如图2,若A 、 O 、C 三点在同一直线上,且2ABO α∠=,证明△PMN ∽△BAO ,并计算AD BC 的值(用含α的式子表示); (3)在图2中,固定△AOB ,将△COD 绕点O 旋转,直接写出PM 的最大值. D C P A B N M C P D B N M A O O 图1 图 2

中考数学几何中的最值问题综合测试卷(含答案)

中考数学几何中的最值问题综合测试卷 一、单选题(共7道,每道10分) 1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离 为()cm A. B.15 C. D.12 答案:B 试题难度:三颗星知识点:勾股定理、圆柱展开图、轴对称的性质 2.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最 小值为() A.3 B.4 C.5 D.6 答案:C 试题难度:三颗星知识点:轴对称的性质、矩形的性质 3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和

AB上的动点,则BM+MN的最小值为( ) A. B. C.6 D.3 答案:A 试题难度:三颗星知识点:轴对称的性质 4.如图,当四边形PABN的周长最小时,a=(). A. B. C. D. 答案:C 试题难度:三颗星知识点:轴对称的性质 5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上

运动,当线段AP与线段BP之差达到最大时,点P的坐标是( ) A. B.(1,0) C. D. 答案:D 试题难度:三颗星知识点:轴对称——线段之差(绝对值)最大 6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点 E,PF⊥BC于点F,则线段EF长度的最小值是() A. B. C. D. 答案:C 试题难度:三颗星知识点:垂线段最短 7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷 一、单选题(共6道,每道16分) 1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( ) A.100° B.110° C.140° D.80° 答案:A 解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 2.如图,当四边形PABN的周长最小时,a的值为( ) A. B.1 C.2 D. 答案:A 解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点

P在直线l上运动,则的最大值为( ) A. B.3 C.1 D.5 答案:D 解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题. 试题难度:三颗星知识点:最值问题 4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( ) A.2 B.1 C. D.3 答案:C 解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题. 试题难度:三颗星知识点:最值问题 5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

中考复习数学几何最值问题

几何最值问题 一、垂线段最短 1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距 离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是() 2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________ 3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是. 4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.

5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF, 且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。 6、已知菱形ABCD 的对角线AC 和BD 交于点O ,?=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 . 7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________ 8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.

初中数学几何最值问题典型例题

初中数学几何最值问题 典型例题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =PMN 的周长的最小值为 . 【分析】作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.根据对称的性质可以证得:△COD 是等腰直角三角形,据此即可求解. 【解答】解:作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长. ∵PC 关于OA 对称, ∴∠COP =2∠AOP ,OC =OP 同理,∠DOP =2∠BOP ,OP =OD ∴∠COD =∠COP +∠DOP =2(∠AOP +∠BOP )=2∠AOB =90°,OC =OD . ∴△COD 是等腰直角三角形. 则CD OC . 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN 周长最小的条件是解题的关键. 2.如图,当四边形PABN 的周长最小时,a = .

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

中考数学专题复习几何最值问题

【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是(). B.6 C. D.4 A. 【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心, AB长为直径的圆上,如图所示. B′D的长最小值= DE =. 22故选A. 【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如B D DE B E '' ≤-,当且仅当点E、B′、D三点共线时,等号成立. 【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是 . 【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问

题得解. 【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=1 AB=,OD=,∴DH的最 1 2 小值为OD-OH 1. 【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用DH OD OH ≤-的基本模型解决. 【针对训练】 1. 如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在x轴正半轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为(). B.1.3 A 2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为(). B. C. D.4 A.3 3. 如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

2020中考数学专题汇编 几何最值 含解析

几何最值 一、选择题 1.(2020·泰安)如图,点A ,B 的坐标分别为A (2,0),B (0,2),点C 为坐标平面内一点,BC ﹦1,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( ) A . 2 +1 B . 2 +1 2 C .2 2 +1 D .2 2 —1 2 {答案} B {解析}本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点C 为坐标平面内一点,BC ﹦1,所以点C 在以点B 为圆心、1长为半径的圆上,在x 轴上取OA ′=OA=2,当A ′、B 、C 三点共线时,A ′C 最大,则A ′C=2 2 +1,所以OM 的最大值为 2 +1 2 ,因此本题选B . 2.(2020·无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =1 2, 有下列结论: ①CP 与QD 可能相等; ②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31316; ④四边形PCDQ 周长的最小值为3+37 2. 其中,正确结论的序号为( ) A .①④ B .②④ C .①③ D .②③ {答案} D {解析}设AQ =x ,则BP =5 2 —x ①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =53 4,∴DE = 34,∴此时QD =212,即0≤QD ≤212;而33 2≤CP ≤3,两个范围没有交集,即不可能相等;①错误 ②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=3 2,∴都存在,∴②正确; ③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S △BPC = 34×32-12?x ?34-1 2 ×3 × D Q P C B A

最新初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

( 4)、台球两次碰壁模型 变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短. 变式二:已知点A位于直线 m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m 两侧: 作法:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m 同侧: 练习题 1.如图1,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图3,在锐角三角形ABC 中 , AB=BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。 m m Q Q

中考几何最值问题归类解析

中考几何最值问题归类解析(1) -实验中学周记民 教学目标 1.了解解决几何最值问题的基本原理和方法。 2.初步掌握利用平面几何知识及几何图形、平面直角坐标系、函数等知识解决几何最值问题,培养学生几何探究、推理的能力。 3.进一步体验数形结合思想,转化思想等思想方法。 教学重点:几何最值问题原理的运用; 教学难点:寻求几何最值问题解决的有效途径及方法。 教学过程: 一、引入 1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等; 2.几何最值问题的基本原理。 ①两点之间线段最短②垂线段最短③利用函数关系求最值 二、典例剖析 1.线段最值问题。 例1:(2010年黄冈)如图1,某天然气公司的主输气管道从A市 的东偏北30°方向直线延伸,测绘员在A处测得要安装天然气的M小 区在A市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处, 测得小区M位于C 的北偏西60°方向,请你在主输气管道上寻找支 管道连接点N,使到该小区铺设的管道最短,并求AN的长。 分析:本题可直接转化为数学问题,即利用“垂线段最短”的基本原理,找到点N的位置,然后利用解直角三角形可求出问题的答案。 答案:过点M作MN⊥AC于N,点N即为所求AN=1500米 2.线段和的最值问题。 例2:(2010年宁德)如图2,四边形ABCD是正方形△ABE是 等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕

点B 逆时针旋转60°得到BN ,连接EN,AM,CM. (1)求证:△AMB ≌△ENB ; (2)①当M 点在何处时,AM+CM 的值最小; ②当M 点在何处时,AM+BM+CM 的值最小,并说明理由; 分析:本题第(2)小题利用BM 绕点B 逆时针旋转60°得到△BMN 是等边三角形的特殊结构,将三条线段的和转化为“两点之间,线段最短的问题”,再结合图形的特殊对应结构进行分析,从而确定AM+BM+CM 取最小值时,点M 的位置。 答案:(1)略 (2)①点M 为BD 中点;②M 为BD 与CE 的交点 3.线段差的最值问题。 例3:(2010年晋江)已知:如图3,把矩形OCBA 放置于直角坐标系中,OC=3,BC=2,取AB 的中点M,连接MC ,把△MBC 沿x 轴的负方向平移OC 的长度后得到△DAO 。 (1)试直接写出点D 的坐标; (2)已知点B 与点D 在经过原点的抛物线上,点P 在第一象限内的该抛物线上移动,过点P 作PQ ⊥x 轴于点Q ,连接OP. ①若以O,P,Q 为顶点的三角形与△DAO 相似,试求出点P 的坐标; ②试问在抛物线的对称轴上是否存在一点T,使得︱TO-TB ︱的值最大。 分析的对称性,将两条线段的差的最值转化为一条线段的最值,再利用一次函数的相关知识求出点T 的坐标。 答案:(1)D (-122 3,) (2)P 1 (64 1531651,) P 2 (3,2) 图3

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

第11讲阿氏圆最值模型(解析版) 2020年中考数学几何模型能力提升篇(全国通用)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化12 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

初中数学最值问题专题分类讲解全书

初中数学最值问题专题分类讲解全书 ●平面几何中的最值问题 ●几何的定值与最值 ●最短路线问题 ●对称问题 ●巧作―对称点‖妙解最值题 ●数学最值题的常用解法 ●求最值问题 ●有理数的一题多解

●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’=AP,

在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好?

中考专题第九讲几何最值及路径长

第九讲几何最值及路径长 预习 如图,A , B 为定点,P 为直线I 上一点,若点 提示: ① 分析定点(A ,B ),动点(P 在直线I 上动), 不变特征 ② 以I 为对称轴利用轴对称进行转化 ③ 由“两点之间,线段最短”确定位置 2.如图,A,B 为定点,MN 为直线I 上一可以移动的线段,且MN 长度固定,若点M 恰好使 AM+MN+BN 最短,请画出点M 的位置. 提示: ① 分析定点(A ,B ),动点(M ,N 在I 上动,且MN 长度固定),不变特征 ② 先平移BN ,使平移后的点N 与M 重合,将其转化为问题1 ③ 以I 为对称轴利用轴对称进行转化④由“两点之间,线段最短”确定位置 3.如图,/ AOB=60°点P 在/ AOB 的平分线上,OP=10cm ,点E ,F 分别是/ AOB 两边OA , OB 上的动点,当△ PEF 的周长最小时,点P 到EF 的距离是 _____________________ . 提示:①分析定点(P ),动点(E 在OA 上动,F 在OB 上动),不变特征 ② 分别以OA , OB 为对称轴,将P 对称过去,得到P i ,P 2 ③ 连接P 1P 2,由“两点之间,线段最短”确定位置,进而求解 1. P P 的位置. I M N

知识点 1.几何最值问题的处理思路

① 分析定点、动点,寻找不变特征; ② 若属于常见模型、结构,调用模型、结构解决问题; 若不属于常见模型,要结合所求目标,根据不变特征转化为基本定理或表达为函数解决问题. 转化原则: 尽量减少变量,向定点、定线段、定图形靠拢,或使用同一变量表达所求目标. 基本定理: 两点之间,线段最短(已知两个定点) 垂线段最短(已知一个定点、一条定直线) 三角形三边关系(已知两边长固定或其和、差固定) 过圆内一点,最长的弦为直径, 常用模型、结构示例: ①轴对称最值模型 固定长度线段MN 在直线I 上滑动,求AM+MN+BN 的最小值,需平移BN (或 AM ),转化为 AM MB 解决. ②折叠求最值结构最短的弦为垂直于直径的弦 求FA+PB 的最小值, 使点在线异侧 求|PA-PB|的最大值, 使点在线同侧

中考数学中的最值问题解法(学生版)

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图 形的周 长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有: (1)应用两点间线段最短的公理 求最值;( 2)应用垂线段最短的性质求最值; ( 3)应用轴对称的性质求最 值; 5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 例 4. 在△ABC 中,AB =5,AC =3,AD 是 BC 边上的中线,则 AD 的取值范围是 练习题: 1. 如图,长方体的底面边长分别为 2cm 和 4cm ,高为 5cm . 若一只蚂蚁从 P 点开始经 过 4 个侧面爬行一圈到达 Q 点,则蚂蚁爬行的最短路径长为【 】 2. 如图,圆柱的底面周长为 6cm , AC 是底面圆的直径,高 BC=6cm ,点 P 是母线 BC 上一 2 点,且 PC= BC .一只蚂蚁从 A 点出发沿着圆柱体的表面爬行到点 P 的最短距离是 【 】 3 含应用三角形的三边关系) 4)应用二次函数求最值; 典型例题: 例 1. 如图,∠ MON=9°0 ,矩形 ABCD 的顶点 A 、 B 分别在边 OM , 运动时, A 随之在边 OM 上运动, 矩形 ABCD 的形状保持不变,其中 程中,点 D 到点 O 的最大距离为 B . 5 C . 145 5 5 D . 例 2. 在锐角三角形 ABC 中, BC=4 2 ,∠ ABC=45°, BD 平分∠ ABC , M 、 N 分别是 BC 上的动点,则 CM+MN 的最小值是 例 3. 如图, 圆柱底面半径为 2cm ,高为 9 cm ,点 上的点,且 A 、B 在同一母线上,用一棉线从 A 顺着圆柱侧面绕 3 圈到 B ,求棉线 最短为 cm 。 A.13cm B.12cm C.10cm D.8cm ON 上,当 B 在边 ON 上 AB=2,BC=1,运动 过 A 、 B 分别是圆柱两底面圆 周

相关文档
相关文档 最新文档