文档库 最新最全的文档下载
当前位置:文档库 › 计算传热学-传热基本原理及其有限元应用

计算传热学-传热基本原理及其有限元应用

计算传热学-传热基本原理及其有限元应用
计算传热学-传热基本原理及其有限元应用

1. 传热学的发展概述

18世纪30年代首先从英国开始的工业革命促进了生产力的空前发展。生产力的发展为自然科学的发展成长开辟了广阔的道路。传热学这一门学科就是在这种大背景下发展成长起来的。导热和对流两种基本热量传递方式早为人们所认识,第三种热量传递方式则是在1803年发现了红外线才确认的,它就是热辐射方式。在批判“热素说”确认热是一种运动的过程中,科学史上的两个著名实验起着关键作用。其一是1798年伦福特(B .T .Rumford)钻炮筒大量发热的实验,其二是 1799年戴维(H .Davy)两块冰块摩擦生热化为水的实验。确认热来源于物体本身内部的运动开辟了探求导热规律的途径。1804年毕渥根据实验提出了一个公式,认为每单位时间通过每单位面积的导热热量正比例于两侧表面温差,反比例于壁厚,比例系数是材料的物理性质。傅里叶于1822年发表了他的著名论著“热的解析理论”,成功地完成了创建导热理论的任务。他提出的导热定律正确概括了导热实验的结果,现称为傅里叶定律,奠定了导热理论的基础。他从傅里叶定律和能量守恒定律推出的导热微分方程是导热问题正确的数学描写,成为求解大多数工程导热问题的出发点。他所提出的采用无穷级数表示理论解的方法开辟了数学求解的新途径。傅里叶被公认为导热理论的奠基人。在傅里叶之后,导热理论求解的领域不断扩大。同样,自1823年M. Navier 提出流动方程以来,通过1845 年 G.G. Stokes 的改进,完成了流体流动基本方程的创建任务。流体流动理论是更加复杂的对流换热理论的必要前提,1909和1915年W. Nusselt 开辟了在无量纲数原则关系正确指导下,通过实验研究对流换热问题的一种基本方法。1904 年,L. Prandtl 提出的对流边界层理论使流动微分方程得到了简化,1921年 E. Pohlhausen 基于流动边界层理论引进了热边界层的概念,为对流传热微分方程的理论求解建立了基础。在辐射传热研究方面,19世纪J. Stefan 根据实验确定了黑体辐射力正比于它的绝对温度的四次方的规律,1900年M.Planck 提出的量子假说奠定了热辐射传热理论基础。上述传热理论为传热分析解析、数值以及实验研究奠定了理论基础。还要特别提到的是,由于计算机的迅速发展,用数值方法对传热问题的分析研究取得了重大进展,在20世纪70年代已经形成一个新兴分支—数值传热学。近年来,数值传热学得到了蓬勃的发展[2-4]。

2. 传热分析计算理论

热量传递主要有三种传递形式,分别是热传导、热对流和热辐射。热传导是指两个相互接触良好的物体之间的能量交换或一个物体由于其自身温度梯度而

引起的内部能量的传递。其遵循傅里叶定律[5]:dT q dx

λ=-,其中λ是热导率, dT dx

是温度梯度,q 是热流密度。热对流是指在物体与其周围介质之间发生的热量交换。热对流分为自然对流和强制对流,用牛顿冷却方程描述为()w f q h t t =-,其中h 为表面传热系数,w t 为物体表面的温度,f t 为物体周围流体的温度。一个

物体或两个物体之间通过电磁波形式进行的能量传递交换称为热辐射,通常由斯

忒藩-波尔兹曼定律计算。就物体温度与时间的变化关系而言,热量的传递过程可以区分为稳态过程(又称定常过程)与非稳态过程(又称非定常过程)两类。凡是物体的各点温度不随时间而变化的热量传递过程都称为稳态热传递过程,反之温度随时间变化的热量传递过程则称为非稳态传热过程。

2.1 基本方程

在进行传热分析时,主要用到的定律方程有能量守恒定律、动量守恒方程和质量守恒方程。能量守恒定律也是热力学第一定律,它是自然界基本的一个定律。它指出能量是不能消灭,也不能创造的,只能从一种能量形式转化为另一种能量形式,或者由一种物质传递到另一种物质,并且在这种能量转化和能量传递过程中其总量保持不变。同时,对流传热的描述还会用到动量守恒方程和质量守恒方程,动量守恒方程是描述粘性流体流动过程的控制方程。在数值模拟计算中,这些方程采用的是时均形式的微分方程。

能量守恒方程

()

p D c T T q Dt

ρφλρ=+?+

质量守恒方程 ()

0U t ρρ?+?=? 动量守恒方程

()D U

F p U Dt ρρμ=-?+?

式中: ρ为流体压力;T 为流体温度;q 为流体所吸收的热量;U 为速度矢量;μ为流体的动力粘度;F 为作用在流体上的质量力,在重力场中F g =;λ为导热系数;p c 为流体的比热容;φ为能量耗散函数:

[]2

2φμε=

其中[]ε为流体的变形张量,代表流体克服粘性所消耗的机械能,他将不可逆转化为热而耗散掉;在充分发展的湍流区域,反映湍流脉动量对流场影响的湍流动能方程和湍流应力方程可以通过标准k ε-方程得到,其形式为: t k b i k

i dk k G G dt x x μρμρεσ??????=+++-?? ???????

式中:t μ为湍流粘度,2t k C μμρε=; k 为湍流动能; ε为湍流动能耗散率。

2.2 基本控制方程求解的数值方法

在利用数学方法进行热传递分析时,首先假定研究对象内各点的密度、温度、

速度等都是空间坐标的连续函数。基本控制方程数值方法求解的基本思想是:把原来在时间和空间坐标中连续的物理场比如速度场、温度场等,用有限个一系列的离散点也就是节点上的值的集合来替代,再利用一定合理的原则建立这些有关离散点的表达变量值之间关系的代数方程即为离散方程,利用数学方法来求解所建立起来的这些代数方程并求得所求解变量的近似值。图2-1表示了基本控制方程的典型求解流程。

图2-1 控制方程数值求解流程

计算流动传热常用到的数值方法主要包括:有限分析法、有限差分法、有限元法以及有限容积法。在有限元分析软件ANSYS 中的有限容积法是指将计算区域划分成很多不互相重叠的网格,并且围绕每个网格节点都有一个控制体,再将每一个控制方程都在控制体上进行积分求解,可以得到包含一组节点计算变量值的离散化方程,可以保证具有守恒性,而且离散方程系数的物理意义明确,是目前流动与传热问题的数值计算中应用得最广的一种方法。

3.有限元概述

有限元分析方法是对真实的物理系统进行近似的数学模拟,用有限个单元去逼近无限未知量的过程。有限元的概念第一次提出是1943 年Courant 为研究St.Venant 的扭转问题采用了三角形分片上的连续函数和运用最小势能的原理。有限元方法发展相当缓慢,直到1956 年,Turner,Clough,Martin 和Topp 等人第一次真正通过运用直接刚度法来确定由弹性理论的方程求出三角单元特性解决平面应力问题,并且将其写入论文进行发表。由于计算机的出现,使得复杂的平面弹性问题求解更加容易,形成了新的研究方法。“有限元法”这个名称,

是1960 年Clough 发表的一篇平面弹性问题的论文中真正第一次出现。至此,工程师们开始注意到有限元法的作用,并把它进行广泛地应用。随着1970 年代以后,计算机技术的飞速发展,也带来了有限元法的迅速发展进步,大量相关的学术论文相继发表,并且出现了更多相关专著,进入了有限元的全盛发展时期。迄今为止,有限元法主要被应用于流体力学、固体力学、电磁学、声学、热导学等各个领域;可以求解杆、梁、板、壳、块体等各类单元构成的弹性(线性和非线性)、弹塑性或塑性的问题;能计算温度场、电磁场、流体场等场分布问题的稳态和瞬态问题;还能求解水流管路、电路、润滑、噪声以及固体、流体、温度相互作用的问题[6]。

有限元分析是建立真实的物理系统,包括几何条件和载荷工况,然后利用数学近似的方法进行数值模拟。有限元方法的主要基本思路是:“化整为零,积零为整”。它的求解步骤包括:①将一个整体结构看作是由若干个单个的结构元件构成,并且通过有限个连接点连接。单个的结构元件为“有限元”或“单元”,连接点为“节点”。②在各单元上进行力学分析,并由相关力平衡条件建立相应的节点位移关系式及相关的节点力或节点位移的系列方程式。③求解得到的方程组,获得问题的解。如果形函数满足一定要求,解的精度会随着单元数目的增加而不断提高并且收敛于问题的精确解。如果无限制地增加单元的数目将会却增加计算机计算所耗费的时间。因此,在实际工程应用中,只要所得的数据能够满足工程需要就足够了。

3.1 有限元法的基本原理

对于某些因为自身结构形状复杂或者具有非线性问题的工程实际问题,由于其边界值获得较为困难,解析解求解也很困难。这类问题主要可以由下面两种方法来解决,其一是把问题的连续体进行离散化处理,然后利用结构矩阵分析的方法进行处理,最后通过数值法进行求解;二是可以把实际问题进行相关简化处理,也就是进行简化问题的方程和边界条件,使其能够进行计算,进而求得它在简化状态下的解,但是过多的简化又可能造成求得的解不正确甚至是错误的。有限元法的基本思想是人为地把连续体的求解域划分成若干单元,单元与单元之间只是通过节点相互连接,用构成一个单元的集合来替代本身的连续体。通过选定适当的插值函数求解单元内部各点的求解量。通过相关平衡关系或者能量关系来建立节点量相互之间的方程式,然后再将各个单元“集合”在一块而形成总体的代数方程组,进行边界条件的求解。它是一种近似求解一般连续性问题的数值方法。

3.2 有限元法分析的步骤

利用有限元法分析求解问题的基本步骤通常为:①明确问题,定义求解域:根据实际问题近似确定求解域的几何区域和物理性质;②有限元网络划分:将求解域近似划分为有限个具有不同形状和大小而且彼此相互连接的单元组成的离散域;③确定状态变量和控制方程:即用包含问题状态变量边界条件的微分方程来表示一个具体的物理问题,并且将其转化为等价的泛函形式进行有限元分析。

④单元的推导:推导有限单元的列式指对单元构造一个适合的近似解,包括选择建立单元试函数和合理的单元坐标系,并且用某种合适方法定义单元各状态变量的离散关系形成单元矩阵;⑤总矩阵方程求解:将单元总体组装成离散域的联合方程组,并且要满足一定的连续条件;⑥求解联立方程组:有限元法联立方程组的求解可用随机法、选代法和直接法。有限单元法分析从使用有限元程序的角度来分,又可以分成三大步骤,如图3-1所示。

图3-1 利用有限元程序进行分析的三个基本步骤

前处理是指对研究对象进行网格划分并且形成计算模型的过程,主要包括选择计算单元类型、确定节点和单元网格及约束载荷的位移等。求解是指在得到总体刚度方程并进行约束处理后,联立线性方程组的求解,并且最后得到节点位移的总过程。后处理是指对计算结果的处理和有关数据的输出过程,包括各种温度、应变、应力或位移的整理,形成温度场分布图、应力图、变形图等[7]。

3.3 热传导问题的有限元描述

从上述基本理论可以建立起热传导问题[8-9]的有限元描述方法。

各向异性体传热问题能量方程为:

y x z q q q T Q c x y z t ρ??????-+++= ???????

(3.1) 其中x q ,y q ,z q 为单位面积热流向量分量,Q 为单位面积内的热源率,ρ为密度,c 为比热。对同一各向异性介质而言,傅立叶定律(Fourier )为:

111213212223313233x y z T T T q k k k x y z T T T q k k k x y z T T T q k k k x y z ??????=-++? ??????????????=-++? ??????????????=-++ ????????

(3.2) 其中ij k 为材料的导热系数张量。材料的密度、比热和导热系数均可随温度而改

变。将Fourier 定律代入能量方程中即可得到抛物线型传导方程式。结合边界条件和初始条件即可求解。

初始条件设定零时刻的温度分布为:

()()0,,,0,,T x y z T x y z = (3.3)

考虑常用的边界条件:设定表面温度、设定表面热流及对流换热。上述边界条件为:

()1,,,T T x y z t = 在1s 上

x x y y z z s q l q l q l q ++= 在2s 上

()x x y y z z s e q l q l q l h T T ++=- 在3s 上

其中,1T 为可随时间变化的设定表面温度;x l ,y l ,z l

为表面外法向的方向余弦;

s q 为单位面积的热流率;h 为对流换热系数,s T ,e T 分别为气流和内表面温度。

将求解区域分成M 个单元而每个单元有r 个结点,单元内的温度及温度梯度可表示为:

()()()1

,,,,,r

e i i i T x y z t N x y z T t ==∑

()()()

1,,,,,e r

i i i N T x y z t x y z T t x x =??=

??∑

(3.4) ()()()1,,,,,e r

i i i N T x y z t x y z T t y y

=??=??∑ ()()()1

,,,,,e r

i

i i N T x y z t x y z T t z z =??=

??∑

以矩阵符号表示为:

()()(){},,,,,e T x y z t N x y z T t =????

()()()()(){}

,,,,,,,,,,,T x y z t x T x y z t B x y z T t y T x y z t z ??

???

???

???=?????????

???

?????

(3.5) 其中[]N 为温度插值矩阵,[]B 为温度梯度插值矩阵。

()[]12,,R N X Y Z N N N =???????

()1212

1

2...,,......r r r

N N N x x x N N N B x y x y y y N N N z z z ?????

??

?????

?????

=???????????

?????

???????

(3.6) Fourier 定律写成矩阵形式,如下:

111213212223313233x y z T x q k k k T q k k k y k k k q T z ???????????????????=-????????????????????????? (3.7) 其中[]K 为导热系数矩阵。以结点温度表示温度梯度:

[][]{}x y z q q K B T q ????=-?????? (3.8)

最后可推导出单元方程的矩阵形式:

[][][](){}{}{}{}{}c h T Q q h dT C K K T R R R R dt ??++=+++????

(3.9) 其中

[]{}[][][][][][]{}[]e e

e T c c C c N N d K B K B d K h N N d ρΩΩΩ?=Ω

??

?=Ω???=Γ??

??? (3.10) {}()

[]{}{}1T s Q Q R q n B d R Q N d ?=-?Γ???=Ω???

?? (3.11) {}{}{}{}23q s e h s R N d R hT N d ?=-Γ???=Γ

????? (3.12) 上面的式子中,[]C 为单元热容矩阵;[]c K ,[]h K 为与热传导以及对流有关的传导系数矩阵;{}T R ,{}Q R ,{}h R 分别为设定结点温度、内热源、表面热流和表面对流所产生的温度载荷向量。

方程(3.10)为考虑传导和对流的各向异性介质的单元矩阵方程式,通过单元方程式组合可以很容易得到整体矩阵方程,引入边界条件和初始条件即可求解。如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量,则系统处于热稳态。在稳态热分析中任一结点的温度不随时间变化,

所以方程(3.9)中与时间有关的项都将消失,故稳态热分析的热传导方程简化为

[]{}{}

=(3.13)

K T Q

式中:[]K为传导矩阵,包含导热系数,对流系数及辐射率和形状系数;{}T为结点温度向量;{}Q为结点热流率向量,包含热生成。

本节内容为下一章ABAQUS 有限元热传递分析计算奠定基础。

4.ABAQUS软件[10]简介

ABAQUS被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学和结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题。在传热学领域,根据传热问题的分类和边界条件的不同,可以将热分析分成几种类型:与时间无关的稳态热分析和与时间有关的瞬态热分析;材料参数和边界条件不随温度变化的线性传热,材料和边界条件对温度敏感的非线性传热;包含温度影响的多场耦合问题。

ABAQUS可以求解以下类型的传热问题:

1)非耦合传热分析。此类分析中,模型温度场不受应力应变场的影响。在ABAQUS/Standard中可以分析热传导、强制对流、边界辐射等传热问题,其分析类型可以是瞬态或稳态、线性或非线性。

2)顺序耦合热应力分析。此类分析中的应力应变场取决于温度场,但温度场不受应力应变影响。此类问题使用ABAQUS/Standard来求解,具体方法是首先分析传热问题,然后将所得到的温度场作为已知条件,进行热应力分析,得到应力应变场。分析传热问题所使用的网格和热应力分析的网格可以不一样。

3)完全耦合热应力分析。此类分析中的应力应变场和温度场之间有点强烈的相互作用,需要同时求解。可以使用ABAQUS/Standard或ABAQUS/Explicit来求解此类问题。

4)绝热分析;

5)热电耦合分析;

6)空腔辐射。

本文通过使用ABAQUS 建立铝合金厚板的热力耦合分析模型,其中铝合金的材料力学和热学材料属性都随着温度的变化而发生变化,分别使用顺序耦合分析和完全耦合分析,最后得到两组铝合金厚板的应力、应变、温度等的分布规律,对两组结果进行比较分析。

5.计算实例分析

如图1所示,一个两端固定的等截面铝合金厚板,铝合金厚板的弹性模量为E,线膨胀系数为α,在梁的上表面加随时间变化规律为Q(t)=20000+t (W/m2)的热流量和2×106(Pa)的均布载荷,求铝合金厚板上的应力、温度分布情况。铝合金厚板尺寸为:长0.8 m,宽0.2 m,高0.1 m,密度为2810 kg/m3,泊松比为0.33,选

取材料为7075铝合金,7075铝合金材料属性如表1所示。

表1 7075铝合金材料特性

温度/

导热系数/ 比热容/ 弹性模量/ 热膨胀系数/ C ? ()11W m C --??? ()11J kg C --??? GPa ()6110C --?

155.0 830 73.33 22.6 25

156.0 860 72.00 23.5 60

158.3 870 71.20 24.0 100

161.0 900 69.07 24.9 200

175.0 970 61.87 28.4 300

185.0 1020 53.87 29.9 400

193.0 1120 48.53 31.4 500 197.0 1320 44.50 31.7

5.1 顺序耦合热应力计算

一、传热分析

创建部件:

打开ABAQUS ,进入Part 模块,点击工具区“创建部件”工具,输入部件名plate ,选择三维、可变形、拉伸实体,模型空间大约尺寸设置为2,进入二维草图绘制界面。点击“创建线矩形”,输入第一点坐标为(0,0),第二点坐标为(0.8,0.1),完成草图绘制,输入深度0.2,完成部件的创建,如图5-1所示。

图5-1 部件图

图5-2 材料属性定义图

定义材料属性

进入属性模块,点击“创建材料”工具,输入材料名aluminum alloy,输入基本条件中的材料属性中的密度、导热系数、比热容、弹性模量和热膨胀系数,其中导热系数、比热容、弹性模量、热膨胀系数随温度变化发生变化,在输入数据时选择使用与温度相关数据,如图5-2所示。

定义截面属性

点击工具区中的创“建截面”工具,输入截面名Plate-Section,类别选实体,类型选择连续,材料选取之前定义的aluminum alloy,完成截面创建操作,点击工具区中的分配截面,选择梁,将Plate-Section 赋值给厚板。

装配部件

进入装配模块,点击工具区中的“将部件实例化”工具,选择Plate,选择独立类型,完成装配定义。

设置分析步

进入分析步模块,点击工具区的“创建分析步”工具,命名为Heat-flux ,选择“热传递”作为分析类型,基本信息为“瞬态”响应,时间长度为600S,增量步选择“固定”类型,最大增量步数100,增量步大小为10S,其他选项使用默认选项。可得增量步数应为60.

定义载荷和边界条件

进入载荷模块,点击“创建边界条件”,分析步选择“Initial”,类别选择力学中的“对称/反对称/完全固定”,选择两个侧面,选中全部固定,加完力学边界条件。

点击“创建预定义场”,分析步选择“Initial”,选择其他中的温度选项,选择整个厚板,输入温度大小为20℃,完初始温度设定。

点击菜单栏中的工具选项,工具选项中的幅值,采用默认名称Amp-1,类型

选择表,输入时间为0 时刻值为20000,600时值为20600,完成对幅值的定义。

点击“创建载荷”,分析步选择“Heat-flux”,选择热学中的表面热流,然后选中铝合金厚板上表面,大小为1,幅值选择刚才定义的Amp-1,完成热流定义,结果如图3所示。

图5-3 载荷示意图

图5-4 网格示意图

划分网格

进入网格模块,可以看见结构显示为绿色,可知因结构形状很规则,可直接采用结构划网格。

点击工具区的“为边布种”,三条边布种数量为别为35,10,5,“网格控制属性”选择六面体结构化网格,单元类型选择Standard,线性,热传递,得到八结点线性传热六面体单元DC3D8,然后点击为实例部件划分网格,网格划分完,点击检查网格,选择部件,进行检查,得到结果为:单元数: 1850, 分析错误: 0 (0%), 分析警告: 0(0%),完成网格划分,结果如图4所示。

运行计算

进入作业模块,点击作业管理器,创建一个作业,各项均选择默认,创建完一个作业Job-1,提交作业,完成后点击结果,观察结果云图,保存模型FEM1.cae。

二、力学分析

打开之前保存的模型FEM1.cae,仍使用之前所用模型,但是其中有几处需要修改:

修改分析步

(1)进入分析步模块,删除之前定义的分析步,重新建立一个静力学的分析步,名称为Load,类型选择“静力,通用”,时间长度选择600 S,增量中选择固定类型,最大增量步数输入100,增量步大小输入10,其他选择项默认选项。

(2)点击场量输出管理器,删除自动生成的输出场量,新建一个场量,分析步选择选择默认的“Load”,S,E,PE,U,NT为输出场量。

修改载荷与预定义场

(1)进入载荷模块,点击“创建载荷”,分析步选择“Load”,选择力学中的压强,然后选中铝合金厚板上表面,大小为2E6,完成压强定义。

(2)点击“预定义场管理器”,删除之前定义的预定义场,新建一个预定义场,分析步选择“Initial”,选择其他中的温度选项,选择整个厚板,分布中选择“来自结果或输出数据的文件”,选择之前计算完成的Job1.dob文件,分析步为1,增量为0,然后编辑“Load”分析步中的预定义场,状态选择“已修改”,开始分析步输入1,开始增量输入0,结束分析步输入1,末尾增量输入60。完成对预定义场的修改。

修改网格

进入网格模块点击“指派单元类型”,选择三维应力,其他选项使用默认选项,重新划分网格。

运行计算

进入作业模块,点击作业管理器,创建一个作业,各项均选择默认,创建完一个作业Job-2,提交作业,完成后点击结果,观察结果云图。保存模型FEM2.cae。

5.2 完全耦合热应力计算

打开之前保存的模型FEM1.cae,仍使用之前所用模型,但是其中有几处需要修改:

修改分析步

进入分析步模块,删除之前定义的分析步,重新建立一个静力学的分析步,名称为Temperature-displacement ,类型选择“温度-位移耦合”,时间长度选择600 S,增量中选择固定类型,最大增量步数输入100,增量步大小输入10,其他选择项默认选项。

修改载荷与预定义场

(1)进入载荷模块,点击“创建载荷”,分析步选“Temperature-displacement”,选择力学中的压强,然后选中铝合金厚板上表面,大小为2E6,完成压强定义定义。再创建一个表面热流,然后选中铝合金厚板上表面,大小为1,幅值选择刚才定义的Amp-1,完成热流定义。

(2)点击“预定义场管理器”,删除之前定义的预定义场,新建一个预定义场,分析步选择“Initial”,选择其他中的温度选项,选择整个厚板,输入温度大小为20℃,完初始温度设定。

修改网格

进入网格模块点击“指派单元类型”,选择温度-位移耦合选项,其他选项使用默认选项,重新划分网格。

运行计算

进入作业模块,点击作业管理器,创建一个作业,各项均选择默认,创建完一个作业Job-3,提交作业,完成后点击结果,观察结果云图。保存模型FEM3.cae。

5.3 计算结果分析

通过ABAQUS 计算,所得结果如图所示,图5-5为顺序耦合热应力分析中第一步热传导分析所得温度云图,图5-6为在顺序耦合分析中,同时加上压力和温度时所得温度分布图,图5-7为完全耦合热应力分析中的温度云图,图5-8为顺序热传导中,同时加上压力和温度时的Mises应力云图,图5-9为完全耦合热应力分析中的Mises应力分布云图。

通过比较图5-5和图5-6可知,在顺序热传导的分析过程中温度分布图一致,因此可以得知,在读取Job-29-1-1.dob 过程中没有出错,可以先进行热传递分析,再进行应力分析。通过比较图5-6和图5-7可以得到在分析过程中顺序热力耦合分析和完全热力耦合分析所得到的温度分布图基本一致。通过比较图5-8和图5-9可以得到在分析过程中顺序热力耦合分析和完全热力耦合分析所得到的结构Mises应力分布图除了应力值大小外,应力集中所在区域基本一致,完全热力耦合分析中应力值较低。

图5-5 传热分析温度云图

图5-6 顺序热力耦合温度云图

图5-7 完全热力耦合的温度云图

图5-8 顺序热力耦合的Mises应力云图

图5-9 完全热力耦合的Mises应力云图

6. 结论

在ABAQUS 分析热力耦合过程中可以使用顺序热力耦合和完全热力耦合两种方法,顺序热力耦合先进行传热分析,再进行应力分析;完全热力耦合分析传热和应力同时分析,且相互之间有影响。

顺序热力耦合分析和完全热力耦合分析所得温度、应力分布图中的分布情况除了数值大小之外,其他基本一致。

参考文献

[1] 崔苗,陈海耿,徐万达. 加热炉内一维、非稳态、变热流钢坯温度场解析解[ J ]. 中国冶

金,2 0 0 7,1 7 ( 3 ) : 3 4~3 7.

[2] 孙民,于学浒,潘晓萍. 通过柴油机性能参数确定示功图方法的研究[J]. 大连理工大学

学报1996 年36 卷第五期:629-631

[3] 周龙保. 内燃机学[M],机械工业出版社,1998 年

[4] 杨海,邓名华. 国内外内燃机示功图的研究与发展[J]. 内燃机学报,2005年12月第六

期:6-8

[5] 杨世铭,陶文铨. 传热学[M].北京:高等教育出版社,1998

[6] 李景湧主编. 有限元法[M]. 北京:北京邮电大学出版社,1999

[7] 唐靖.液化石油气发动机气门失效研究及仿真分析[D].华南理工大学,2009

[8] 王保国.传热学.北京:机械工业出版社.

[9] 杨世铭,陶文铨.传热学[M].第3版.北京:高等教育出版社,1998:104~105.

[10] 石亦平,周玉蓉.ABAQUS有限元分析与实例详解.北京:机械工业出版社.

平时作业:圆柱坐标系导热微分方程推导

设物体中有内热源,其值为Φ

。空间任一点的热流密度矢量可以分解为三个坐标系方向的分量,任意方向的热流量也可以分解成r 、φ、z 坐标轴方向的分热流量。通过三个微元面而导入微元体的热流量可根据傅里叶定律写出为:

(Φr )r =?λ(?t ?r )r r dφdz (Φφ)φ=?λ(?t )φ

dφdz (Φz )z =?λ(?t ?z )z r dφdr 通过三个微元面导出微元体的热流量亦可按傅里叶定律写出:

(Φr )r+dr = (Φr )r +

?Φr ?r dr = (Φr )r +??r [?λ(?t ?r )r r dφdz ]dr (Φφ)φ+dφ= (Φφ)φ

+?Φφr ?φdφ= (Φφ)φ+?r ?φ[?λ(?t ?φ)φdrdz ]d φ (Φz )z+dz = (Φz )z +?Φz ?z dz = (Φz )z +

??z [?λ(?t ?z )z rdφdr ]dz 微元体热力学能增量=微元体内热源生成热+微元体净热流量 微元体热力学能增量为ρc ?t ?τ

r dr d φdz 微元体内热源生成热为Φ

r dr d φdz

整理上述八项表达式得:

ρc ?t ?τr dr d φdz = ?r ?r [λ(?t ?r )r ]r dr d φdz + ?r 2?r [λ(?t ?φ)]r dr d φdz + ??z [λ(?t ?z )r ]r dr d φdz +Φr dr d φdz 化简得圆柱坐标系导热微分方程为:

ρc ?t ?τ = 1r ??r (λr ?t ?r ) + 1r 2??φ(λ?t ?φ) + ??z (λ?t ?z ) +Φ

计算传热学

1、已知:一块厚度为0.1mm 的无限大平板,具有均匀内热源,q =50×103W/m 3,,导热系数K =10W/m.℃,一侧边界给定温度为75℃,另一侧对流换热,T f =25℃,,h=50W/m 2.℃,求解稳态分布。(边界条件用差分代替微分和能量平衡法),画图。(内,外节点) 2、试以下述一维非稳态导热问题为模型,编写求解一维非稳态扩散型问题的通用程序: 00 00000()()()() L L f x x x x L fL L x x x x T T k s c x x T k h T T W x T k h T T W x T T x τρτ =====???+=????=-+??-=-+?= 其中,x 是空间坐标变量,τ是时间坐标变量,T 是温度(分布),k 是材料的导热系数,s 是内热源强度,ρ是材料的密度,c 是材料的比热,h 0和h L 分别是x 0和x L 处流体与固体壁面间的换热系数,而T f0和T fL 分别是固体壁两侧流体的温度,W 0和W L 是x 0和x L 处(非对流换热)热流密度,T 0(x )是固体壁内初始温度分布。注意k 、ρ、c 、s 、h 0 、h L 、W 0和W L 均可以是温度T 和/或空间坐标x 的函数。 具体要求: 1) 将数学模型无量纲化; 2) 考虑各种可能的边界条件和初始条件组合 3) 提供完整的程序设计说明,包括数学推导过程和程序使用说明 3、对于有源项的一维稳态方程, s dx d T dx d u dx d +=)()(φφρ 已知 x=0,φ=0,x=1, φ=1.源项S=0.5-X 利用迎风格式、混合格式、乘方格式求解φ的分布.

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

第四版传热学第四章习题解答

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 Bi n n =μμtan Fo=0.2及0.24时计算结果的对比列于下表:

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分 23278.87769.9 T T T === 22d T T=0dx - 有 i+1i 12 2+T 0i i T T T x ---=? 将2点,3点带入 32122 2+T 0T T T x --=? 即321 209T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4 321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 431 22293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -=

544431011363 T T T T T ----= 即 34599 02828T T T -+= 对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()22 20.64806911x x x x dT e e q e e dx e e λ -====- +=-=++ (2)由A 的一阶截差公式 21 0.247730.743113 x T T dT q dx λ =-=-= =?= (3)由B 的一阶截差公式 0 0.21640 0.649213 x dT q dx λ =-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-?? ==?= ? ?? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图

传热学练习题

传热学练习题 一、填空题 1、在范德瓦耳斯方程中, 是考虑分子之间的斥力而引进的改正项,V an 2 2 是考虑到分子之间的 而引进的改正项。 2、在等压过程中,引进一个函数H 名为焓则其定义为 ,在此过程中焓的变化为 ,这正是等压过程中系统从外界吸收的热量。 3、所在工作于一定温度之间的热机,以 的效率为最高,这是著名的 。 4、一个系统的初态A 和终态B 给定后,积分 与可逆过程的路径无关,克劳修斯根据这个性质引进一个态函数熵,它的定义是 ,其中A 和B 是系统的两个平衡态。 5、在热力学中引入了一个态函数TS U F -=有时把TS 叫做 ,由于F 是一个常用的函数,需要一个名词,可以把它叫做 。 6、锅炉按用途可分为电站锅炉、___________ 锅炉和生活锅炉。 7、锅炉按输出介质可分为、___________ 、__________ 和汽水两用锅炉。 8、锅炉水循环可分为___________ 循环和_________ 循环两类。 9、如果温度场随时间变化,则为__________。 10、一般来说,紊流时的对流换热强度要比层流时__________。 11、导热微分方程式的主要作用是确实__________。 12、一般来说,顺排管束的平均对流换热系数要比叉排时__________。 13、膜状凝结时对流换热系数__________珠状凝结。 二、判断题 1、系统的各宏观性质在长时间内不发生任何变化,这样的状态称为热力学平衡态。 ( ) 2、温度是表征物体的冷热程度的,温度的引入和测量都是以热力学定律为基础的。 ( ) 3、所谓第一类永动机,就是不需要能量而永远运动的机器。 ( ) 4、自然界中不可逆过程是相互关联的,我们可以通过某种方法把两个不可逆过程联系起来。 ( ) 5、对于处在非平衡的系统,可以根据熵的广延性质将整个系统的熵定义为处在局域平衡的各部分的熵之和。( ) 6、 测量锅炉压力有两种标准方法,一种是绝对压力,一种是相对压力都称为表压力。( )

传热学作业

沈阳航空航天大学 预测燃气涡轮燃烧室出口温度场 沈阳航空航天大学 2013年6月28日

计算传热学 图1模型结构和尺寸图 1.传热过程简述 计算任务是用计算流体力学/计算传热学软件Fluent求解通有烟气的法兰弯管包括管内烟气流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。在进行分析时要同时考虑导热、对流、辐射三种传热方式。 (1) 直角弯管内外壁面间的热传导。注意:如果壁面按薄壁处理时,则不用考虑此项,因为此时管壁厚度忽略不计,内壁和外壁温度相差几乎为零。 (2) 管道外壁面与外界环境发生的自然对流换热。由于流体浮生力与粘性力对自然对流的影响,横管与竖管对流换热系数略有不同的。计算公式也不一样。同时,管道内壁面同烟气发生的强制对流换热。 (3) 管道外壁和大空间(环境)发生辐射换热 通过烟气温度和流量,我们可以推断出管道内烟气为湍流流动。这在随后的模

沈阳航空航天大学 拟计算中可以得到证实。 2.计算方案分析 2.1 控制方程及简化 2.1.1质量守恒方程: 任何流动问题都要满足质量守恒方程,即连续方程。其积分形式为: 0vol A dxdydz dA t ρρ?+=?????? 式中,vol 表示控制体;A 表示控制面。第一项表示控制体内部质量的增量,第二项表示通 过控制面的净通量。 直角坐标系中的微分形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 上式表示单位时间内流体微元体中质量的增加,等于同一时间段内流入该微元体的净增量。 对于定常不可压缩流动,密度ρ为常数,该方程可简化为 0u v w x y z ???++=??? 2.1.2动量守恒方程: 动量守恒方程也是任何流动系数都必须满足的基本定律。数学式表示为: F m dv dt δδ= 流体的粘性本构方程得到直角坐标系下的动量守恒方程,即N-S 方程: ()()()u u p div Uu div gradu S t x ρρμ??+=+-?? ()()()v v p div Uv div gradv S t y ρρμ??+=+-?? ()()()w w p div Uw div gradw S t z ρρμ??+=+-?? 该方程是依据微元体中的流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和。式中u S 、v S 、w S 是动量方程中的广义源项。和前面方程一样上式

传热学计算题

1、用简捷方法确定附图中的角系数X 12。 2、一直径为4cm 的小铜球,初始温度为500℃,突然放置于10℃的空气中,假设铜球表面与周围环境的对流换热系数为30W/(m 2.K),试计算铜球冷却到200℃所需要的时间。已知铜球的比热c p =0.377KJ/(Kg.K), ρ=8440Kg/m 3,λ=109W/(m.K)。 3、水以1.5m /s 的速度流过内径为25mm 的加热管。管的内壁温度保持 100℃,水的进口温度为15℃。若要使水的出口温度达到85℃,求单位管长换热量(不考虑修正)。已知50℃的水λf =0.648 W/(m.K),νf =0.566×10-6m 2/s ,Pr =3.54 解答 1、(1)11,21,222,11==X X A X A ,则5.02/422 1,2122 ,1===R R X A A X ππ (2)同上125.02 /44/221,2122,1===R R X A A X ππ 2、首先检验是否可以采用集总参数法。 () M A V h Bi v 1.000183.0109 3/02.030/<=?==λ(其中M=1/3) 可以采用集总参数法, )/1(1014.143/02.0437*******.04304 33 s V c hA P -?=?????=ππρ () τ??-=--=---∞∞401014.14exp 1050010200t t t t 可得:hour s 186.0670==τ 3、定性温度502 85152=+=+=out in f t t t (℃) 446101074.610 556.0025.05.1Re >?=??==-f f v ud 流动为紊流。 3.278Pr Re 023.0 4.08.0 ==f f Nu 则单位管长换热量 ()()28311501007213025.014.3=-???=-=f w l t t dh q π(W/m )

《传热学》复习题

《传热学》复习题一 一、名词解释(3分×5=15分) 1、导热: 2、对流换热: 3、肋片效率: 4﹑膜状凝结: 5﹑灰体; 二、填空题(2分×5=10分) 1.空间辐射热阻可表示为:()。 2、()是热量传递的动力。 3、二维、常物性、无内热源、直角坐标系中的稳态导热微分方程式为()。 4、角系数的确定方法有()两种。 5、温度场是指)。 三、判断题(2分×5=10分) 1、一个灰表面如果是漫反射的,则一定是漫辐射的。() 2、热量传递的三种基本方式是:导热,对流换热,辐射换热。() 3﹑当一个表面的吸收率α=1时,可当作一个绝热表面来处理。() 4、管内强迫对流换热时,假定条件相同,弯管的比直管的换热系数大。() 5、一个表面的有效辐射一定不大于它的本身辐射。()。 四、简答题(6分×4=24分) 1、说明哪些因素影响了对流换热

2、简述热辐射的三个特点. 3、说明大气层的温室效应 4、写出努谢尔特准则Nu的表达式并说明努谢尔特准则Nu的物理含义 五、计算题(41分) 1、(14分)有一气体冷凝器,气侧对流换热表面传热系数h1=95W/(㎡.k),壁厚为㎜,λ=。水侧对流换热表面传热系数h2=5800W/(㎡.k)。计算每个环节的热阻以及传热热阻 2、(13分)加热炉置于25℃的厂房内,加热炉外形尺寸为高2.5m、宽3.5m、 长4m,加热外表面温度均匀且维持55℃。如果不考虑辐射作用,试计算加热 炉炉墙的散热量。已知Νu=C n,C=,n=1/3,空气的物性参数为:λ=,Pr=,粘度ν =㎡/S. 3、(14分)温度为99℃的热水进入一个逆流式换热器,并将4℃的冷 水加热到32℃,冷水的流量为1.3Kg/S,热水的流量为2.6Kg/S,总传热系 数为830W/(㎡.K )。试计算换热器面积为多少 (水的比热为C P= )

传热学计算例题

、室内一根水平放置的无限长的蒸汽管道,其保温层外径d=583 mm,外表面 实测平均温度及空气温度分别为,此时空气与管道外 表面间的自然对流换热的表面传热系数h=3.42 W /(m2 K),墙壁的温度近似取为 室内空气的温度,保温层外表面的发射率 问:(1)此管道外壁的换热必须考虑哪些热量传递方式; (2)计算每米长度管道外壁的总散热量。(12分) 解: (1)此管道外壁的换热有辐射换热和自然对流换热两种方式。 (2)把管道每米长度上的散热量记为qi 当仅考虑自然对流时,单位长度上的自然对流散热 q i,c =二d h t =二dh (j - t f ) = 3.14 0.583 3.42 (48 - 23 ) 二156 .5(W / m) 近似地取墙壁的温度为室内空气温度,于是每米长度管道外表面与室内物体及墙壁 之间的辐射为: q i厂d (T; -T;) = 3.14 0.583 5.67 10》0.9 [(48 273)4-(23 273)4] = 274.7(W /m) 总的散热量为q i = q i,c +q i,r = 156.5 +274.7 = 431.2(W/m) 2、如图所示的墙壁,其导热系数为50W/(m- K),厚度为50mm在稳态情况下的 墙壁内的一维温度分布为:t=200-2000x 2,式中t的单位为°C, x单位为m 试 求: t (1) 墙壁两侧表面的热流密度; (2) 墙壁内单位体积的内热源生成的热量 2 t =200 —2000x

解:(1)由傅立叶定律: ① dt W q ' (―4000x) = 4000二x A dx 所以墙壁两侧的热流密度: q x _. =4000 50 0.05 =10000 (1)由导热微分方程 茫?生=0得: dx 扎 3、一根直径为1mm 勺铜导线,每米的电阻为2.22 10 。导线外包有厚度为 0.5mm 导热系数为0.15W/(m ? K)的绝缘层。限定绝缘层的最高温度为 65°C,绝 缘层的外表面温度受环境影响,假设为40°C 。试确定该导线的最大允许电流为多 少? 解:(1)以长度为L 的导线为例,导线通电后生成的热量为I 2RL ,其中的一部分 热量用于导线的升温,其热量为心务中:一部分热量通过绝热层的 导热传到大气中,其热量为:门二 1 , d In 2 L d 1 根据能量守恒定律知:l 2RL -门 述二厶E = I 2RL -门 即 E = — L dT m = I 2RL - t w1 _tw2 4 di 1 , d 2 In 2 L d 1 q v 、d 2t ——' 2 dx =-(7000)= 4000 50 二 200000 W/m 3 t w1 - t w2 。 2 q x 卫=4000.: 0 = 0

计算传热学-传热基本原理及其有限元应用

1. 传热学的发展概述 18世纪30年代首先从英国开始的工业革命促进了生产力的空前发展。生产力的发展为自然科学的发展成长开辟了广阔的道路。传热学这一门学科就是在这种大背景下发展成长起来的。导热和对流两种基本热量传递方式早为人们所认识,第三种热量传递方式则是在1803年发现了红外线才确认的,它就是热辐射方式。在批判“热素说”确认热是一种运动的过程中,科学史上的两个著名实验起着关键作用。其一是1798年伦福特(B .T .Rumford)钻炮筒大量发热的实验,其二是 1799年戴维(H .Davy)两块冰块摩擦生热化为水的实验。确认热来源于物体本身内部的运动开辟了探求导热规律的途径。1804年毕渥根据实验提出了一个公式,认为每单位时间通过每单位面积的导热热量正比例于两侧表面温差,反比例于壁厚,比例系数是材料的物理性质。傅里叶于1822年发表了他的著名论著“热的解析理论”,成功地完成了创建导热理论的任务。他提出的导热定律正确概括了导热实验的结果,现称为傅里叶定律,奠定了导热理论的基础。他从傅里叶定律和能量守恒定律推出的导热微分方程是导热问题正确的数学描写,成为求解大多数工程导热问题的出发点。他所提出的采用无穷级数表示理论解的方法开辟了数学求解的新途径。傅里叶被公认为导热理论的奠基人。在傅里叶之后,导热理论求解的领域不断扩大。同样,自1823年M. Navier 提出流动方程以来,通过1845 年 G.G. Stokes 的改进,完成了流体流动基本方程的创建任务。流体流动理论是更加复杂的对流换热理论的必要前提,1909和1915年W. Nusselt 开辟了在无量纲数原则关系正确指导下,通过实验研究对流换热问题的一种基本方法。1904 年,L. Prandtl 提出的对流边界层理论使流动微分方程得到了简化,1921年 E. Pohlhausen 基于流动边界层理论引进了热边界层的概念,为对流传热微分方程的理论求解建立了基础。在辐射传热研究方面,19世纪J. Stefan 根据实验确定了黑体辐射力正比于它的绝对温度的四次方的规律,1900年M.Planck 提出的量子假说奠定了热辐射传热理论基础。上述传热理论为传热分析解析、数值以及实验研究奠定了理论基础。还要特别提到的是,由于计算机的迅速发展,用数值方法对传热问题的分析研究取得了重大进展,在20世纪70年代已经形成一个新兴分支—数值传热学。近年来,数值传热学得到了蓬勃的发展[2-4]。 2. 传热分析计算理论 热量传递主要有三种传递形式,分别是热传导、热对流和热辐射。热传导是指两个相互接触良好的物体之间的能量交换或一个物体由于其自身温度梯度而 引起的内部能量的传递。其遵循傅里叶定律[5]:dT q dx λ=-,其中λ是热导率, dT dx 是温度梯度,q 是热流密度。热对流是指在物体与其周围介质之间发生的热量交换。热对流分为自然对流和强制对流,用牛顿冷却方程描述为()w f q h t t =-,其中h 为表面传热系数,w t 为物体表面的温度,f t 为物体周围流体的温度。一个 物体或两个物体之间通过电磁波形式进行的能量传递交换称为热辐射,通常由斯

传热学补充题

绪论 1.设有一大平壁,面积为A ,它的一侧为温度为1f t 的热流体,另一侧为温度为2f t 的冷流体;两侧对流换热表面传热系数分别为12h h 及;壁面温度分别为12w w t t 和;壁的材料的导热系数为λ,厚度为δ,传热过程处于稳态。写出单位面积上的传热量的计算式(不考虑辐射换热)。 第一章~第四章 导热部分 1. 厚度为δ的大平壁,无内热源,λ为常数,平壁两侧表面分别维持均匀稳定的温度1w t 和2w t 。写出这一稳态导热过程的完整数学描写。 2. 上题,若λ与温度有关,其余不变,写出这一稳态导热过程的完整数学描写。 3. 1题,若壁两侧壁面均给出第三类边界条件,即已知:X =0处,流体的温度为1f t ,对流换热表面传热系数为1h ;X=δ处,流体的温度为2f t ,对流换热表面传热系数为2h ,且1f t >2f t 。写出这一稳态导热过程的完整数学描写。 4. 对第1题求解,得出温度()t f x =的关系式,并进一步写出导热量q 的关系式。 5. 厚为δ的无限大平壁,无内热源,稳态导热时,壁内温度分布情况如图所示。说明①②③三种情况下,材料导热系数0(1)bt λλ=+中,b 何时为正、为负、为零? 6. 用一平底壶烧开水,壶底与水接触面的温度为111oC ,通过壶底的热流密度为424002 /w m ,如在壶底结一层水垢厚3mm ,1/w m C λ=??,此时水垢层与水接触面上的温度和通过的热流密度均不变,计算: (1) 水垢层与壶底接触面上的温度; (2) 单位面积上的导热热阻。 7. 人对冷热的感觉以皮肤表面的热损失作为衡量依据。设人体脂肪层的厚度为3mm ,其内表面温度为36oC 且保持不变,冬季的某一天,气温为–15oC ,无风条件下,裸露的皮肤外表面与空气的表面传热系数为252/()w m k ?,某一风速时,表面传热系数为652/()w m k ?,人体脂肪层的导热系数为0.2/w m k ?,确定: (1) 要使无风天的感觉与某一风速、气温–15oC 时感觉一样,则无风天气温是多少? (2) 在同样是–15oC 的气温时,无风天和某一风速时的刮风天,人皮肤单位面积上的热损失之比是多少?(按大平壁处理)。

传热学经典计算题

传热学经典计算题 热传导 1. 用热电偶测量气罐中气体的温度。热电偶的初始温度为20℃,与气体的表面传热系数为()210/W m K ?。热电偶近似为球形,直径为0.2mm 。试计算插入10s 后,热电偶的过余温度为初始过余温度的百分之几?要使温度计过余温度不大于初始过余温度的1%,至少需要多长时间?已知热电偶焊锡丝的()67/W m K λ=?,7310ρ= 3/kg m ,()228/c J kg K =?。 解: 先判断本题能否利用集总参数法。 3 5100.110 1.491067hR Bi λ--??===?<0.1 可用集总参数法。 时间常数 3 73102280.110 5.563103c cV c R hA h ρρτ-??===?= s 则10 s 的相对过余温度 0θθ=exp c ττ??-= ???exp 1016.65.56??-= ???% 热电偶过余温度不大于初始过余温度1%所需的时间,由题意 0θθ=exp c ττ??- ??? ≤0.01 exp 5.56τ?? - ???≤0.01 解得 τ≥25.6 s

1、空气以10m/s 速度外掠0.8m 长的平板,C t f 080=,C t w 030=,计算 该平板在临界雷诺数c e R 下的c h 、全板平均表面传热系数以及换热量。 (层流时平板表面局部努塞尔数 3/12/1332.0r e x P R Nu =,紊流时平板表面局部努塞尔数3/15/40296.0r e x P R Nu =,板宽为1m ,已知5105?=c e R ,定性 温度C t m 055=时的物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P ) 解:(1)根据临界雷诺数求解由层流转变到紊流时的临界长度 C t t t w f m 055)(21=+=,此时空气得物性参数为: )/(1087.22K m W ??=-λ,s m /1046.1826-?=ν,697.0=r P )(92.0101046.1810565m u R X ul R c c e c e =???==?=-ν ν 由于板长是0.8m ,所以,整个平板表面的边界层的流态皆为层流 ? ==3/12/1332.0r e x P R hl Nu λ)/(41.7697.0)105(8.01087.2332.0332.023/12/1523/12 /1C m W P R l h r e c c ?=????==-λ (2)板长为0.8m 时,整个平板表面的边界层的雷诺数为: 561033.41046.188.010?=??==-νul R e 全板平均表面传热系数: )/(9.13697.0)1033.4(8.01087.2664.0664.023/12/1523/12 /1C m W P R l h r e c ?=????==-λ 全板平均表面换热量W t t hA w f 9.557)3080(18.09.13)(=-???=-=Φ

传热学练习题(学生)

传热学计算练习题 1.某平壁燃烧炉是由一层耐火砖与一层普通砖砌成,两层的厚度均为100mm ,其导热系数分别为0.9W/(m·℃)及0.7W/(m·℃)。待操作稳定后,测得炉膛的内表面温度为700℃,外表面温度为130℃。为了减少燃烧炉的热损失,在普通砖外表面增加一层厚度为40mm 、导热系数为0.06W/(m·℃)的保温材料。操作稳定后,又测得炉内表面温度为740℃,外表面温度为90℃。设两层砖的导热系数不变,试计算加保温层后炉壁的热损失比原来的减少百分之几?(%5.68) 2.在外径为140mm 的蒸气管道外包扎保温材料,以减少热损失。蒸气管外壁温度为390℃,保温层外表面温度不大于40℃。保温材料的λ与t 的关系为λ=0.1+0.0002t (t 的单位为℃,λ的单位为W/(m·℃))。若要求每米管长的热损失Q/L 不大于450W/m ,试求保温层的厚度以及保温层中温度分布(b= 71mm)( t=-501lnr -942)。 3.有一列管式换热器,由38根φ25mm×2.5mm 的无缝钢管组成。苯在管内流动,由20℃被加热至80℃,苯的流量为8.32kg/s 。外壳中通入水蒸气进行加热。试求管壁对苯的传热系数(1272 W/(m 2·℃))。当苯的流量提高一倍,传热系数有何变化(2215 W/(m 2·℃))。 4.在预热器内将压强为101.3kPa 的空气从10℃加热到50℃。预热器由一束长度为1.5m ,直径为φ86×1.5mm 的错列直立钢管所组成。空气在管外垂直流过,沿流动方向共有15行(对流传热核准系数为1.02),每行有管子20列,行间与列间管子的中心距为110mm 。空气通过管间最狭处的流速为8m/s 。管内有饱和蒸气冷凝。试求管壁对空气的平均对流传热系数(56W/(m 2·℃))。注:(空气流过15排管束时,对流传热核准系数为1.02) 5.热空气在冷却管管外流过,α2=90W/(m 2·℃),冷却水在管内流过, α1=1000W/(m 2·℃)。冷却管外径d o =16mm ,壁厚b=1.5mm ,管壁的λ=40W/(m·℃)。试求: ①总传热系数K o ;(80.8W/(m 2·℃)) ②管外对流传热系数α2增加一倍,总传热系数有何变化?(增加了82.4%) ③管内对流传热系数α1增加一倍,总传热系数有何变化?(增加了6%) 6.有一碳钢制造的套管换热器,内管直径为φ89mm×3.5mm ,流量为2000kg/h 的苯在内管中从80℃冷却到50℃。冷却水在环隙从15℃升到35℃。苯的对流传热系数αh =230W/(m 2·K ),水的对流传热系数αc =290W/(m 2·K )。忽略污垢热阻。试求:①冷却水消耗量;(1335 kg/h)②并流和逆流操作时所需传热面积(并流6.81 m 2,逆流5.83 m 2);③如果逆流操作时所采用的传热面积与并流时的相同,计算冷却水出口温度与消耗量(46.6℃,846 kg/h),假设总传热系数随温度的变化忽略不计。 7.有一台运转中的单程逆流列管式换热器,热空气在管程由120℃降至80℃,其对流传热系数α1=50W/(m 2·K )。壳程的冷却水从15℃升至90℃,其对流传热系数α2=2000W/(m 2·K ),管壁热阻及污垢热阻皆可不计。当冷却水量增加一倍时,试求①水和空气的出口温度t'2和T'2,忽略流体物性参数随温度的变化;(t'2=61.9℃,T '2=69.9℃)②传热速率Q'比原来增加了多少?(25%) 8.为了得到热水,0.361 MPa (t s =140℃) 的水蒸气在管外凝结(如图3所示),其表面传热系数29500W/(m K) o h 。冷却水在盘管内流动,流速为0.8m/s ,黄铜管外径为18mm ,壁厚为1.5mm ,

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

计算传热作业1

储运与建筑工程学院能源与动力工程系 计算传热学课程大作业报告 作业题目:代数方程组的求解 学生姓名:田 学号: 专业班级:能动1 2017年9月23日

目录 一、计算题目 (3) 二、离散方程 (3) 三、程序设计 (4) 3.1 高斯赛德尔迭代法 (4) 3.2 TDMA法 (5) 四、程序及计算结果验证 (6) 五、网格独立性考核.................... 错误!未定义书签。 3.1 高斯赛德尔迭代法 (7) 3.2 TDMA法 (8) 六、结果分析与结论 (8) 3.1 高斯赛德尔迭代法 (9) 3.2 TDMA法 (10)

一、计算题目 分别用高斯赛德尔迭代和TDMA 方法求解方程 2 2dx d dx d u φφρΓ= (1) 在Γ u ρ=-5,-1,0,1,5情况下的解,并表示在图中。 其中,x =0,φ=0;x =1,φ=1. 二、离散方程 采用控制容积法: 即??Γ=e 22w e w dx d dx d u φφ ρ(2) ) )()(()2 2 ( w W P e P E p w p e x x u δφφδφφφφφφρ---Γ=+- +(3) 假设均分网格,则有x x x w e ?==)()(δδ 上式则变为: )2(2)(W P E W E u x φφφφφρ+-Γ=-?(4) 即11)2()2(4-+?+Γ+?-Γ=Γi i i u x u x φρφρφ(5) 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ(6)

三、程序设计 3.1 高斯赛德尔迭代法 由已知公式 11)421()421(-+Γ ?-+Γ?-=i i i u x u x φρφρφ可设计高斯赛德尔迭代C 语言程序如下: #include #include #include int main() { double e=0,x; int i,j,b,k,d; double a[100]; scanf("%lf%d",&x,&d); for (j=0;j<1/x;j++) { a[j]=0; } b=1/x; a[b]=1; while (1){ for (i=0;i<1/x-1;i++) { a[i+1]=((2-x*d)*a[i+2]+(2+x*d)*a[i])/4; printf("i = %d\n",i); if (i==1/x-3) e=a[i+2]; } if (fabs((a[i]-e))/a[i]<0.00001) break ; } for (k=0;k<=1/x;k++) { printf("%lf ",a[k]); } system("pause"); return 0;

数值传热学第五章作业

5-2 解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: 2 2x x u ??Γ =??φ φρ (取常物性) 边界条件如下: L L x x φφφφ====,; ,00 由(5—2)得方程的精确解为: 1 1)/(00--=--?Pe L x Pe L e e φφφφ Γ=/uL Pe ρ 将L 分成15等份,有:?=P Pe 15 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) (CD)中心差分 节点离散方程: 2 )5.01()5.01(1 1-?+?++-=i i i P P φφφ 10,2 =i 2) 一阶迎风 节点离散方程: ? -?++++=P P i i i 2)1(1 1φφφ 10,2 =i 3) 混合格式 当1=?P 时,节点离散方程:2 )5.01()5.01(1 1-?+?++-= i i i P P φφφ ,10,2 =i 当10,5=?P 时,节点离散方程: 1-=i i φφ , 10,2 =i 4) QUICK 格式,节点离散方程: ??? ???--++++++= +-?? -??+?)336(8122121 1111i i i i i i P P P P P φφφφφφ, 2=i ?? ????---++++++= +--? ? -??+?)35(8122121 12111i i i i i i i P P P P P φφφφφφφ, 2≠i

用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= 0φ=0,y(16)=L φ=1,程序中Pa 为?P ,x 为题中所提的x/L 。由于本程序假设 y(1)=0φ=0,y(16)=L φ=1,所以 y y y y y y L =--=--=--0 10 )1()16()1(00φφφφ) Pa=input('请输入Pa=') x=0:1/15:1 Pe=15*Pa; y=(exp(Pe*x)-1)/(exp(Pe)-1) plot(x,y,'-*k') %精确解 hold on y(1)=0,y(16)=1; for i=2:15 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; end plot(x,y(1:16),'-or') %中心差分 hold on for i=2:15 y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa); end plot(x,y(1:16),'-.>g') %一阶迎风 hold on for i=2:15 if Pa==1 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; else y(i)=y(i-1) end end plot(x,y(1:16),'-+y') %混合格式 hold on for i=2:15 if i==2 y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end end plot(x, y(1:16),'-

计算传热学课程设计报告..

计算传热学课程设计(报告)题目:充满多孔介质的长方形截面通道内充分发展对流换热问题的数值研究 学生姓名:朱鹏齐尚超杨鹏来芦旭红 学号:10123106 10123107 10123108 10123103 专业班级:热能与动力工程10-1班 指导教师:黄善波巩亮 2013年 7 月 5 日

热工一班 组长:朱鹏组员:芦旭红,齐尚超,杨鹏来

目录 1.设计题目 (3) 1.1设计题目 (3) 1.2已知参数 (4) 2.物理与数学模型.. .................................... ..5 2.1物理模型 (5) 2.2数学模型 (5) 3.数值处理与程序设计 (6) 3.1数学模型无量纲化 (6) 3.2数值求解 (8) 3.3程序编写. (11) 4.程序的验证 (12) 5.计算结果与分析 (14) 6.结论 (21) 7.参考文献 (21) 8.附录 (22)

1 设计题目 (多孔介质,矩形a/b,单方程)水在一长方形截面的通道中进行充分发展的层流流动,该通道内充满多孔介质。多孔介质具有良好的强化换热能力,孔隙率ε是其基本结构参数,据此可以计算渗透率K ,惯性系数CF ,有效导热系数ke,具体表达式见[5]。其内部充满流体时的流动和换热通常采用体积平均法进行建模,即不考虑区域内孔的微结构而假定区域内任意一点处既有流体相又有固体相。由于金属泡沫的固体骨架导热系数较高,因此对于其内部的对流换热,通常采用局部非平衡模型,即考虑区域内流体温度和固体温度的差异。填充孔隙率为ε=0.6的多孔介质,渗透率表示为: 23 2 150(1)d K εε= - 惯性系数表示为: 23 1.75F C = 有效导热系数ke 表示为: (1)e f s k k k εε=+- 沿流动方向的速度方程可以简化为 222220f w w p w x y z K μμ ρε?????+---= ?????? (1) 截面上的平均流速为wm=0.1m/s,dp/dz 的值是恒定的,可以通过下式得到: 2d d m f m p w z K μ ρ=-- (2) 其中,w 为沿流动方向的速度。换热方程为: 22222()e w m T T w a b k q x y w ab ????++=?? ????? (3) 其中z 为轴向。假设流动和换热都达到充分发展,外壁面为恒热流边界条件(qw=1000W/2 m ),请基于局部热平衡模型,选取a=0.04m,b=0.02m,以20℃作为水物性的参考温度,参考数值传热学(陶 文铨著)4.8节的内容 1.1 设计题目 1. 分析孔隙率对渗透率K ,惯性系数CF ,有效导热系数ke 的影响规律,计算 dp dz 随m w 的变化关系; 2. 通过能量守恒将方程(3)化为更简单的形式进而消去z (仅对恒热流条件下实施), 对流动和换热方程进行无量纲化处理;

相关文档
相关文档 最新文档