文档库 最新最全的文档下载
当前位置:文档库 › 相位解缠算法研究

相位解缠算法研究

相位解缠算法研究
相位解缠算法研究

一、引言

合成孔径雷达干涉测量技术(synthetic aperture radar interferometry, InASR)将合成孔径雷达成像技术与干涉测量技术成功地进行了结合,利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,可以精确的测量出图像上每一点的三维位置和变化信息。

合成孔径雷达干涉测量技术是正在发展中的极具潜力的微波遥感新技术,其诞生至今已近30年。起初它主要应用于生成数字高程模型(DEM)和制图,后来很快被扩展为差分干涉技术( differential InSAR , DInSAR)并应用于测量微小的地表形变,它已在研究地震形变、火山运动、冰川漂移、城市沉降以及山体滑坡等方面表现出极好的前景。特别,DInSAR具有高形变敏感度、高空间分辨率、几乎不受云雨天气制约和空中遥感等突出的技术优势,它是基于面观测的空间测量新技术,可补充已有的基于点观测的低空间分辨率测量技术如全球定位系统(GPS)、甚长基线干涉(VLBI)和精密水准等。尤其InSAR在地球动力学方面的研究最令人瞩目。

二维相位解缠是InSAR 数据处理流程中重要步骤之一,也是主要误差来源,无论是获取数字高程模型还是获取地表形变信息,其精确程度都高度依赖于有效的相位解缠。因此,本人在课程期间对相位解缠的相关文献进行了阅读。

二、InSAR基本原理

用两副雷达天线代替两个光源1S ,2S ,对地面发射相干信号,将

得到类似的条纹图。因为雷达信号与光线本质上都是电磁波,所以只要保证雷达天线载具运行轨道的稳定,那么两个信号到达地面上某一点处的路程差是确定的,只与该点在地面上的位置有关。在 InSAR 干涉测量中有两种模式,一种是在载具(卫星或飞机)上搭载一具天线,而载具两次通过不同轨道航线飞经目标地域上空,此种称之为单天线双航过模式;另一种在载具上搭载两副天线,只飞经目标地域上空一次,此种方式称之为双天线单航过模式。不论是哪种方式都可以用图 2.2 来模拟并作出几何解释。

在测量中两副天线或两次航过接收的数据可以各获得对地面同一区域的两幅包含幅值与相位信息的二维复数据图像,分别以1S ,2S 表示为

1

11114||exp()||exp()j r S S S π?λ==

2

22224||exp()||exp()j r S S S π?λ==(2.6)

其中1||S 和2||S 表示幅值信息,1?和2?表示相位信息。将两幅图像

作共轭乘,可得

*12121212124()||||exp()||||exp(

)j r r S S S S S S π??λ-?=?-=?(2.7)

124()j r r πλ-为两幅图像中相对应的像点的相位差,由路程差决定

的,由余弦定理有

2222112cos()r r B Br αβ=+++(2.8)

可得

222

211

arccos()2r r B Br βα--=-(2.9) 根据式(2.7)的结论,两路雷达波路程差与相位差成正比

124r r r φλπ

??=-=(2.10) 式(2.8)可以进一步得到

2

11

(2)arccos()2r r r B Br βα+??-=-(2.11) 于是

1cos h H r β=-(2.12)

上式中 B 为基线长,由此可以获得地面的高程信息。这里关键是利用了路程差与相位差成正比这样一个关系,应该注意的是两天线接收到的信号的路程差r ?并不很大,但是由于高频的雷达信号的波长λ很小,所以4r

πφλ??=可以很大,即两个信号的相位差可以比4π大

很多。但是由式(2.7)计算相位差时会以2π为模来取值,得到的相位只会在 ( π ,π]之间,称为相位的主值或缠绕相位,它与真实相

位的关系是相差 2π的整数倍,即有下式的关系

2k φ?π=+ k=0,±1,±2……(2.13)

根据缠绕相位得到真实相位的处理过程就叫做相位解缠,是 InSAR 干涉测量的关键步骤。

三、相位解缠基本原理

3.1引言

在上节提到利用相位差能获得精确的路程差进而获得地面的高程信息,因此获得准确的相位差就是实现测量的关键。由于复数对其相位的周期性,InSAR 根据两幅 SAR 复图像获得的干涉相位差值是被周期折叠后位于 ( π ,π]之间的相位主值,它与真实的相位差值之间存在着 2 k π差别。由式(2.13)可以表示它们之间的基本关系。其中φ代表解缠相位,代表缠绕相位。必须对进行相位解缠,恢复被模糊掉的相位周期,获得目标在两次成像中的真实相位差,才能得到目标的正确高度信息。相位解缠是 InSAR 三维成像处理中的关键步骤之一,其准确程度将直接决定数字高程图(DEM )和地表形变探测的精度。

3.2相位缠绕和解缠

理想情况下,图像的采样率满足 Nyquist 采样定理,采样频率必须大于信号最高频率的两倍,解缠绕的干涉相位中相邻像素点之间的相位差值不可能超过半个周期(一个π)。当满足此条件时必然能由缠绕相位解缠出正确的解缠绕相位,并且可以通过积分进行解缠。记φ (m)为周期缠绕前的真实相位值, (m)为相应的缠绕相位,定义

相位缠绕算子?,相位缠绕的过程可以用式(3.1)表示

(())()()2()m m m k m ?φ?φπ==+(3.1)

(())m π?φπ-<≤

结果是得到主值属于 ( π ,π]区间的缠绕相位。定义差分算子Δ,根据 Nyquist 采样定理对于解缠相位有

()(1)()()m m m m φφφπφπ

?=+--

()(1)()()2()m m m m k m ????π?=+-=?+?(3.3)

对该相位差也使用缠绕算子得

[][]'()()2()2()m m k m k m ???ππ?=?+?+(3.4)

根据缠绕算子的定义,其结果必须属于 ( π ,π]区间,而Δφ (m)也必须属于( π ,π]区间,所以有

'()()0k m k m ?+=(3.5)

式(3.3)变为

[]()()m m φ???=?(3.6)

由式(3.2)可得

[]1

0()(0)()m n m n φφ??-==+?∑(3.7)

由式(3.7)可以看出,通过对相邻缠绕相位之差积分可以实现相位解缠,条件是满足 Nyquist 采样定理。

对于一维的情况,可以简单的使用如下的公式进行解缠计算,记φ (m)为周期缠绕前的真实相位值, (m)为相应的缠绕相位,计算干

涉图中一个点到下一个点的相位变化,即计算相位梯度,然后从一固定点开始积分使相位值的变化平稳连续,从而恢复失去的相位周期。即下式:

(1)(1)φ?=(1)()()m m m φφ+=+?(3.8)

若有如下的一维相位序列

0.2π , 0.5π , 0.6π , 0.8π , -0.5π , -0.4π , -0.2π

以相邻的 0.8π , -0.5π两个数据为例, 0 .5π (0.8π)= 1.3π,因为 1. 3π<π所以Δ ( m )= 1.3π +2π=0.7π,将 0. 7π加上前一个解缠结果 0. 8π得到该位置的解缠结果为 1 .5π。其他照此进行,从左向右解缠后的序列为:

0.2π , 0.5π , 0.6π , 0.8π , 1.5π , 1.6π , 1.8π。

由于一维序列的积分路径是唯一的,所以其解也是唯一的。但由于是逐个积分,如果受到相位噪声的影响,或者碰到地形起伏本来就不满足相邻缠绕相位差的绝对值小于π的条件,使其中一点的解缠绕相位发生错误,则错误会后向传播,导致之后所有相位的解缠结果与真实相位相差甚远。

为了说明相位缠绕与解缠原理,选取如图 3.1 所示的人工模拟的简单缠绕相位图进行解释。在理想状况下,发生缠绕的干涉相位呈现周期性变化,由π渐变到π,然后由π突变为π,如此反复,从图像上表现为灰度值由浅渐渐变深,然后突变为浅色,再向深色渐变,形成如图 3.1(a )所示的条纹图。从图 3.1(a )中沿 y 轴方向取一条一维数据,以像素位置为横坐标,以灰度强弱代表的相位值为纵坐

相位解缠算法研究

一、引言 合成孔径雷达干涉测量技术(synthetic aperture radar interferometry, InASR)将合成孔径雷达成像技术与干涉测量技术成功地进行了结合,利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,可以精确的测量出图像上每一点的三维位置和变化信息。 合成孔径雷达干涉测量技术是正在发展中的极具潜力的微波遥感新技术,其诞生至今已近30年。起初它主要应用于生成数字高程模型(DEM)和制图,后来很快被扩展为差分干涉技术( differential InSAR , DInSAR)并应用于测量微小的地表形变,它已在研究地震形变、火山运动、冰川漂移、城市沉降以及山体滑坡等方面表现出极好的前景。特别,DInSAR具有高形变敏感度、高空间分辨率、几乎不受云雨天气制约和空中遥感等突出的技术优势,它是基于面观测的空间大地测量新技术,可补充已有的基于点观测的低空间分辨率大地测量技术如全球定位系统(GPS)、甚长基线干涉(VLBI)和精密水准等。尤其InSAR在地球动力学方面的研究最令人瞩目。 二维相位解缠是InSAR 数据处理流程中重要步骤之一,也是主要误差来源,无论是获取数字高程模型还是获取地表形变信息,其精确程度都高度依赖于有效的相位解缠。因此,本人在课程期间对相位解缠的相关文献进行了阅读。 二、InSAR基本原理

用两副雷达天线代替两个光源1S ,2S ,对地面发射相干信号,将 得到类似的条纹图。因为雷达信号与光线本质上都是电磁波,所以只要保证雷达天线载具运行轨道的稳定,那么两个信号到达地面上某一点处的路程差是确定的,只与该点在地面上的位置有关。在 InSAR 干涉测量中有两种模式,一种是在载具(卫星或飞机)上搭载一具天线,而载具两次通过不同轨道航线飞经目标地域上空,此种称之为单天线双航过模式;另一种在载具上搭载两副天线,只飞经目标地域上空一次,此种方式称之为双天线单航过模式。不论是哪种方式都可以用图 2.2 来模拟并作出几何解释。 在测量中两副天线或两次航过接收的数据可以各获得对地面同一区域的两幅包含幅值与相位信息的二维复数据图像,分别以1S ,2S 表示为 111114||exp()||exp()j r S S S π?λ==

INSAR相位解缠方法比较分析

INSAR相位解缠方法比较分析 【摘要】合成孔径雷达干涉测量技术(Interferometric Synthetic Apeurtre Radar,简称InSAR)是近二十年发展起来的一种先进的空间观测技术,它通过对同一地区的两幅单视复数图像进行配准、干涉、去除平地效应、滤波、解缠、地理编码等一系列处理,最终获取DEM。相位解缠是InSAR数据处理的关键技术和难点,也是InSAR产品的主要误差源。本文选取相干性较好四组SAR影像对进行实验,借助于Mcrosoft visual C++6.0平台和Matlab平台,对六种最常用的解缠方法从解缠精度和效率两个方面来分析比较各种方法。 【关键词】InSAR;缠绕相位;相位解缠;误差 合成孔径雷达(Synthetic Apeurture Rada,简称SAR)是50年代末研制成功的一种微波传感器,也是微波传感器中发展最快、最有效的传感器之一。它是一种主动传感器,与其他测地技术相比,SAR具有不受光照以及恶劣天气等条件的影响,可进行全天时、全天候地对地观测,对地物具有一定穿透能力,分辨率不受传感器平台高度的影响等优点。因此,被广泛地应用于地质、环境、海洋、水文、灾害、测绘、农业、林业、气象和军事等领域。 早在1952年,美国Goodyear宇航公司便研制成功了第一个实用化的SAR 系统,1953年获得了第一幅机载SAR影像,到70年代中期机载SAR技术己经比较成熟,到了70年代末期星载SAR已经由实验研究转向了应用研究,进入80年代后,星载SAR得到了迅猛发展。我国1976年开始研制合成孔径雷达,1979年获取了我国第一批合成孔径雷达图像,1987我国研制了新一代机载合成孔径雷达系统,90年代初,中国研制出机载合成孔径雷达实时成像传送处理器,目前我国星载SAR系统也正在积极研究当中。 InSAR是基于SAR成像基础和干涉测量原理上的一种雷达主动成像遥感测量技术。它的原理是通过两副天线同时观测,或一定时间间隔的两次平行观测,获取同一景观的复图像对,由于目标与天线的几何关系,在复图像对上产生相位差,形成干涉图纹。干涉图包含了图像点与天线位置差的精确信息,干涉合成孔径雷达相位解缠算法利用传感器高度、雷达波长、波束视向及天线基线距之间的几何关系,可以精确地测量出图像上每一点的三维位置。 InSAR干涉测量数据处理流程分为七个步骤,分别为:图像配准,配准完成后主图像和重采样的辅图像复共轭相乘,去平地效应,滤波处理,相位解缠,基线估计,生成DEM。其中,相位解缠是干涉数据处理过程中关键环节,直接影响数字高程模型(DEM)的精度。 由于三角函数的周期性,干涉图中各点的相位值只能落入主值(- ,]的范围内,所以干涉纹图中的相位只是真实相位的主值,要得到反映高程信息的真实相位值必须对每个相位值加上2 的整数倍,这个过程称为相位解缠。 相位解缠是InSAR数据处理中的重要环节,自20世纪70年代末至今人们已经发展了几十种相位解缠算法,这些算法可以分为三大类,第一类是以枝切法为代表的基于路径跟踪的相位解缠算法,它主要是通过沿着预先确定的一致性路径进行相邻像元的相位差值积分来实现相位解缠。积分时路径要绕开一些低质量、不一致的区域,这是路径跟踪算法的核心思想。这些方法都是一种局域算子,即误差被限制在局部区域内不会传播。第二类是以最小二乘算法为代表的基于最小范数思想的相位解缠算法,它是通过在整体上使缠绕相位的梯度与真实相位的

InSAR图像相位解缠的最小费用流法及其改进算法研究

InSAR图像相位解缠的最小费用流法 及其改进算法研究 蒋廷臣1,2,焦明连1,史建青1,王秀萍 1 (1.淮海工学院测绘工程学院,江苏连云港 222001; 2.武汉大学卫星导航定位技术研究中心,武汉 430079) 摘要:最小费用流法是基于网络流的相位解缠方法,解决了许多解缠方法无法消除相位噪声对高相干区域影响的问题,在此基础上,本文针对该方法解缠时速度较慢和对计算机性能要求较高的缺点而提出改进算法,即将干涉图像分为若干子区域分别进行处 理,再利用基于Contourlet变换的超小波方法进行融合处理,最后用算例进行了验证,结果表明最小费用流法及其改进算法是一个 较好的解缠方法。 关键词:干涉测量相位解缠最小费用流法分块算法小波融合 一、前言 随着测绘新技术新理论的发展,现代大地测量范畴得到了较大拓宽,现在,合成孔径雷达干涉测量(Interferometry Synthetic Aperture Radar—InSAR)已成为其分支学科。合成孔径雷达干涉测量 ( InSAR)利用合成孔径雷达数据的相位信息提取地面三维信息,主要用于测量地面的高程和监测其变形。随着COSMOS和terraSAR卫星的发射成功,该技术日益受到各国政府部门以及科学工作者的重视。 在InSAR数据处理过程中,相位解缠是合成孔径雷达干涉测量的关键流程,它的准确性直接影响到 InSAR生成的数字高程模型的精确性。现在所有的解缠方法都是基于这样的假设,即 φ差的绝对值小于π。解缠后的真实相位是平滑且变化缓慢,同时图像各相邻像素的干涉相位 但是,雷达阴影、去相关等因素引起的噪声和伪信号往往造成相位数据不连续,给相位解缠带来极大的困难,目前大部分算法都无法圆满地解决这些问题 ,解缠的结果常常会有较大的误差,由此得到的数字高程模型就会与实际情况存在较大的差别。如何能够从质量较差的数据当中提取有用的信息,而忽略噪声对解缠过程的影响,成为一个急待解决的问题。 基于上述,本文根据统一的解缠数学模型和网络优化原理,阐述了最小费用流法法的相位解缠方法,并针对该方法解缠时速度较慢而提出分块算法,将整幅图像分为若干子区域分别进行处理 ,再利用超小波方法进行融合处理,从而得到较理想的解缠效果,同时利用算例进行了比较分析,较好地解决了上述问题。 二、最小费用流法解缠原理 2.1统一解缠模型 经过多年对相位解缠方法的研究,现在已有很多的解缠方法。在1996年,Ghiglia和Romero 第一作者简介:蒋廷臣(1975-),男,汉族,四川蓬安人,武汉大学测绘学院博士生,主要从事GPS与宽幅SAR融合的相关理论与方法研究。 第二作者简介:焦明连(1963-),男,汉族,河南商丘人,副教授,主要从事主要从事精密工程测量和测绘教育研究。

InSA_R相位解缠最小范数算法的研究

InSAR相位解缠最小范数算法的研究 第一章绪论 1.1论文研究的背景 合成孔径雷达干涉测量(InSAR)是20世纪60年代末发展起来的一项技术,在近20年来受到了世界各国的广泛关注获得了迅猛发展并逐渐趋于成熟。由于合成孔径雷达干涉测量主要是利用主动微波式传感器,它的出现大大地扩展了合成孔径雷达、光学传感器等的应用领域。它不仅能够获取高精度的高程信息,同时还可以全天时、全天候监测陆地表面和冰雪表面地形等的微小变化,监测的时间间隔从几天到几年,监测精度可达毫米级,并且它对某些目标物体还具有一定的穿透能力。其更令人瞩目的是,这项技术还可用于研究过去长时间无法到达的冰川和冰源的变化情况,也可用于一些灾害性地表形变的探测,如地震、火山爆发、等以及地表三维的重建,因而成为了遥感研究的热点川。 1.1.2 相位解缠研究的现状 相位解缠技术最早出现在20世纪60年代末70年代初,当时主要是信号处理的需要,所研究的主要是一维问题。除合成孔径雷达干涉测量中应用外,还在合成孔径声纳、光学干涉、微波干涉、核磁共

振等方面有重要应用。二维相位解缠始于20世纪70年代末。在 过去的30多年里,InSAR的相位解缠的方法发展十分迅速,达到了三、四十种,文献(王超,2002)列出了多种算法,但以上基本上可以分为两大类,即路径跟踪法(Path Following)和最小二乘法(Least Square),路径跟踪法基于像元到像元的局部运算来解缠,而最小二乘法是通过使解缠后解缠前相位的梯度差整体最小来进行求解的。 各种算法都有其自身的优缺点,适用于特定条件的数据,普适性都不是很好,因此算法的选择一般应根据实际情况而定。 1.2 本文研究内容 我国是一个地质灾害频繁的国家,近些年来各种地质灾害接踵而来,如地震、滑坡、地面沉降等,这些地质灾害以地表形变为直接特征,严重影响了人民生命与则一产的安全,因此对地表形变的监测显得尤为重要。合成孔径雷达技术能够利用雷达信号中的相位信息来提取地表的三维信息,精度可达毫米级,己成为目前DEM生产的主要技术手段之一,在地下资源探测以及军事目标探测等方面都具有其独特的优越性和发展潜力。相位解缠作为InSAR技术应用处理中至关重要的一个环节,也因此显得尤为重要。 本文主要研究内容包括以下几个方面: 1、对相位解缠中最小范数算法的理论进行归纳和研究. 2、从对合成孔径雷达干涉测量的常用数据分析入手,在C#编程语言的基础上,结合WPS, GIS等技术和手段,对基于最小范数算法的InSAR相位解缠软件的四种基于最小范数相位解缠算法,包括

图割算法在相位解缠中的应用

图割算法在相位解缠中的应用 摘要:相位解缠一直以来是干涉测量领域中的一个重要研究方向。传统的相位解缠算法的解缠结果易受到噪声或者截断相位的影响。为了解决上述问题,提高解缠精度,在模拟的存在截断相位缺陷的数据上,建立马尔科夫能量模型,推导出能量函数,使得相位解缠变成一个求解全局最优化的问题,利用图割理论求解。实验结果表明,图割理论能够很好的完成能量函数的优化,解缠结果在抗噪性以及精度上,比起传统的解缠算法都有着一定优势。那么就意味着,该方法在相位解缠方面有着重要的研究价值和宽阔的应用前景。 Abstract:Phase unwrapping is an important field in interference measurement. The traditional phase unwrapping algorithms are easily affected by noise or discontinuous phase. In order to solve the problems and improve solution accuracy,establishing markov energy model,getting the energy function,making the phase unwrapping into a global optimization problem on the datas of simulation of discontinuous phase,using the graph cuts solve the problem. The experimental results show that the optimization of energy

相关文档