文档库 最新最全的文档下载
当前位置:文档库 › Structure and evolution of cereal genomes

Structure and evolution of cereal genomes

Structure and evolution of cereal genomes
Structure and evolution of cereal genomes

Structure and evolution of cereal genomes

Andrew H Paterson?,John E Bowers?,Daniel G Peterson y, James C Estill?and Brad A Chapman?

The cereal species,of central importance to our diet,began to diverge50–70million years ago.For the past few thousand years,these species have undergone largely parallel selection regimes associated with domestication and improvement.The rice genome sequence provides a platform for organizing information about diverse cereals, and together with genetic maps and sequence samples from other cereals is yielding new insights into both the shared and the independent dimensions of cereal evolution.New data and population-based approaches are identifying genes that have been involved in cereal improvement.Reduced-representation sequencing promises to accelerate gene discovery in many large-genome cereals,and to better link the under-explored genomes of‘orphan’cereals with

state-of-the-art knowledge.

Addresses

?Plant Genome Mapping Laboratory,University of Georgia,Athens, GA30602,USA

y Mississippi Genome Exploration Laboratory,Mississippi State University,Mississippi,MO39762,USA

Current Opinion in Genetics&Development2003,13:644–650 This review comes from a themed issue on

Genomes and evolution

Edited by Evan Eichler and Nipam Patel

0959-437X/$–see front matter

?2003Elsevier Ltd.All rights reserved.

DOI10.1016/j.gde.2003.10.002

Abbreviations

BAC bacterial arti?cial chromosome

CBCS Cot-based cloning and sequencing

EST expressed sequence tag

SNP single-nucleotide polymorphism

STS sequence-tagged site

Introduction

The cereal crops,which provide about half of the calories in our diet,represent a relatively recent branch of the plant family tree.Although the angiosperm(?owering plant)lineage is thought to be$200million years old, cereals such as maize(Zea),rice(Oryza),sorghum(Sor-ghum),and wheat(Triticum)diverged from a common ancestor only$50–70million years ago[1].Approxi-mately10,000years ago,humans began to select cereals for traits including non-shattering,determinate growth, increased seed number,size,and carbohydrate content, and reduced dormancy[2].Although these‘domestica-tion’efforts were ostensibly independent and occurred on different continents—maize in America,sorghum in Africa,wheat in the Near East,and rice in both Africa and Asia—the possibility that mutations in some correspond-ing genes may have been selected(e.g.see[3,4])is a general re?ection of the many structural and functional parallels that appear to have persisted since the diver-gence of these lineages.

Most widely-grown cereals now enjoy detailed sequence-tagged site(STS)based genetic recombina-tion maps[5–11,12 ,13,14]that are suitable both for comparative biology and for crop improvement.Whereas these maps have been successfully applied for many uses using traditional restriction-fragment length polymorph-ism or simple sequence repeat based methods,geneti-cally-mapped STSs can readily be used to discover single-nucleotide polymorphisms(SNPs)or small inser-tion/deletion polymorphisms[15 ]that can then be genotyped by many new technologies.The ability to acquire such polymorphism information for correspond-ing loci in many genotypes increases the value of STS maps and reduces the costs associated with their wider utilization.STS-based maps also provide an excellent means by which physical maps based upon large-insert clones can be integrated with genetic recombination maps[16,17].

Gene repertoire and arrangement along the chromo-somes of diverse cereals has evolved much more slowly than overall genome size and organization[18 ].For example,in the detailed genetic recombination maps of maize(>3400loci;[9];MaizeDB:http://www.agron. https://www.wendangku.net/doc/205359291.html,/maps.html),and sorghum(>2500loci;

[19];Plant Genome Mapping Laboratory:http:// https://www.wendangku.net/doc/205359291.html,),$55%of comparative loci show corresponding arrangement[19]although the underlying genomes differ fourfold in DNA content. The35-fold divergence in genome size among major cereals,from$0.5pg($490Mb)per1C(DNA content per haploid nucleus)for Oryza sativa(rice)to17.33pg ($16,979Mb)per1C for Triticum aestivum(bread wheat) [20],appears to be largely a result of a dynamic and lineage-speci?c balance between generation and elim-ination of mobile dispersed repetitive DNA elements [21].Mechanisms that contribute to elimination of repetitive DNA may also contribute to the gene loss that follows polyploid formation in angiosperms[22 ]. Differential gene loss after genome-wide duplication(s) may account for an appreciable fraction of genes that appear to be‘missing’in comparisons of micro-colinear-ity among some

taxa.

644

Genomic archaeology:ancient events that shaped modern genomes

The large genomes of many cereal crops are not likely to be sequenced for many years yet,but the relatively close relationship among the major cereals suggests that their study and improvement can bene?t considerably from the sequences of small-genome relatives.The emerging sequence of the rice chromosomes[23 ,24 ,25 ],gen-erated by the integration of‘genomic shotgun’data [26 ,27 ]with extensive genetic and physical mapping efforts[12 ,28 ,29],provides a foundation for organizing information about diverse cereals,and is yielding new insights into both the shared and the independent dimen-sions of cereal evolutionary history.

The cross-utilization of information from botanical mod-els such as rice,in the study and improvement of major cereal crops requires a detailed understanding of the evolutionary history of cereal genomes.An especially important shared feature of cereal genome structure that will only be clear with a completed genome sequence is the pattern(or lack thereof)of ancient chromosomal or predominantly whole genome duplication,an evolution-ary event with profound consequences for comparative biology[22 ,30 ].Recent,extensive duplication in the genomes of some cereals such as maize[31,32 ],and other grasses such as sugarcane[7],has long been recognized. Although a complete rice genome sequence is required for a de?nitive picture of the history of ancient duplica-tions in the cereal lineage,an early glimpse on the basis of analysis of unordered sequence within series of physi-cally-ordered BACs(bacterial arti?cial chromosomes; Figure1)strongly supports suggestions[26 ,33–35]that ancient genome-wide duplication has occurred here.‘Phylogenomic’analysis,merging phylogenetic inference with structural genomic data(in this case,regarding ancient duplication patterns)(Figure1a),suggests that at least one duplication event predates the divergence of the major cereal lineages(Figure1b).That such an event predates cereal divergence is consistent with the largely‘one-to-one’correspondence found between the chromosomes of ostensibly diploid cereals such as sorghum and rice. Differential‘diploidization’(loss of duplicated genes [36])in different lineages may contribute to deviations from synteny such as the45%incongruency of anchor loci found between sorghum and maize[19].For example,our comparison of the rice BACs(Figure1)to the sorghum genetic map shows that61.6%of loci(comprising12 syntenic groups averaging83.5matching sequences each)?t with established primary syntenic relationships. Among those loci that deviate from the primary syntenic relationships,25%(or9.6%of all loci)fall at the single locations that are consistent with the proposed ancient duplications illustrated in Figure1,with the remaining 75%distributed over the other10chromosomes. Together with other mechanisms of gene rearrangement,differential diploidization may also contribute to why some comparisons of more distantly related plant taxa have yielded complex mosaics of syntenic and non-syntenic loci[37–41].

Footprints of domestication and improvement

A particularly important application of structural genomic tools is the manipulation(in breeding)and even isolation of a growing number of genes important to agriculture, evolution,or development.Quantitative trait locus map-ping approaches continue to be a powerful and widely-used means to identify genes that in?uence phenotypes for which information about related biochemical path-ways or mechanisms is lacking.Progress in the use of structural genomic tools to dissect complex traits in rice [42]has been particularly good,although much progress has also been made in many other crops and botanical models too numerous to fully address herein.

The rapidly-growing density of genetically-mapped STS markers,together with burgeoning DNA sequence data, provides new clues as to the locations and identities of phenotypically-important genes under selection[43,44 ]. The past?ve years have seen an explosion in cereal genomics,with DNA sequence data for the cereal family tree expanding much more rapidly than for other taxa.In January of1998,the total of4Mb of cereal sequence represented$1%of the data held in GenBank.By31May of2003,the total of2,038Mb of cereal sequence com-prised$6%that held in GenBank(Figure2). Particularly important to relating such extensive se-quence data to phenotype will be ef?cient re-sequencing approaches,using carefully-selected germplasm collec-tions together with detailed knowledge of population structure and genetic relationships to implicate small subsets of sequences in the control of key traits[43]. Such‘association approaches’bene?t from a good under-standing of the extent of linkage disequilibrium in plant populations.In outcrossing species such as maize,linkage disequilibrium often decays to virtually undetectable levels even at opposite ends of a single gene,although rates of decay vary widely for different genes[45].Link-age disequilibrium is moderately stronger in low-copy regions of predominantly-sel?ng taxa(M Hamblin,AH Paterson,S Kresovich,unpublished data)but still much less than expected if recombination were distributed evenly across genomic DNA,suggesting that the bulk of recombination in plants may occur within genes. Toward a complete picture:broadening knowledge of diversity,and extending data from botanical models across(and beyond) the cereals

Enhanced knowledge of the adaptations that suit the cereals to agriculture,and speci?cally identifying the

Structure and evolution of cereal genomes Paterson,Bowers,Peterson,Estill and Chapman645

diversity that makes different cereals more productive in different environments or for different purposes,are important potential bene ?ts that impel the acquisi-tion of more and better information about the evolution of cereal genes and genomes.A major obstacle in gain-ing such information is repetitive DNA,which com-prises the bulk of most cereal genomes (Figure 3)and therefore largely determines the cost of sequencing

these genomes by shotgun approaches.As expressed sequence tag (EST)sequencing reaches a point of diminishing returns,a particularly promising approach to isolating comprehensive sets of cereal gene sequences is the use of Cot analysis [46]to fractionate repetitive genomes into components with similar degrees of sequence repetition,and then to sequence correspond-ing clone libraries to a depth suf ?cient to represent

Figure 1

O r y z a

T r i t i c u m Z e a

S a c c h a r u m

S o r g h u m

H o r d e u m

P i n e

0.08b (1554)0.48a (1780)0.49a (1781)

Current Opinion in Genetics & Development

(b)

Genomic duplication in selected cereal genomes.(a)Patterns of ancient duplication in rice.For a first glimpse into the history of duplication early in the evolution of the cereal lineage,we used public data to construct a set of approximately physically-ordered BACs for rice,then identified genes that show high sequence similarity to un-ordered shotgun reads within the BACs,and studied the arrangements of closely-corresponding genes across the genome as described for Arabidopsis [59].While a true assembled sequence will add important resolution and detail to this picture,it is clear already that there has been substantial,perhaps genome-wide,duplication of the rice genome.Previously reported duplication of

chromosomes 1–5[33]and 11–12[34]is clear,together with nonoverlapping duplication of chromosome 2with parts of chromosome 4and 6;chromosome 3with parts of chromosomes 7and 10;and much of chromosomes 8and 9.(b)Preliminary phylogenetic analysis for key cereal

nodes and an outgroup (pine)were conducted as described [27 ],including rooting using Physcomitrella sequences,with the frequencies of internal gene trees generated by comparison of each taxon shown to the rice duplicates shown below the taxa.Different letters represent statistically significant differences based on Tukey ’s test,and the number of trees that could be tested (according to criteria described in [27 ])is shown in parentheses.Open circles indicate possible chromosomal duplication events.The gene tree analyses support prior evidence of largely ‘one-to one ’correspondence of the rice chromosomes to those of other nominally diploid grasses such as sorghum [60]in suggesting that much of the duplication shown predates the divergence of the cereals from one another.Additional,more recent duplications within some cereal lineages such as maize [31,32 ]and sugarcane [7]further complicate the comparative genomics of the cereals.Recent polyploidy formation within the Triticeae (not shown)similarly complicates comparisons at the tetraploid and hexaploid level.Although the drawing is congruent with contemporary phylogenetic inference,the lengths of the branches are illustrative and do not precisely represent any particular measure of taxonomic distance.

646Genomes and evolution

the‘sequence complexity’of the respective com-ponents[47].

As with genomic shotgun sequencing,the‘Cot-based cloning and sequencing’(CBCS)approach represents only one dimension of a multi-faceted strategy that will be needed to produce?nished sequences of large cereal genomes.However,although the cost of standard geno-mic shotgun sequencing is proportional to total genome size,the cost of CBCS is proportional to genomic sequence complexity,yielding immense potential savings in characterizing the diversity of sequences in different genomes(Figure3).First demonstrated in2001[48], early CBCS explorations show promise not only in char-acterization of the relatively small($700Mb)genome of sorghum[49 ]but also in the larger and more complex genome of maize[50],and in non-cereals such as cotton (T Wicker et al.,unpublished data).Alternatives to CBCS based upon differential methylation of expressed versus non-expressed sequences[51]may also contribute sig-ni?cantly to‘skimming’of low-copy sequences from large-genome taxa,but unlike CBCS these techniques are subject to the variable relationship between methyla-tion and gene expression across genes and taxa(see [47,49 ]for an extensive discussion).CBCS has the further advantage that representative sequences of DNA families comprising the repetitive fraction(s)of a genome can also be ef?ciently obtained[47,48,49 ].This mitigates the risk that potentially valuable information is lost,in comparison to alternative methods[50,51]that disregard these fractions.

Prior to the production of suf?cient data to cover the entire sequence complexity of a taxon,much may be learned from reduced-representation approaches that use, for example,restriction enzymes[52]or degenerate oli-gonucleotide primers[53 ]to identify large numbers of SNPs in widely-distributed STSs.The STS-based infor-mation deriving from these methods is useful not only in detecting SNPs,but also in aligning the underlying genomes to those of well-studied models such as rice. Many‘orphan crops’[54]for which genomic information is presently lacking,but that are essential to sustain low-income human populations in harsh climates where

Figure2

Public DNA sequence data for selected cereals.Color-coded curves illustrate the cumulative totals of EST and genomic survey sequence data deposited in GenBank for maize,sorghum,the Triticeae,and rice for the past5years in reference to the left axis,and the relative growth of cereal sequence data as a percentage of total GenBank entries in reference to the right axis.

Structure and evolution of cereal genomes Paterson,Bowers,Peterson,Estill and Chapman647

inputs such as fertilizer and water are prohibitively costly may be great bene?ciaries from such approaches. Conclusions and future directions

The completed rice sequence promises to shed much light on the early events that shaped the cereal lineage, and be invaluable as a framework for organizing compara-tive information[55]for both major and‘orphan’[54] cereals.The value of cross-utilizing rice genomic tools in other cereals is also considerable[56].However,compara-tive phenotypic,genomic and sequence information from many additional taxa will be needed to elucidate the speci?c events responsible for the morphological and physiological diversity that adapts different cereals to different climates,production regimes,and human needs. Such information promises to grow at an accelerating rate by virtue of ef?cient new methods,and will help to reveal the relative roles of different genes,and different types of genomic changes,in the evolution of phenotypic diversity among and within cereal lineages.As the identities of growing numbers of key cereal genes become known in individual taxa(e.g.[57]),growing attention to compara-tive biology(e.g.[58])promises to facilitate understand-ing of the relationship between DNA polymorphism and biological diversity.

Acknowledgements

We thank many members of the Paterson laboratory and our collaborators and colleagues for fruitful discussions,and the US National Science Foundation, US Department of Agriculture,International Consortium for Sugarcane Biotechnology,US Golf Association,and Georgia Agricultural Experiment Station for?nancial support.References and recommended reading

Papers of particular interest,published within the annual period of review,have been highlighted as:

of special interest

of outstanding interest

1.Kellogg EA:Relationships of cereal crops and other grasses.

Proc Natl Acad Sci USA1998,95:2005-2010.

2.Harlan JR:Crops and Man.Madison,WI:Crop Science Society of

America;1975.

3.Paterson A,Lin Y-R,Li Z:Convergent domestication of cereal

crops by independent mutations at corresponding genetic loci.

Science1995,269:1714-1718.

4.Hu FY,Tao DY,Sacks E,Fu BY,Xu P,Li J,Yang Y,McNally K,

Khush GS,Paterson AH et al.:Convergent evolution of

perenniality in rice and sorghum.Proc Natl Acad Sci USA2003, 100:4050-4054.

5.Qi XQ,Stam P,Lindhout P:Comparison and integration of four

barley genetic maps.Genome1996,39:379-394.

6.Roder MS,Korzun V,Wendehake K,Plaschke J,Tixier MH,Leroy P,

Ganal MW:A microsatellite map of wheat.Genetics1998,

149:2007-2023.

7.Ming R,Liu SC,Lin YR,da Silva J,Wilson W,Braga D,

van Deynze A,Wenslaff TF,Wu KK,Moore PH et al.:Detailed

alignment of Saccharum and Sorghum chromosomes:

comparative organization of closely related diploid and

polyploid genomes.Genetics1998,150:1663-1682.

8.Devos KM,Pittaway TS,Reynolds A,Gale MD:Comparative

mapping reveals a complex relationship between the pearl

millet genome and those of foxtail millet and rice.Theor Appl Genet2000,100:190-198.

9.Lee M,Sharopova N,Beavis WD,Grant D,Katt M,Blair D,Hallauer

A:Expanding the genetic map of maize with the intermated B73T Mo17(IBM)population.Plant Mol Biol2002,48:453-461.

10.McCouch SR,Teytelman L,Xu YB,Lobos KB,Clare K,Walton M,

Fu BY,Maghirang R,Li ZK,Xing YZ et al.:Development and

Figure3

Contributions of highly repetitive(HR,green),moderately repetitive(MR,orange),and single/low-copy(SL,purple)components to genome size(GnSz) and sequence complexity(SqCx).Whereas HR and MR components collectively constitute the bulk of DNA in all cereal genomes,these components comprise only negligible portions of each genome’s SqCx.CBCS allows elucidation of a genome’s SqCx with minimal encumbrance by repetitive elements[49 ].Consequently,CBCS may accelerate exploration of large,highly repetitive genomes such as those of many cereals[47].Cot data [49 ,61–65]was normalized to reflect current genome size estimates[20]and differences in data formats(see https://www.wendangku.net/doc/205359291.html,/research/mgel/ pdf_files/cogd_fig.pdf for details).

648Genomes and evolution

mapping of2240new SSR markers for rice(Oryza sativa L.).

DNA Res2002,9:199-207.

11.Sharopova N,McMullen MD,Schultz L,Schroeder S,

Sanchez-Villeda H,Gardiner J,Bergstrom D,Houchins K,

Melia-Hancock S,Musket T et al.:Development and mapping of SSR markers for maize.Plant Mol Biol2002,48:463-481.

12. Wu JZ,Maehara T,Shimokawa T,Yamamoto S,Harada C, Takazaki Y,Ono N,Mukai Y,Koike K,Yazaki J et al.:A comprehensive rice transcript map containing6591expressed

sequence tag sites.Plant Cell2002,14:525-535.

Gene mapping,based on the hybridization of ESTs to large-insert DNA

clones,provides many of the bene?ts of a completed sequence to many

cereal genomes at much less time and cost.Although the rice genome will soon be fully sequenced,the methods described are applicable to many

additional genomes that may not be sequenced for quite some time yet.

13.Wight CP,Tinker NA,Kianian SF,Sorrells ME,O’Donoughue LS,

Hoffman DL,Groh S,Scoles GJ,Li CD,Webster FH et al.:A

molecular marker map in‘Kanota’T‘Ogle’hexaploid oat

(Avena spp.)enhanced by additional markers and a robust

framework.Genome2003,46:28-47.

14.Sorrells ME,La Rota M,Bermudez-Kandianis CE,Greene RA,

Kantety R,Munkvold JD,Miftahudin,Mahmoud A,Ma X,

Gustafson PJ et al.:Comparative DNA sequence analysis of

wheat and rice genomes.Genome Res2003,13:1818-1827.

15. Nasu S,Suzuki J,Ohta R,Hasegawa K,Yui R,Kitazawa N, Monna L,Minobe Y:Search for and analysis of single nucleotide polymorphisms(SNPs)in rice(Oryza sativa,Oryza ru?pogon) and establishment of SNP markers.DNA Res2002,9:163-171.

Among the?rst illustrations of a genome-wide SNP map in plants, including early quanti?cation of rates and types of SNPs within Oryza, and demonstration of an uneven genomic landscape of SNP distribution.

16.Draye X,Lin Y-R,Bowers JE,Burow GB,Morrell PL,

Peterson DG,Presting GG,Ren SX,Wing RA,Paterson AH:Toward integration of comparative genetic,physical,diversity,and

cytomolecular maps for grasses and grains,using the Sorghum genome as a foundation.Plant Physiol2001,125:1325-1341. 17.Coe E,Cone K,McMullen M,Chen SS,Davis G,Gardiner J,

Liscum E,Polacco M,Paterson A,Sanchez-Villeda H et al.:Access to the maize genome:an integrated physical and genetic map.

Plant Physiol2002,128:9-12.

18. Feuillet C,Keller B:Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution.Ann Bot(Lond)2002,89:3-10.

A succinct review of micro-colinearity and its exceptions in the grasses.

19.Bowers JE,Abbey C,Anderson S,Chang C,Draye X,Hoppe AH,

Jessup R,Lemke C,Lennington J,Li Z et al.:A high-density

genetic recombination map of sequence-tagged sites for

sorghum,as a framework for comparative structural and

evolutionary genomics of tropical grains and grasses.

Genetics2003,in press.

20.Bennett MD,Leitch IJ:Angiosperm DNA C-values database

(release4.0,Jan.2003).https://www.wendangku.net/doc/205359291.html,/cval/

homepage.html

21.Bennetzen JL:Mechanisms and rates of genome expansion and

contraction in?owering plants.Genetica2002,115:29-36.

22. Bowers JE,Chapman BA,Rong JK,Paterson AH:Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events.Nature2003,422:433-438.

An early application of‘phylogenomics’,a merger of phylogenetic infer-ence with structural genomic information that is expected to be of growing importance in the analysis and interpretation of genomic data.

23. Sasaki T,Matsumoto T,Yamamoto K,Sakata K,Baba T, Katayose Y,Wu JZ,Niimura Y,Cheng ZK,Nagamura Y et al.: The genome sequence and structure of rice chromosome1. Nature2002,420:312-316.

See annotation[24 ].

24. Feng Q,Zhang YJ,Hao P,Wang SY,Fu G,Huang YC,Li Y,Zhu JJ, Liu YL,Hu X et al.:Sequence and analysis of rice chromosome4. Nature2002,420:316-320.

These papers[23 ,24 ],published simultaneously,represent the?rst essentially completed rice chromosomes.Reference[23 ]is distin-guished in also being the largest rice chromosome.25.

The Rice Chromosome10Sequencing Consortium:In-depth view of structure,activity,and evolution of rice chromosome10.

Science2003,300:1566-1569.

Near-completed sequencing and detailed analysis of the smallest and most heterochromatic of the rice chromosomes.

26.

Yu J,Hu SN,Wang J,Wong GKS,Li SG,Liu B,Deng YJ,Dai L, Zhou Y,Zhang XQ et al.:A draft sequence of the rice genome (Oryza sativa L.ssp indica).Science2002,296:79-92.

See annotation[27 ].

27.

Goff SA,Ricke D,Lan TH,Presting G,Wang RL,Dunn M,

Glazebrook J,Sessions A,Oeller P,Varma H et al.:A draft

sequence of the rice genome(Oryza sativa L.ssp japonica).

Science2002,296:92-100.

Papers[26 ,27 ],published simultaneously,comprise the?rst genomic shotgun sequence of a cereal,and shed light on the genomic diversity of cereals from dicot plants such as Arabidopsis,as well as non-plant taxa.

28.

Chen MS,Presting G,Barbazuk WB,Goicoechea JL,Blackmon B, Fang FC,Kim H,Frisch D,Yu YS,Sun SH et al.:An integrated

physical and genetic map of the rice genome.Plant Cell2002, 14:537-545.

Together with[26 ,27 ],this work sets the stage for a?nished sequence of the?rst cereal genome,emerging now as illustrated in[23 ,24 ,25 ].

29.Zhao Q,Zhang Y,Cheng ZK,Chen MS,Wang SY,Feng Q,

Huang YC,Li Y,Tang YS,Zhou B et al.:A?ne physical map of the rice chromosome4.Genome Res2002,12:817-823.

30.

Kellogg EA:It’s all relative.Nature2003,

422:383-384.

A succinct and illustrative critique of new methods described in[27 ]and elsewhere for application of‘phylogenomics’to the analysis of plant chromosome evolution.

31.Gaut BS:Patterns of chromosomal duplication in maize and

their implications for comparative maps of the grasses.

Genome Res2001,11:55-66.

32.

Gaut BS:Evolutionary dynamics of grass genomes.New Phytol 2002,154:15-28.

A‘Tansley review’(by invitation only),providing an excellent overview of existing knowledge,challenges,and opportunities associated with com-parative genomics in the grasses.

33.Kishimoto N,Higo H,Abe K,Arai S,Saito A,Higo K:Identi?cation

of the duplicated segments in rice chromosomes1and5by linkage analysis of cDNA markers of known functions.

Theor Appl Genet1994,88:722-726.

34.Nagamura Y,Inoue T,Antonio B,Shimano T,Kajiya H,Shomura A,

Lin S,Kuboki Y,Harushima Y,Kurata N et al.:Conservation of

duplicated segments between rice chromosomes11and12.

Breed Sci1995,45:373-376.

35.Wang SP,Liu KD,Zhang QF:Segmental duplications are

common in rice genome.Acta Bot Sin2000,42:1150-1155. 36.Eckhardt N:A sense of self:the role of DNA sequence elimination

in allopolyploidization.Plant Cell2001,13:1699-1704.

37.Devos KM,Beales J,Nagamura Y,Sasaki T:Arabidopsis-rice:

will colinearity allow gene prediction across the eudicot-

monocot divide?Genome Res1999,9:825-829.

38.Liu H,Sachidanandam R,Stein L:Comparative genomics

between rice and Arabidopsis shows scant collinearity in gene order.Genome Res2001,11:2020-2026.

39.Vandepoele K,Saeys Y,Simillion C,Raes J,Van de Peer Y:The

automatic detection of homologous regions(ADHoRe)and its application to microcolinearity between Arabidopsis and rice.

Genome Res2002,12:1792-1801.

40.Salse J,Piegu B,Cooke R,Delseny M:Synteny between

Arabidopsis thaliana and rice at the genome level:a tool to

identify conservation in the ongoing rice genome sequencing project.Nucleic Acids Res2002,30:2316-2328.

41.Song R,Llaca V,Messing J:Mosaic organization of orthologous

sequences in grass genomes.Genome Res2002,

12:1549-1555.

42.Yano M:Genetic and molecular dissection of naturally

occurring variation.Curr Opin Plant Biol2001,4:130-135.

Structure and evolution of cereal genomes Paterson,Bowers,Peterson,Estill and Chapman649

43.Thornsberry JM,Goodman MM,Doebley J,Kresovich S,Nielsen D,

Buckler ES:Dwarf8polymorphisms associate with variation in ?owering time.Nat Genet2001,28:286-289.

44. Tenaillon MI,Sawkins MC,Anderson LK,Stack SM,Doebley J, Gaut BS:Patterns of diversity and recombination along chromosome1of maize(Zea mays ssp mays L.).Genetics2002, 162:1401-1413.

An elegant integration of cytological,structural and population genomic data,yielding new insights into how allelic diversity is distributed across genomes.

45.Remington DL,Thornsberry JM,Matsuoka Y,Wilson LM,Whitt SR,

Doeblay J,Kresovich S,Goodman MM,Buckler ES:Structure of linkage disequilibrium and phenotypic associations in the

maize genome.Proc Natl Acad Sci USA2001,98:11479-11484.

46.Goldberg RB:From cot curves to genomics.How gene cloning

established new concepts in plant biology.Plant Physiol2001, 125:4-8.

47.Peterson DG,Wessler SR,Paterson AH:Ef?cient capture of

unique sequences from eukaryotic genomes.Trends Genet

2002,18:547-550.

48.Peterson DG,Schulze SR,Sciara EB,Lee SA,Bowers JE,Nagel A,

Tibbitts DC,Wessler SR,Paterson AH:Integration of Cot

analysis,DNA cloning,and high-throughput sequencing

facilitates genome characterization and gene discovery.

https://www.wendangku.net/doc/205359291.html,/entrez(2001)

49. Peterson DG,Schulze SR,Sciara EB,Lee SA,Bowers JE,Nagel A, Jiang N,Tibbitts DC,Wessler SR,Paterson AH:Integration of Cot analysis,DNA cloning,and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res2002,12:795-807.

Merger of a classic approach with modern methods to‘fractionate’genomes based on the degree of repetition of DNA element families. Together with[47],this illustrates an alternative to‘genomic shotgun sequencing’that may permit us to economically access the sequence complexity(set of unique sequences)in large,highly-repetitive genomes.

50.Yuan YN,SanMiguel PJ,Bennetzen JL:High-Cot sequence

analysis of the maize genome.Plant J2003,34:249-255.

51.Rabinowicz PD,McCombie WR,Martienssen RA:Gene

enrichment in plant genomic shotgun libraries.Curr Opin Plant Biol2003,6:150-156.

52.Altshuler D,Pollara VJ,Cowles CR,Van Etten WJ,Baldwin J,

Linton L,Lander ES:An SNP map of the human genome

generated by reduced representation shotgun sequencing.

Nature2000,407:513-516.53.

Jordan B,Charest A,Dowd JF,Blumenstiel JP,Yeh RF,Osman A, Housman DE,Landers JE:Genome complexity reduction

for SNP genotyping analysis.Proc Natl Acad Sci USA2002,

99:2942-2947.

A promising reduced-representation method to rapidly identify suf?cient populations of SNPs for genetic mapping of genomes for which a minimum of a priori information exists.

54.Goodman RM,Naylor R,Tefera H,Nelson R,Falcon W:The rice

genome and the minor grains.Science2002,296:1801.

55.Yuan QP,Quackenbush J,Sultana R,Pertea M,Salzberg SL,

Buell CR:Rice bioinformatics.Analysis of rice sequence data and leveraging the data to other plant species.Plant Physiol

2001,125:1166-1174.

56.Yamada T,Kishida T:Genetic analysis of forage grasses based

on heterologous RFLP markers detected by rice cDNAs.

Plant Breed2003,122:57-60.

57.Spielmeyer W,Ellis MH,Chandler PM:Semidwarf(sd-1),‘‘green

revolution’’rice,contains a defective gibberellin20-oxidase

gene.Proc Natl Acad Sci USA2002,99:9043-9048.

58.Lukens L,Doebley J:Molecular evolution of the teosinte

branched gene among maize and related grasses.Mol Biol Evol 2001,18:627-638.

59.Paterson AH,Bowers JE,Burow MD,Draye X,Elsik CG,Jiang CX,

Katsar CS,Lan TH,Lin YR,Ming RG et al.:Comparative genomics of plant chromosomes.Plant Cell2000,12:1523-1539.

60.Paterson AH,Lin YR,Li ZK,Schertz KF,Doebley JF,Pinson SRM,

Liu SC,Stansel JW,Irvine JE:Convergent domestication of

cereal crops by independent mutations at corresponding

genetic-loci.Science1995,269:1714-1718.

61.Mitra R,Bhatia CR:Repeated and non-repeated nucleotide

sequences in polyploid wheat species.Heredity1973,

31:251-262.

62.Smith DB,Flavell RB:Nucleotide sequence organisation in the

rye genome.Biochim Biophys Acta1977,474:82-97.

63.Wimpee CF,Rawson JRY:Characterization of the nuclear

genome of pearl-millet.Biochim Biophys Acta1979,562:192-206.

64.Hake S,Walbot V:The genome of Zea-Mays,its organization

and homology to related grasses.Chromosoma1980,

79:251-270.

65.Gupta VS,Gadre SR,Ranjekar PK:Novel DNA-sequence

organization in rice genome.Biochim Biophys Acta1981,

656:147-154.

650Genomes and evolution

青岛市重点用能企业名单

南车四方机车车辆股份有限公司 青岛喜盈门集团公司 青岛广源发集团有限公司 青岛美高集团有限公司 济南山水集团有限公司青岛水泥分公司青岛正进集团有限公司 青岛大农服装有限公司 山东黄岛发电厂 青岛金晶股份有限公司 青岛恒源热电有限公司 青岛浮法玻璃有限公司 青岛压花玻璃有限公司 青岛市圣戈班韩洛玻玻璃有限公司 青岛高合有限公司 青岛浦项不锈钢有限公司 青岛北海船舶重工有限责任公司 青岛经济技术开发区热电燃气总公司 青岛赛轮子午线轮胎信息化生产示范基地 1 即墨市热电厂 青岛即发集团控股有限公司 青岛新源热电有限公司 青岛三湖制鞋有限公司 青岛正大有限公司 青岛高丽钢线有限公司 青岛北汇玻璃有限公司 即墨市双春水泥有限公司 青岛红领服饰股份有限公司 青岛恒光热电有限公司 青岛恒源化工有限公司 青岛天元化工股份有限公司 青岛海王纸业股份有限公司 青岛琅琊台酒业(集团)股份有限公司青岛胶南明月海藻工业有限责任公司 胶南易通热电有限责任公司 青岛泰发集团股份有限公司 青岛东亚轮胎有限公司

青岛康大外贸集团有限公司 胶南供电公司 胶南市水泥厂 2 胶南市海龙福利板纸有限公司 青岛振华工业集团有限公司 青岛德固萨化学有限公司 青岛龙发热电有限公司 青岛恒祥化肥有限公司 青岛世原鞋业有限公司 青岛华威建材有限公司 青岛广源发玻璃有限公司 青岛大明皮革有限公司 青岛昌新鞋业有限公司 青岛衣东纺织有限公司 青岛海尔金塑制品有限公司 山东金湖水泥有限公司青岛分公司 青岛福生食品有限公司 青岛信五皮革有限公司 青岛多福康食品有限公司 胶州天成玻璃工艺品厂 胶州市新纪元帘子布有限公司 青岛昌华集团股份有限公司 青岛热电集团金莱热电有限公司 青岛金浪热电有限公司 3 青岛泰光制鞋有限公司 青岛现代人热力发展有限公司 青岛金浪化工集团有限公司 青岛凤凰东翔印染有限公司 青岛九联集团股份有限公司 青岛海升果业有限责任公司 青岛交河技工塑料有限公司 青岛东方化工股份有限公司 海尔集团公司 青岛崂山玻璃有限公司 青岛啤酒第五有限公司

青岛恒源热电

注意:以下内容请进一步总结! 青岛恒源热电有限公司 目标公司主要从事蒸汽、热水的生产及供应、蒸汽余热发电业务,同时提供供热管道及设施维修、安装业务。据介绍,目标公司开发了循环水供热工程项目,该项目是青岛市获批的第一个清洁发展机制(CDM)项目;前处该项目处于施工建设阶段,预计将于2009年上半年内正式投产。据介绍,目标公司主要负责临港工业区辖区内的蒸汽供应及热网管理,发电业务,对居民的用热服务。 公司成立于2001年,主要从事蒸汽、热水的生产及供应、蒸汽余热发电业务。 青岛恒源热电有限公司位于开发区B区供热范围,拥有12MW的抽凝式汽轮发电机组1台及12MW的背压机组1台,75t/h循环流化床锅炉3台和150t/h锅炉1台,最大供热能力是355t/h,担负着B区的生产、民用供热负荷,主要满足热电厂东部居民小区供热和山东科技大学供热。 青岛恒源热电有限公司位于青岛经济技术开发区临港工业区的中北部,海尔大道与渭河路交界处东北角,渭河路777号。厂区所在地东侧隔宽约100m绿化地为鑫龙物流公司,该公司东侧、距离本项目最近300m处为澳柯玛人才公寓;厂区南侧隔渭河路、绿化带100m处为东小庄村(原村庄平房已搬迁,现建有多座两层复式楼房),该村庄南侧、距离本项目约420m处为山孚日水食品有限公司;项目隔渭河路东南方向约200m处为澳柯玛工业园;西及西南方向隔海尔大道、渭河路均为浦项制铁有限公司;北侧与开发区消防大队以及正友砼业相邻。 企业所在地厂址东南距市中心约8km,东面距前湾港区约4.5km。 现有工程内容:青岛恒源热电有限公司主要服务于黄岛供热分区B 区(齐长城路以北、疏港高速以南、镰湾河以西、柳花泊和珠山以东片区(包括柳花泊),总占地面积约60平方公里)。企业现有锅炉规模为3×75t/h+1×130t/h 循环流化床蒸汽锅炉,总计约355t/h锅炉容量;发电机组规模为1×12MW C12-34.9/0.98(抽凝)+1×12MW B12-4.9/0.98(背压),总计发电装机容量24 MW。 近几年,恒源热电强化能源管理,合理调整运行方式,加强节能技术改造,企业能源管理工作上了一个新台阶,先后通过了“企业能源审计”、“热电联产机组认定”等审核认证工作,被评为“青岛市清洁生产企业”,2007年度“山东省节能先进企业”。 为进一步加强企业能源管理,完善优化企业节能减排工作,公司在本年度开始推行循环经济试点工作。目前,作为试点工作重点项目之一的企业冷渣机改造项目已基本完成,初步具备投运条件,预计本年度六月份正式投入运行。该项目是将循环流化床锅炉的人工排渣(温度一般在900℃),通过加装冷渣机把炉渣余热加热除盐水,将锅炉效率提高1-3%,同时解决人工放渣存在安全隐患、能源浪费以及不环保等问题,项目投资为85万元,年可节标煤700吨。

认识实习报告(青岛东亿热电厂)

热能与动力工程专业制热方向认识 实习报告 学院:机电工程学院 班级:热能一班 姓名:徐国庆 学号:201240502013

一.认识实习的目的和任务 1.认识实习的目的: (1)认识实习是四年制高等学校教学活动的实践环节之一; (2)认识实习是对学生进行火力发电厂主机(锅炉、汽轮机)、辅机(换热器、风机、水泵)及其制造厂的设备系统、生产工艺进行认识性训 练,对发电厂热力系统进行整体初步了解。 2.认识实习的任务: (1)对火力发电厂主机的认识实习 实习对象:锅炉本体、汽轮发电机本体。锅炉形式包括煤粉锅炉、循 环流化床锅炉、链条炉、余热锅炉等。汽轮机形式包括凝气式汽轮机、 背压式汽轮机、调节抽汽式汽轮机。 认识内容:设备外形特点、摆放位置、主要性能参数、安全生产常识。 (2)对火力发电厂辅助机械设备的认识实习 实习对象:制粉系统、除尘除灰系统、烟风系统、回热系统、润滑冷 却系统、水油净化系统等。 认识内容:设备外形特点、摆放位置、主要性能参数、安全生产常识。 (3)对火力发电厂设备系统的认识实习 实习对象:火力发电厂主机和辅机工程的系统。 认识内容:设备之间的空间关系、安全生产常识。 3.认识实习的意义 (1)强化学生对专业基础课程的理解 (2)国内火力发电厂的技术发展出现了新进展 CFB锅炉、燃气轮机、余热锅炉、超临界机组、烟气脱硫、布袋除尘、集中控制运行等新技术。 (3)认识实习有利于培养学生的职业精神 (4)认识实习有利于了解机组 (5)认识实习有利于了解机组建设过程 二.捷能汽轮机厂 (1)简介:汽轮机是火力发电厂三大主要设备之一。它是以蒸汽为工质,将热能转变为机械能的高速旋转式原动机。它为发电机的能量转换提供机 械能。 青岛捷能汽轮机集团股份有限公司始建于1950年,是我国汽轮机行业重 点骨干企业。拥有各种数控、数显等机械加工设备2200余台,以200MW 及以下“捷能牌”汽轮机为主导产品,拥有电站汽轮机和工业拖动汽轮 机两大系列产品,能够满足发电、石化、水泥、冶金、造纸、垃圾处理、燃气-蒸汽联合循环、城市集中供热等领域需求,年产能达500台/600万 千瓦以上。中小型汽轮机市场占有率居国内同行业首位,是目前国内中 小型汽轮机最大最强的设计制造供应商和电站成套工程总包商。 公司积极推进品牌战略,率先在汽轮机行业内取得了美国FMRC公司双重 ISO9001国际质量体系认证和ISO1400环境管理体系认证,率先在汽轮机 行业内第一个获得了“中国名牌产品”称号,先后获得了“全国AAA级 信用企业”、“中国优秀诚信企业”、“全国用户满意产品”、“山东

供热管网检修作业指导手册[青岛热电集团]

供热管网检修作业指导手册[青岛热电集团] 供热管网检修作业指导手册[青岛热电集团] 供热管网检修作业指导手册[青岛热电集团] 作者:佚名更新时间:2008-12-5 15:55:38 字体: 供热管网检修作业指导手册 1 总则 1.1 为使公司供热管网的维护、检修工作更为规范和科学合理,确保安全运行,制定作业指导手册。 1.2 本作业指导手册适用于公司供热管网的维护、检修及事故抢修。 本作业指导手册供热管网的工作压力限定为: 工作压力不大于1.6MPa(表压),介质温度不大于300?的蒸汽供热管网。 1.3 管网的检修工作应符合原设计要求。 1.4 执行本作业指导手册时,尚应符合国家现行有关标准的规定。 2 术语 2.1 热网维修 热网的维护和检修。本作业指导手册中简称维修。 2.2 热网维护 供热运行期间,在不停热条件下对热网进行的维护工作。本作业指导手册中简称维护。 2.3 热网检修 在停热条件下对热网进行的检修工作。本作业指导手册中简称检修。 2.4 热网抢修

供热管道设备突发故障引起蒸汽大量泄漏,危及管网安全运行或对周边环境、人身安全造成威胁时进行的紧急检修工作。本作业指导手册中简称抢修。 2.5 供热管网 由热源向热用户输送和分配供热介质的管线系统。本作业指导手册中简称热网。 3 维护、检修机构设置、检修人员及设备 3.1 维护、检修机构设置及人员要求 3.1.1客户服务中心是公司高新区内供热管网运行、调度、维护、检修的责任机构,负责高新区内供热管网的维护、检修工作。 3.1.2 供热管冈的维护、检修人员必须经过培训和专业资格考 试合格后,方可独立进行维护、检修工作。供热管网维护、检修人员必须熟悉管辖范围内的管道分布情况、设备及附件位置。维护、检修人员必须掌握管辖范国内供热管线各种附件的作用、性能、构造以及安装操作和维护、检修方法。 3.1.3检修人员出门检修时应穿公司工作服,配戴上岗证,注意礼貌用语,维护公司形象。 3.2 维护、检修用主要设备与器材 3.2.1 供热管网的维护检修部门,应备有维护、检修及故障抢修时常用的设备与器材。 3.2.2检修设备、工具平时摆放在规定位置,检修设备和专用工具要有专人保管,所有设备、工具应保证完好,须保证检修时能够立即投入使用。检修物资也应分门别类码放整齐,方便查找,以保证检修、抢修时不会因为寻找物资配件而耽误时间。每次检修完后都应检查备品备件数量,发现不够时要及时与物质采购部联系进行必要地补充,确保检修时不会因无备品备件而影响检修时间与质量。

青岛西海岸公用事业集团易通热电有限公司新能源分公司_中标190922

招标投标企业报告 青岛西海岸公用事业集团易通热电有限公司新 能源分公司

本报告于 2019年9月22日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标 的甲方排名、合作甲方排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:青岛西海岸公用事业集团易通热电有限公司新能 源分公司 统一社会信用代码:91370211334195493K 工商注册号:370211120004502组织机构代码:334195493法定代表人:赵军田成立日期:2015-04-23 企业类型:有限责任公司分公司(非自然人投资或控股的法人 独资) 经营状态:注销 注册资本:/ 注册地址:山东省青岛市黄岛区相公山路723号 营业期限:2015-04-23 至 / 营业范围:为上级公司联系业务。(依法须经批准的项目,经相关部门批准后方可开展经营活动)联系电话:*********** 二、招投标分析 2.1 中标/投标数量 企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间)

2.2 中标/投标情况(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 2.3 中标/投标行业分布(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 2.4 参与投标的甲方前五名(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 2.5 合作甲方前五名(近一年) 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 三、股东及出资信息 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 四、风险信息 4.1 经营异常() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 4.2 股权出资() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 4.3 动产抵押() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。 4.4 税务信息() 截止2019年9月22日,根据国内相关网站检索以及中国比地招标网数据库分析,未查询到相关信息。不排除因信息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参考。

青岛热电集团有限公司简介

青岛热电集团有限公司成立于1993年,属于国有独资大型热电联产企业,主要担负着青岛市企、事业单位和居民供热及部分发电任务,同时,供热市场辐射黄岛、平度、莱西、即墨、城阳等县市区域。集团公司先后成立了工程公司和具有甲级设计资质的设计院,逐步形成了热电联产、区域锅炉、热网输配等多种供热形式并存,集供热、发电、热力设计、工程施工、热力产品制造经营为一体的完整产业链。 目前,热电集团为全省地方最大供热企业。企业资产总额48亿元,年销售收入16.2亿元,所属企业16个,职工2200余人,年供蒸汽312万吨,年发电能力9.3万千瓦,已建成蒸汽管网145.43公里,热水管网1552.93公里,供(换)热站294座,供热面积3561万平方米,拥有单位用户292家,居民用户28.8万余户。 集团公司先后被评为全国AAA级信用企业、全国建设系统文明服务示范窗口单位、思想政治工作先进单位、企业文化建设先进单位、精神文明建设先进单位;山东省文明单位、节能先进企业、思想政治工作优秀企业;青岛市和工商年度免检企业、安全生产先进单位、廉洁勤政先进单位;山东省供热协会副理事长单位。 自成立以来,公司始终秉承“关爱社会、服务民生”的企业宗旨和“励精图治、锲而不舍”的企业精神,贯彻科学发展,创新经营管理,实现了企业快速发展。1996年在全国供热行业首家推出社会服务责任赔偿制度,1997年在山东省供热行业首家进行了股份制改造,1998年在山东省供热行业首家成功地进行了集团产权制度改革,1999年在全国同行业中首家通过了ISO9001国际质量认证,并先后通过了ISO14001环境管理体系和GB/T28001-2001职业健康安全管理体系认证,2001年公司成为全国供热行业中首家申请注册服务商标的企业,推出“暖到家”服务品牌,并被评为山东省著名商标和服务名牌。“青岛热电”正在逐步步入标准化、规范化、品牌化的发展轨道。 招聘专业及人数: 1、结构专业1人(研究生); 2、建筑专业1人(研究生); 3、技经专业1人(研究生); 4、焊接技术与工程1人; 5、无损检测专业1人;

五大电力发电厂及下属详细

华能集团所属电厂: 华能丹东电厂华能大连电厂华能上安电厂华能德州电厂华能威海电厂华能济宁电厂华能日照电厂华能太仓电厂华能淮阴电厂华能南京电厂华能南通电厂华能上海石洞口第一电厂华能上海石洞口第二电厂华能长兴电厂华能福州电厂华能汕头燃煤电厂华能汕头燃机电厂华能玉环电厂华能沁北电厂华能榆社电厂华能辛店电厂华能重庆分公司华能井冈山电厂华能平凉电厂华能岳阳电厂华能营口电厂华能邯峰电厂 大唐集团所属: 长山热电厂湖南省石门电厂鸡西发电厂洛阳首阳山电厂洛阳热电厂三门峡华阳发电公司河北马头电力公司唐山发电总厂北京大唐张家口发电总厂兰州西固热电有限公司合肥二电厂田家庵发电厂北京大唐高井发电厂永昌电厂北京大唐陡河电厂南京下关发电厂安徽淮南洛河发电厂保定热电厂略阳发电厂微水发电厂峰峰发电厂含岳城电站天津大唐盘山发电公司内蒙大唐托克托发电公司保定余热电厂华源热电有限责任公司阳城国际发电有限公司辽源热电有限责任公司四平发电运营中心长春第二热电有限公司晖春发电有限责任公司鸡西热电有限责任公司佳木斯第二发电厂台河第一电厂江苏徐塘发电有限公司安徽省淮北发电厂安徽淮南洛能发电公司安阳华祥电力有限公司许昌龙岗发电有限公司华银电力株洲发电厂华银株洲发电公司金竹山电厂华银金竹山火力发电厂湘潭发电有限责任公司湖南省耒阳发电厂灞桥热电有限责任公司灞桥热电厂陕西渭河发电厂陕西延安发电厂陕西韩城发电厂永昌发电厂甘肃甘谷发电厂甘肃八0三发电厂甘肃连城发电厂甘肃兰西热电有限公司广西桂冠电力股份公司桂冠大化水力发电总厂广西岩滩水电厂陈村水力发电厂王快水电厂张家界水电开发公司贺龙水电厂鱼潭水电厂陕西石泉水力发电厂石泉发电有限责任公司甘肃碧口水电厂百龙滩电厂华电所属: 1中国华电工程(集团)有限公司2华电煤业集团有限公司3华电财务有限公司4华电招标有限公司5华信保险经纪有限公司6北京华信保险公估有限公司7河北热电有限责任公司8包头东华热电有限公司(在建)9内蒙古华电乌达热电有限公司(在建)10华电国际电力股份有限公司11华电国际电力股份有限公司邹县发电厂(扩建)12华电国际电力股份有限公司莱城发电厂13华电国际电力

(集团发布)青岛热电集团有限公司关于实施供热计量收费工作的意见

青热电〔2010〕121号 青岛热电集团有限公司 关于实施供热计量收费工作的意见 各单位、处室: 为全面贯彻《山东省物价局、山东省住房和城乡建设厅关于推进供热计量改革的指导意见》,根据青热办【2010】25号文件要求,自2010年开始,新供热建筑及完成供热计量改造的既有居住建筑,取消以面积计价收费,实行按用热量计价收费,为做好供热计量收费工作,经研究确定以下实施意见: 一、实施计划 (一)对已经改造完成的既有居住建筑实施供热计量收费,明细如下:第一热力海信慧谷、丰华园、弘信花园、都市名家小区;第二热力公司天宝苑小区;金河热力公司荣馨苑小区。

(二)对新竣工非居住建筑全面按用热量计量收费。 二、实施措施: (一)加强组织领导,责任到位。 职责明确,责任到人。集团成立以董事长为组长,总经理为副组长的供热计量工作领导小组,工程开发处、生安处、财务处、服务处各司其职,全力做好供热计量收费实施工作。各所属生产单位必须成立工作领导小组,将宣传、收费、数据公示、政策答疑等工作落实到位,各单位要有专门的供热计量工作负责人。 (二)措施到位,计划周密。 责任部门要全力做好实施热计量收费工作的计划安排,配合相关科室做好用户协调、宣传、合同签订、数据公示以及收、退费工作。 (三)做好新建、竣工项目供热计量设施的管理工作。各相关部门要严格新建、在建、新竣工项目供热计量设施的审核、把关、验收和问题汇总工作。 三、工作要求 (一)做好用户宣传、解释工作。在张贴用户通知进行宣传的同时,相关人员要明确供热计量工作实施相关要求规定,收费方式以及供热调节方式等,做好对用户的宣传解释工作,让用户明白调节方式和收退费方式、时间等。 (二)做好用户结算工作。用户的供热计量数据要真实、准确,各单位要认真做好用户仪表底数(正式供热时间和停止供热时间)确认工作,并定时张贴通知公开热量数据。 (三)做好数据分析和总结。对供热数据按周期进行定

青岛钢铁公司城市钢厂环保搬迁项目环境影响报告书

1建设项目概况 1.1建设项目背景及建设地点 1.1.1建设项目背景 青岛钢铁有限公司(以下简称青钢)始建于1958年,位于青岛市北李沧区,属城市钢铁厂。厂区东邻重庆路、南渠村;西围墙距胶济铁路约85m;北距流亭国际机场约3.8km;南靠遵义路。距市中心约15km,厂内铁路专线与胶济铁路娄山站接轨,全厂总占地面积不足1.3km2。 青钢是集焦化、烧结、炼铁、炼钢、轧钢、发电等为一体的钢铁联合企业,是山东省重要的优质棒线材生产基地,山东省三大钢铁支柱企业。 目前,青钢已形成年产铁、钢、材各400×104t的生产能力。其主要生产设施有:60×104t焦化厂;2×50m2烧结机,2×105m2烧结机;5×500+1×625m3高炉;一炼钢有4×35t转炉,5座30tLF精炼炉,3台4机4流R5m小方坯连铸机和1台4机4流R8m连铸机;二炼钢有2×80t 顶底复吹转炉,3座90tLF精炼炉,1座90tRH精炼炉,2台6机6流R9m 连铸机;轧钢车间有1#、2#、3#高速线材车间,复二重线材车间,半连续小型车间,横列式小型车间,还有与之配套的相应公辅设施。 青钢产品有:热轧盘条,热轧带肋钢筋、圆钢、扁钢等型钢。主要品种有:焊接用钢盘条、汽车用弹簧扁钢、硬线盘条、冷镦钢、PC钢棒用线材、拉丝线材、易切削钢、优质碳素结构圆钢、建筑用线材与螺纹钢等。2011年,青钢生产生铁330.69×104t、钢318.27×104t、钢材301.99×104t。2011年工业总产值297.79亿元,工业销售产值299.47亿元。青钢现有产品以优特钢为主,品种结构具有特色,产品附加值高。青钢现有职工1万余人,其中各类工程技术人员约1500余人。 自1997年以来,青钢经过不断的技术改造,其生产能力和经济效益均有了较大幅度的提高,但由于历史原因,还存在许多问题,如产品结构性矛盾仍

相关文档