文档库 最新最全的文档下载
当前位置:文档库 › 谈数学方法在物理解题中的应用

谈数学方法在物理解题中的应用

谈数学方法在物理解题中的应用
谈数学方法在物理解题中的应用

高考物理数学物理法解题技巧讲解及练习题

高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如右图所示,一位重600N 的演员,悬挂在绳上.若AO 绳与水平方向的夹角为 37?,BO 绳水平,则AO 、BO 两绳受到的力各为多大?若B 点位置往上移动,则BO 绳的 拉力如何变化?(孩子:你可能需要用到的三角函数有: 3375 sin ?=,4cos375?=,3374tan ?=,4 373cot ?=) 【答案】AO 绳的拉力为1000N ,BO 绳的拉力为800N ,OB 绳的拉力先减小后增大. 【解析】 试题分析:把人的拉力F 沿AO 方向和BO 方向分解成两个分力,AO 绳上受到的拉力等于沿着AO 绳方向的分力,BO 绳上受到的拉力等于沿着BO 绳方向的分力.根据平衡条件进行分析即可求解. 把人的拉力F 沿AO 方向和BO 方向分解成两个分力.如图甲所示 由平衡条件得:AO 绳上受到的拉力为21000sin 37 OA G F F N == = BO 绳上受到的拉力为1cot 37800OB F F G N === 若B 点上移,人的拉力大小和方向一定不变,利用力的分解方法作出力的平行四边形,如图乙所示: 由上图可判断出AO 绳上的拉力一直在减小、BO 绳上的拉力先减小后增大.

2.[选修模块3-5]如图所示,玻璃砖的折射率2 3 n = ,一细光束从玻璃砖左端以入射角i 射入,光线进入玻璃砖后在上表面恰好发生全反射.求光速在玻璃砖中传播的速度v 及入射角i .(已知光在真空中传播速度c =3.0×108 m/s ,计算结果可用三角函数表示). 【答案】83310/v m s =?;3 sin i = 【解析】 【分析】 【详解】 根据c n v = ,83310/v m s =? 全反射条件1 sin C n =,解得C=600,r =300, 根据sin sin i n r = ,3 sin 3 i = 3.质量为M 的木楔倾角为θ (θ < 45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图所示(已知木楔在整个过程中始终静止). (1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? 【答案】(1)min sin 2F mg θ= (2)1 sin 42 mg θ 【解析】 【分析】 (1)对物块进行受力分析,根据共点力的平衡,利用正交分解,在沿斜面和垂直斜面两方向列方程,进行求解. (2)采用整体法,对整体受力分析,根据共点力的平衡,利用正交分解,分解为水平和竖直两方向列方程,进行求解. 【详解】 木块在木楔斜面上匀速向下运动时,有mgsin mgcos θμθ=,即tan μθ= (1)木块在力F 的作用下沿斜面向上匀速运动,则:

高中物理重要方法典型模型突破7-数学方法(5)--微元法

专题七 数学方法(5) 微元法 【重要方法点津】 在物理学的问题中,往往是针对一个对象经历某一过程或出于某一状态来进行研究,而此过程或状态中,描述此研究对象的物理量有的可能是不变的,而更多的则可能是变化的,对于那些变化的物理量的研究,有一种方法是将全过程分为很多短暂的微小过程或将研究对象的整体分解为很多微小局部,这些微小过程或者是微小的局部常被称为“微元”,而且每个微元所遵行的规律是相同的,取某一微元加以分析,然后在将微元进行必要的数学方法或物理思想处理归纳出适用于全过程或者是整体的结论,这种方法被称为“微元法”。微元法是物理学研究连续变化量的一种常用方法。 微元可以是一小段线段、圆弧、一小块面积、一个小体积、小质量、一小段时间……,但应具有整体对象的基本特征。这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题得到求解。利用“微元法”可以将非理想模型转化为理想模型,将一般曲线转化为圆甚至是直线,将非线性变量转化为线性变量甚至是恒量,充分体现了“化曲为直”、“化变为恒”的思想。 应用“微元法”解决物理问题时,采取从对事物的极小部分(微元)入手,达到解决事物整体的方法,具体可以分以下三个步骤进行:(1)选取微元用以量化元事物或元过程; (2)把元事物或元过程视为恒定,运用相应的物理规律写出待求量对应的微元表达式;(3)在微元表达式的定义域内实施叠加演算,进而求得待求量。微元法是采用分割、近似、求和、取极限四个步骤建立所求量的积分式来解决问题的。 【典例讲练突破】 【例1】 设某个物体的初速度为0v ,做加速度为a 的匀加速直线运动,经过时间t ,则物 体的位移与时间的关系式为2012 x v t at =+,试推导。 【总结】这是我们最早接触的微元法的应用。总结应用微元法的一般步骤:(1)选取微元,时间t ?极短,认为速度不变,“化变为恒”,(2)写出所求量的微元表达式,微元段的意义是位移,写出位移表达式i i x v t =?,(3)对所求物理量求和,即对微元段的位移求和, i i x x v t =∑=∑?。

高考物理高考物理数学物理法解题技巧讲解及练习题

高考物理高考物理数学物理法解题技巧讲解及练习题 一、数学物理法 1.如图所示,一束平行紫光垂直射向半径为1m R =的横截面为扇形的玻璃砖薄片(其右侧涂有吸光物质),经折射后在屏幕S 上形成一亮区,已知屏幕S 至球心距离为 (21)m D =+,玻璃半球对紫光的折射率为2n =,不考虑光的干涉和衍射。求: (1)若某束光线在玻璃砖圆弧面入射角30θ=o ,其折射角α; (2)亮区右边界到P 点的距离d 。 【答案】(1)π 4 α=;(2)1m 【解析】 【分析】 【详解】 (1)据折射定律得 sin sin n α θ= 得 π4 α= (2)如图,紫光刚要发生全反射时的临界光线射在屏幕S 上的点E 到G 的距离d 就是所求宽度。 设紫光临界角为C ∠,由全反射的知识得 1sin C n ∠= 得

4 OAF △中 π 4 AOF AFO ∠=∠= π cos 4 R OF= GF D OF =- 得 1m GF= FGE △中 π 4 GFE GEF ∠=∠= d GE GF == 得 1m d= 2.如图所示,在x≤0的区域内存在方向竖直向上、电场强度大小为E的匀强电场,在x>0的区域内存在方向垂直纸面向外的匀强磁场。现一带正电的粒子从x轴上坐标为(-2l,0)的A点以速度v0沿x轴正方向进入电场,从y轴上坐标为(0,l)的B点进入磁场,带电粒子在x>0的区域内运动一段圆弧后,从y轴上的C点(未画出)离开磁场。已知磁场的磁感应强度大小为,不计带电粒子的重力。求: (1)带电粒子的比荷; (2)C点的坐标。 【答案】(1) 2 2 v q m lE =;(2)(0,-3t) 【解析】 【详解】 (1)带电粒子在电场中做类平抛运动,x轴方向 2l v t = y轴方向

2017年高三物理总复习(专题攻略)之数学方法在物理学中的应用及高考题型答题技巧 数学方法在物理

数学方法在物理学中的应用(一) 物理学中的数学方法是物理思维和数学思维高度融合的产物,借助数学方法可使一些复杂的物理问题显示出明显的规律性,能达到打通关卡、快速简捷地解决问题的目的。高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题。可以说任何物理试题的求解过程实质上都是一个将物理问题转化为数学问题,然后经过求解再次还原为物理结论的过程。复习中应加强基本的运算能力的培养,同时要注意三角函数的运用,对于图象的运用要重视从图象中获取信息能力的培养与训练。在解决带电粒子运动的问题时,要注意几何知识、参数方程等数学方法的应用。在解决力学问题时,要注意极值法、微元法、数列法、分类讨论法等数学方法的应用。 一、极值法 数学中求极值的方法很多,物理极值问题中常用的极值法有:三角函数极值法、二次函数极值法、一元二次方程的判别式法等。 1.利用三角函数求极值 y =acos θ+bsin θ = ( + ) 令sin φ=,cos φ= 则有:y = (sin φcos θ+cos φsin θ)= sin (φ+θ) 所以当φ+θ=π2 时,y 有最大值,且y max =。 【典例1】在倾角θ=30°的斜面上,放置一个重量为200 N 的物体,物体与斜面间的动摩擦因数为μ=3 3,要使物体沿斜面匀速向上移动,所加的力至少要多大?方向如何?

解得:F =α μαθμθsin cos cos (sin ++mg 因为θ已知,故分子为定值,分母是变量为α的三角函数 y=cos + = ( cos + sin ) = (sin cos + cos sin ) = sin(+ ) 其中 sin = ,cos =,即 tan = 。 当+ = 90 时,即 = 90 - 时,y 取最大值 。 F 最小值为 ,由于 = ,即 tan = ,所以 = 60。 带入数据得 F min = 100 N,此时 = 30 。 【答案】 100 N 与斜面夹角为30 【名师点睛】 根据对物体的受力情况分析,然后根据物理规律写出相关物理量的方程,解出所求量的表达式,进而结合三角函数的公式求极值,这是利用三角函数求极值的常用方法,这也是数学中方程思想和函数思想在物理解题中的重要应用。 2.利用二次函数求极值 二次函数:y =ax 2+bx +c =a (x 2 +b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a (其中a 、b 、c 为实常数),

高中物理数学物理法(一)解题方法和技巧及练习题及解析

高中物理数学物理法(一)解题方法和技巧及练习题及解析 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m=0.2kg的小弹丸A获得动能,弹丸A再经过半径R0=0.1m的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B发生碰撞,并在粘性物质作用下合为一体.然后从平台O点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为

p 04E ≤≤J ,距离抛出点正下方O 点右方0.4m 处的M 点为得分最大值处,小弹丸均看作 质点. (1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对圆轨道的压力大小. (3)若半圆轨道半径R 可调(平台高度随之调节)弹簧的弹性势能范围为p 04E ≤≤J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大? 【答案】(1)2J (2) 30N (3) 0.5m ,1m 【解析】 【分析】 【详解】 (1)根据机械能守恒定律得: 2 1p 012 2E v mg R m = +? A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有: mv 1=2mv 2 200122gt R = x =v 2t 0 解得: E p =2J (2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得: 2 1N v F mg m R += 解得: F N =30N 由牛顿第三定律知: F 压=F N =30N (3)根据 2 p 1122 E mv mg R = +? mv 1=2mv 2 2R =1 2gt 2, x =v 2t

考研数学之物理应用分析

Born To Win 人生也许就是要学会愚忠。选我所爱,爱我所选。 考研数学之物理应用分析 数学一和数学二的学生对物理应用这一块掌握的比较薄弱。物理应用不是数学一和数学二的常考点,但是一旦考了,学生往往都不会。2015年数学二的考研真题出了一道与物理应用有关的大题。这是个拉分题,很多同学都不会。所以希望大家能够对物理应用有足够的重视,特别是那些立志上名校,希望数学给力的学生。下面,跨考教育数学教研室的向喆老师就来和大家分享物理应用分析的学习方法。 一.明确知识框架 有句古语:知己知彼,百战不殆。物理应用可以说是比较难的知识点,所以大家就应该明了考研都考了那些物理应用。首先,只有数学一和数学二才考物理应用。然后,物理应用分布在导数应用,定积分应用,微分方程应用中,其中物理应用在定积分中考查的最多。最后,有关的物理知识的储备。比如说速率,做功,压强,压力等。 二.掌握学习方法 大家在明白了物理应用的体系后,就应该掌握相应的学习方法。首先是导数中的物理应用。通过对历年真题的研究,我发现导数的物理应用主要体现在对导数物理意义的理解,即速率。然后是定积分中的物理应用。这是考查的重点。主要包括:变力做功(变力对质点沿直线做功和克服重力做功);液体静压力;质心及形心。这三个部分求解的核心思想是微元法:分割,近似,求和,取极限。大家应该把定积分的定义即曲边梯形面积是怎么求得掌握。接着,大家就应该把这三部分的微元法思想推一遍,从而熟练掌握本质的含义。其中克服重力做功问题已经在真题中出现过。最后是微分方程中的物理应用。通过历年考题分析,我发现微分方程中的物理应用主要考察的是牛顿第二定律。据此联系了位移与速率;重力,浮力及阻力与加速度关系。总之,在学习这部分知识时候,应该有一些基本的思想。比如说:微元法思想,牛顿第二定律,压强及压力,位移与速率等。 三.熟练掌握题型 大家在明白了知识体系以及学习方法后就应该通过做题来巩固。不过现在出现了一个问题:数学一和数学二的同学有很多都不是学物理的。所以有必要对基本的物理知识进行回顾。大家可以参考下高中的物理课本就够了。针对做题,题目不求多,关键是把真题搞懂。大家可以看下从1989年到2014年的真题,找到其中的物理应用部分,然后仔细的思考下,做一下,总结题型,体会下思想方法。 总之:物理应用部分是高等数学中一个难点,虽不是热点问题,但是往往冷不丁的在真题中出现,它是制约着大家能否拿高分的瓶颈。所以,大家应该掌握物理应用的知识体系,学习方法及该做哪些题目。 文章来源:跨考教育

数学知识在物理中的应用

高中物理中数学知识的应用

如图讨论绳子变长时,绳子的拉力和墙面的支持力如何变化?解析法: θ cos 2G F =如果绳子变长,θ角减小,θcos 变大,F 2减小;θtan 1 G F =,θ角减小,θtan 减小,F 1减小。此题图解法较容易在此省略。在力(速度、加速度)的合成与分解问 题中正弦、余弦、正切函数知识用的很多。 (2)正弦定理应用实例: 如图所示一挡板和一斜面夹住一球,挡板饶底端逆时针旋转直到水平,讨论挡板和斜面对球的弹力如何变化?此题图解法较容易在此省略。

解析法:βθαsin sin sin 12F F G == α θ sin sin 2G F = 因为θ不变α从锐角变成90 大再变小,所以F 2先变小后变大; () ()θβθβθβ βθβαβοcos cot sin sin sin 180sin sin sin sin 1-= =+= --== G G G G F β角从钝角变为零的过程中,βcot 一直变大,所以F 1一直变小。 (用到了正弦定理、诱导公式、两角和的正弦函数这种解法理论性较强。 ) (3)化θθcos sin b a +为一个角的正弦应用实例 如图所示物体匀速前进时,当拉力与水平方向夹角为多少度时最省力?动摩擦因数设为μ。 解答:匀速运动合力为零()θμθsin cos F G F -= ()() θβμμθβθβμμθμμθμμμθ μθμ++= ++= ??? ? ??++++= += sin 1sin cos cos sin 1sin 1cos 111sin cos 22222G G G G F 所以当θβ+为直角时F 最小,也就是当1 1 arcsin 2 2 2 +-= -= μπ βπ θ时F 最小。 5.组合应用实例 如图所示一群处于第四能级的原子,能发出几种频率的光子?这个还可以用一个一个查数的办法解决,如果是从第五能级开始向低能级跃迁问可以发出几种频率的光子就很难一个一个地数了。 利用组合知识很容易解决,处于第四能级有623 42 4=?==! C N 种 处于第五能级有10! 24 5!3!2!52 5=?=?= =C N 种 6.平面几何(1)三角形相似应用实例 例题1:如图所示当小球沿着光滑圆柱缓慢上升时,讨论绳子的拉力 和支持力如何变化? 由三角形相似可得 l T h G R N ==可以N 不变T 减小。 例题2:(2013新课标)水平桌面上有两个玩具车A 和B ,两者用一轻质 橡皮筋相连,在橡皮绳上有一红色标记R 。在初始时橡皮筋处于拉直状态,A 、B 和R 分别位于直角坐标系中的(0,l 2),(0,l -)和(0,0)点。已 知A 从静止开始沿y 轴正向做加速度大小为a 的匀加速运动:B 平行于x 轴朝x 轴正向匀速运动。两车此

物理解题常用的方法和技巧

物理解题常用的方法和技巧 1、正交分解法 在两个互相垂直的方向上,研究物体所受外力的大小及其对运动的影响,既好操作,又便于计算。 2、画图辅助分析问题的方法 分析物体的运动时,养成画v-t图和空间几何关系图的.习惯,有助于对问题进行全面而深刻的分析。 3、平均速度法 处理物体运动的问题时,借助平均速度公式,可以降二次方程为一次方程,以简化运算,极大提高运算速度和准确率。 4、巧用牛顿第二定律 牛顿第二定律是高中阶段最重要、最基本的规律,是高考中永恒不变的热点,至少应做到在以下三种情况中的熟练应用:重力场中竖直平面内光滑轨道内侧最高点临界条件,地球卫星匀速圆周运动的条件,带电粒子在匀强磁场中匀速圆周运动的条件。 5、回避电荷正负的方法 在电场中,电荷的正负很容易导致考生判断失误,在下列情景中可设法回避:比较两点电势高低时,无论场源电荷的正负,只需记住“沿电场线方向电势降低”;比较两点电势能多少时,无论检验电荷的正负,只需记住“电场力做正功电势能减少”。 6、“大内小外”

在电学实验中,选择电流表的内外接,待测电阻比电流表内阻大很多时,电流表内接;待测电阻比电压表内阻小很多时,电流表外接。 7、针对选择题常用的方法 ①特殊值验证法:对有一定取值范围的问题,选取几个特殊值进行讨论,由此推断可能的情况以做出选择。 ②选项代入或选项比较的方法:充分利用给定的选项,做出选择。 ③半定量的方法:做选择题尽量不进行大量的推导和运算,但是写出有关公式再进行分析,是避免因主观臆断而出现错误的不二法门,因此做选择题写出物理公式也是必不可少的。 二.物理基本性质 物理学是人们对自然界中物质的运动和转变的知识做出规律性的总结,这种运动和转变应有两种。一是早期人们通过感官视觉的延伸;二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。物理学从研究角度及观点不同,可大致分为微观与宏观两部分:宏观物理学不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的;微观物理学的诞生,起源于宏观物理学无法很好地解释黑体辐射、光电效应、原子光谱等新的实验现象。它是宏观物理学的一个修正,并随着实验技术与理论物理的发展而逐渐完善。

物理中常用的数学特殊方法

专题2 物理中常用的数学特殊方法 考点1. 利用数学方法求极值 1.利用三角函数求极值 (1)二倍角公式法:如果所求物理量的表达式可以化成y=A sin θcos θ,则根据二倍角公式,有y=A 2 sin 2θ,当θ=45°时,y 有最大值,y max =A 2 。 (2)辅助角公式法:如果所求物理量的表达式为y=a sin θ+b cos θ,通过辅助角公式转化为y=√a 2+b 2sin (θ+φ),当 θ+φ=90°时,y 有最大值y max =√a 2+b 2。 2.利用二次函数求极值 二次函数y=ax 2 +bx+c (a 、b 、c 为常数,且a ≠0),当 x=-b 2a 时,y 有极值 y m =4ac -b 2 4a (a>0时,y m 为极小值;a<0时,y m 为极大值)。 3.利用均值不等式求极值 对于两个大于零的变量a 、b ,若其和a+b 为一定值,则当a=b 时,其积ab 有极大值;若其积ab 为一定值,则当a=b 时,其和 a+b 有极小值。 1.(2019年衡水二调)(多选)如图甲所示,位于同一水平面上的两根平行导电导轨,放置在斜向左上方、与水平面成60°角足够大的匀强磁场中,现给出这一装置的侧视图,一根通有恒定电流的金属棒正在导轨上向右做匀速运动,在匀强磁场沿顺时针缓慢转过30°的过程中,金属棒始终保持匀速运动,则磁感应强度B 的大小变化可能是( )。 A .始终变大 B .始终变小 C .先变大后变小 D .先变小后变大 2.一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图所示。此双星系统中体积较小的成员能“吸食”另一颗体积较大的星体表面的物质,达到质量转移的目的,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )。 A .它们做圆周运动的万有引力保持不变 B .它们做圆周运动的角速度不断变大 C .体积较大的星体做圆周运动的轨迹半径变大,线速度也变大 D .体积较大的星体做圆周运动的轨迹半径变大,线速度变小 3.(2019年湖北省宜昌市高三模拟)(多选)如图所示,斜面底端上方高h 处有一小球以水平初速度v 0抛出, 恰好垂直打在斜面上,斜面的倾角为30°,重力加速度为g ,下列说法正确的是( )。 A .小球打到斜面上的时间为 √3v 0 g B .要让小球始终垂直打到斜面上,应满足h 和v 0成正比 C .要让小球始终垂直打到斜面上,应满足h 和v 0的平方成正比 D .若高度h 一定,现小球以不同的初速度v 0平抛,落到斜面上的速度最小值为√(√21-3)gh 考点2.函数图象及应用 图象问题是高考命题的高频考点,年年皆有。不管怎么考,我们只要深刻理解图象中的基本要素便可应对,具体为图 象中的“点”“线”“斜率”“截距”“面积”等。 图象 函数形式 特例及物理意义 y=c 匀速直线运动的v-t 图象。“面积”表示位移 y=kx ①匀速直线运动的x-t 图象。斜率表示速度 ②初速度v 0=0的匀加速直线运动的v-t 图象。斜率表示加速度,“面积”表示位移

《高等数学》知识在物理学中的应用举例

《高等数学》知识在物理学中的应用举例 一 导数与微分的应用 分析 利用导数与微分的概念与运算,可解决求变化率的问题。求物体的运动速度、加速度的问题是典型的求变化率问题。在求解这类问题时,应结合问题的物理意义,明确是在对哪个变量求变化率。在此基础上,灵活运用各类导数和微分公式解决具体问题。 例 1 如图,曲柄,r OA =以均匀角速度ω饶定点O 转动.此曲柄借连杆AB 使滑块B 沿直线Ox 运动.求连杆上C 点的轨道方程及速度.设,a CB AC == ,?=∠AOB .ψ=∠ABO y 解 1) 如图,点C 的坐标为: ψ?cos cos a r x +=, (1) .sin ψa y = (2) 由三角形的正弦定理,有 ,sin 2sin ? ψa r = o x 故得 .2sin 2sin r y r a == ψ? (3) 由(1)得 r y a x r a x 2 2cos cos --= -=ψ? (4) 由,1cos sin )4()3(2222=+=+??得 ,12422 222222=---++r y a x y a x r y 化简整理,得C 点的轨道方程为: .)3()(422222222r a y x y a x -++=- 2) 要求C 点的速度,首先对(1),(2)分别求导,得 ,sin cos 2cos sin ψψ?ω?ωr r x --=' ,2 cos ? ωr y =' 其中.?ω'=

又因为,sin 2sin ψ?a r = 对该式两边分别求导,得 .cos 2cos ψ ? ωψa r = ' 所以C 点的速度 2 2 y x V '+'=4 cos )sin cos 2cos sin (2222 ?ωψψ?ω?ωr r r + --= .)sin(cos sin 4cos cos 22ψ?ψ??ψ ω ++= r 例2 若一矿山升降机作加速度运动时,其加速度为),2sin 1(T t c a π-=式中c 及 T 为常数,已知升降机的初速度为零,试求运动开始t 秒后升降机的速度及其所走过的路程. 解: 由题设及加速度的微分形式dt dv a = ,有 ,)2sin 1(dt T t c dv π-= 对等式两边同时积分 ? ?-=v t dt T t c dv 0 ,)2sin 1(π 得: ,2cos 2D T t T c ct v ++=ππ 其中D 为常数. 由初始条件:,0,0==t v 得,2c T D π - =于是 )].12(cos 2[-+ =T t T t c v ππ 又因为,dt ds v = 得 ,)]12(cos 2[dt T t T t c ds -+ =ππ 对等式两边同时积分,可得: )].2sin 2(221[2t T t T T t c s -+=πππ

高年级初中中学物理中常用的数学方法

初中物理中常用的数学方法简介 江苏省南通市第三中学:江宁 数学计算是指人们根据利用已有的知识,对一定的现象、规律进行数学计算,发现各个量之间的数学关系,从深一层次去认识新的事物的方法。 数学计算是研究性学习中必备的手段,是初中物理研究性学习中进一步认识事物中最可靠的工具。通过数学计算,学生可以从定性认识事物发展到定量认识事物,使感性认识上升到理性认识,从而更准确地认识事物各个量之间的内在规律。 以下所列是初中物理中常用的一些数学方法: 1、代入法 “代入法”是指在研究物理问题中,已知因变量与自变量之间关系公式,将物理量直接代入公式进行计算的方法。学会利用公式直接进行计算是学生解决问题的基本能力之一,它可以促进学生掌握物理量之间的来龙去脉,熟悉物理量在日常生活中的应用。 例:质量为的水,温度从 60℃降至40℃,会放出______J 的热量。若将这部分热量全部被初温为10℃、质量为的酒精吸收,则酒精的温度将上升______℃。[酒精的比热容为×103 J /(kg ·℃),水的比热容为 ×103 J /(kg ·℃)] 解:物体升、降温时吸、放的热量计算公式为:Q=c ·m ·Δt 应用“代入法”进行解题时,可以根据公式用自变量求因变量,也可以根据公式用因变量求自变量,但要注意在计算过程中,物理单位必统一。 2、比例法 “比例法”是指用两个已知的物理量的比值来表示第三个物理量的方法。比值法可以充分体现出在两个物理量同时变化的条件下影响物理过程的真正因素。 例:现有两杯质量不同的液体酒精和水,若两者的质量之比为2∶3,求两种液体的体积比?(ρ酒 精 = ×103kg/m 3,ρ水= ×103kg/m 3) 解:6 58.0132=?=?==酒水水酒水 水酒酒 水酒ρρρρm m m m V V 另外,初中物理中的许多物理量是通过比值来介绍的,如:速度、密度、热值、电阻等等。是中学生在初中物理学习中学到的第一个数学方法。 3、近似法 “近似法”是指在数学计算过程中,当个别量的微小变化并不影响整体结果时,为了计算与分析的方便,将个别量进行一定程度的近似代换或取舍的方法。利用近似法可以降低复杂的数学计算,帮助学生用最根本的数据去认识事物的内在规律,从而抓住各种物理现象中最本质的特征。 例:一位同学从一楼跑到三楼用了10s 时间,他的功率大概是多少? 解:根据生活经验,一位中学生的质量约为50kg ,一层楼的高度约为3m ,g 取10N/kg 。 事实上,只要在误差允许范围内,任何一种测量和计算都是对所求物理量的实际情况的一个近似。运用近似法可以帮助学生理解物理研究中绝对性与相对性的真正含义。 4、方程法 “方程法”是指在求解某个物理量时,根据因变量与自变量之间的因果对应关系,列出方程,通过求解方程从而求出物理量的方法。方程法可以减少学生的数学过程思维,解决问题简捷明了,方便于学生发现因变量与自变量的因果关系。 W s m kg N kg t Gh t W P 300106/1050=??===

最新高考物理数学物理法解题技巧及练习题

最新高考物理数学物理法解题技巧及练习题 一、数学物理法 1.如图所示,圆心为O 1、半径4cm R =的圆形边界内有垂直纸面方向的匀强磁场B 1,边界上的P 点有一粒子源,能沿纸面同时向磁场内每个方向均匀发射比荷 62.510C/kg q m = ?、速率5110m/s v =?的带负电的粒子,忽略粒子间的相互作用及重力。其中沿竖直方向PO 1的粒子恰能从圆周上的C 点沿水平方向进入板间的匀强电场(忽略边缘效应)。两平行板长110cm L =(厚度不计),位于圆形边界最高和最低两点的切线方向上,C 点位于过两板左侧边缘的竖线上,上板接电源正极。距极板右侧25cm L =处有磁感应强度为21T B =、垂直纸面向里的匀强磁场,EF 、MN 是其左右的竖直边界(上下无边界),两边界间距8cm L =,O 1C 的延长线与两边界的交点分别为A 和O 2,下板板的延长线与边界交于D ,在AD 之间有一收集板,粒子打到板上即被吸收(不影响原有的电场和磁场)。求: (1)磁感应强度B 1的方向和大小; (2)为使从C 点进入的粒子出电场后经磁场偏转能打到收集板上,两板所加电压U 的范围; (3)当两板所加电压为(2)中最大值时,打在收集板上的粒子数与总粒子数的比值η。(可用反三解函数表示,如 π1arcsin 62 =) 【答案】(1)11B =T ,方向垂直纸面向里;(2)1280V 2400V U ≤≤; (3)17 arcsin arcsin 168π + 【解析】 【分析】 【详解】 (1)由题可知,粒子在圆形磁场区域内运动半径

r R = 则 2 1 v qvB m R = 得 11T B = 方向垂直纸面向里。 (2)如图所示 211()22L qU y mR v =? 且要出电场 04cm y ≤≤ 在磁场B 2中运动时 2 2v qvB m r =合 ,cos v v a =合 进入B 2后返回到边界EF 时,进出位置间距 2cos y r a ?= 得 2 2mv y qB ?= 代入得 8cm y ?= 说明与加速电场大小无关。要打到收集板上,设粒子从C 点到EF 边界上时所发生的侧移为y 0,需满足 04cm 8cm y ≤≤ 且

高考物理数学物理法常见题型及答题技巧及练习题

高考物理数学物理法常见题型及答题技巧及练习题 一、数学物理法 1.如图所示,ABCD是柱体玻璃棱镜的横截面,其中AE⊥BD,DB⊥CB,∠DAE=30°, ∠BAE=45°,∠DCB=60°,一束单色细光束从AD面入射,在棱镜中的折射光线如图中ab所示,ab与AD面的夹角α=60°.已知玻璃的折射率n=1.5,求:(结果可用反三角函数表示) (1)这束入射光线的入射角多大? (2)该束光线第一次从棱镜出射时的折射角. 【答案】(1)这束入射光线的入射角为48.6°; (2)该束光线第一次从棱镜出射时的折射角为48.6° 【解析】 试题分析:(1)设光在AD面的入射角、折射角分别为i、r,其中r=30°, 根据n=,得: sini=nsinr=1.5×sin30°=0.75 故i=arcsin0.75=48.6° (2)光路如图所示: ab光线在AB面的入射角为45°,设玻璃的临界角为C,则: sinC===0.67 sin45°>0.67,因此光线ab在AB面会发生全反射 光线在CD面的入射角r′=r=30° 根据n=,光线在CD面的出射光线与法线的夹角: i′="i=arcsin" 0.75=48.6° 2.质量为M的木楔倾角为θ,在水平面上保持静止,质量为m的木块刚好可以在木楔上表面上匀速下滑.现在用与木楔上表面成α角的力F拉着木块匀速上滑,如图所示,求:

(1)当α=θ时,拉力F 有最小值,求此最小值; (2)拉力F 最小时,木楔对水平面的摩擦力. 【答案】(1)mg sin 2θ (2)1 2 mg sin 4θ 【解析】 【分析】 对物块进行受力分析,根据共点力平衡,利用正交分解,在沿斜面方向和垂直于斜面方向都平衡,进行求解采用整体法,对m 、M 构成的整体列平衡方程求解. 【详解】 (1)木块刚好可以沿木楔上表面匀速下滑时,mg sin θ=μmg cos θ,则μ=tan θ,用力F 拉着木块匀速上滑,受力分析如图甲所示,则有:F cos α=mg sin θ+F f ,F N +F sin α=mg cos θ, F f =μF N 联立以上各式解得:() sin 2cos mg F θ θα= -. 当α=θ时,F 有最小值,F min =mg sin 2θ. (2)对木块和木楔整体受力分析如图乙所示,由平衡条件得,F f ′=F cos(θ+α),当拉力F 最小时,F f ′=F min ·cos 2θ=1 2 mg sin 4θ. 【点睛】 木块放在斜面上时正好匀速下滑隐含摩擦系数的数值恰好等于斜面倾角的正切值,当有外力作用在物体上时,列平行于斜面方向的平衡方程,结合数学知识即可解题. 3.图示为直角三角形棱镜的截面,90?∠=C ,30A ?∠=,AB 边长为20cm ,D 点到A 点的距离为7cm ,一束细单色光平行AC 边从D 点射入棱镜中,经AC 边反射后从BC 边上的F 点射出,出射光线与BC 边的夹角为30?,求: (1)棱镜的折射率; (2)F 点到C 点的距离。

高中物理中的数学知识与方法选读

高中物理中的数学知识与方法(选读) 目录: 前言 概念的描述与定义 矢量与矢量的运算 极限思想的体现 待定系数法的应用 (1)认识运动方程 (2)电学实验数据处理 解方程组 变力做功-数学和物理在解题思路中的差别 图象法解题 (1)识图辨析 (2)数形结合 导数在高中物理中的应用 (1)求速度和加速度 (2)求感应电动势 带电粒子在匀强磁场中做匀速圆周运动时,半径与轨迹的关系

前言 在多年的高中教学经历中,接触到很多学生在物理上学习得很努力、很认真,虽然在时间上大量的投入,但成绩总是差强人意。造成这种现象的原因其中之一是受到数学知识的制约,而很多物理问题都得用到数学工具和方法解决;另外一个原因是数学知识掌握得不错,平时数学成绩也好,但不能灵活运用到物理学习中来,对数学和物理两个学科只是独立地进行思考与学习,不能真正地融汇贯通。 高考《考试说明》中明确提出高中生应具备应用数学处理物理问题的能力,即能够根据具体问题列出物理量之间的数学关系式,根据数学的特点、规律进行推导、求解和合理外推,并根据结果得出物理判断、进行物理解释或作出物理结论。能根据物理问题的实际情况和所给条件,恰当地运用几何图形、函数图象等形式和方法进行分析、表达。能够从所给图象通过分析找出其所表达的物理容,用于分析和解决物理问题。 数学物理方法:对一个物理问题的处理,通常需要三个步骤:(1)利用物理定律将物理问题翻译成数学问题;(2)解该数学问题,其中解数学物理方程占有很大的比重,有多种解法;(3)将所得的数学结果翻译成物理,即讨论所得结果的物理意义。 数学与物理的联系:数学是物理的表述形式之一。其学科特点具有高度的抽象性,它能够概括物理运动的所有空间形式和一切量的关系。数学是创立和发展物理学理论的主要工具。物理原理、定律、定理往往直接从实验概括抽象出来,首先是量的测定,然后再建立起量的联系即数学关系式,其中就包含着大量的数学整理工作,本身就要大量的数学运算,才能科学地整理实验所观测到的量,找出它们之间的联系。 用数学语言来描述具体物理问题的能力培养,即能将具体问题转化为数学问题的能力,以期在数学技能与具体问题之间架起桥梁.在解决实际物理问题的时候,从建立坐标开始,包括确定自变量,找出函数关系以至积分上下限的确定等,都要以物理思想来指导.例如,

数学思想在高中物理中的应用

数学思想在高中物理中的应用 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢众所周知,物理学的发展离不开数学,数学是物理学发展的根基,并且很多物理问题的解决是数学方法和物理思想巧妙结合的产物。打好数学基础要从高中做起,培养学生的数学思想,创新能力,更好的与大学课程接轨,更早的把高中生带到物理殿堂。下面以一题为例说明一下数学思想在物理中的应用:【例一】如图所示,一根一段封闭的玻璃管,长L=96厘米内有一段h1=20厘米的水银柱,当温度为27摄氏度,开口端竖直向上时,被封闭气柱h2=60厘米,温度至少多少度,水银才能从管中全部溢出?解:首先使温度升高为T0以至水银柱上升16厘米,水银与管口平齐,此过程是线性变化。温度继续升高,水银溢出,此过程不再是线性关系。设温度为T时,剩余水银柱长h,对任意位置的平衡态列

方程:(76+ h1)×60/300=(76+h) ×(96-h)/ T 整理得:T=(-h2+20h+7296)/h的变化范围0——20,可以看出温度T是h的二次函数,此问题转化为在定义域内求T 的取值范围,若Tminmax,只有当温度T 大于等于Tmax 才能使水银柱全部溢出,经计算所求值Tmax = 。只有通过二次函数极值法,才能从根上把本体解决。加强数学思想的渗透是新教材新的一个体现,比如:“探索弹簧振子周期与那些因素有关”,“探索弹簧弹力与伸长的关系”。在实际教学过程中应该引起高度重视并加以扩展。大学物理课程与高中物理课程跨度较大,难点在于运用数学手段探索性研究物理问题的方法,另外微积分思想比较难以理解,为了与大学物理课程更好的接轨,在高中阶段对学生进行微积分思想的渗透也是非常必要的。因此在高中物理教学过程中应抓住有利时机渗透微元思想,为学好微积分奠定良好的基础。渗透的内容应该有两方面:一是变化率,二是无限小变化

物理方法在数学解题中的应用

龙源期刊网 https://www.wendangku.net/doc/2e5728200.html, 物理方法在数学解题中的应用 作者:李光才 来源:《考试周刊》2013年第01期 摘要:数学方法和物理有着不解之缘.用数学方法去解物理问题似乎理所当然(因为数学是工具),但是反过来用物理方法去解数学问题(它有时巧妙与简洁),也许不太为人们所重视.本文谈谈物理方法在解数学问题中的应用. 关键词:物理方法数学问题应用 早在两千多年以前,古希腊学者阿基米德就曾用物体的平衡定律解一些几何问题,数学家庞加莱也说过:物理学不仅给数学工作者一个解题的机会,而且帮助我们发现解题的方法,其方式有二:它引导我们预测解答及提示适合的论证方法. 我们首先来看物理方法在解几何问题上的应用. 例1:如图,G是△ABC的重心,l是△ABC外一直线,若自A﹑B﹑C﹑G各向l作垂 线,垂足分别是A′﹑B′﹑C′﹑G′,则AA′+BB′+CC′=3GG′. 这个问题直接用几何方法可以证明,只是稍嫌麻烦(还要作辅助线),但若从力学的角度考虑,结论几乎是显然的. 证明:今在A﹑B﹑C各置一个单位质点,则整个质点系质量为3单位,且重心恰好在G. 若重力方向视为与l垂直方向,则质点组{A,B,C}对l的力矩为:l·AA′+l·BB′+l·CC′,它恰好等于质心G(质量为3个单位)对于l的力矩,而这个力矩正好是3GG′. 例2:三个乡村要联合办一所小学,其中甲村有50名,乙村庄有学生70名,丙村有学生90名.问这所学校办在什么地方可以使学生所走路程总和最小? 这个问题从数学的角度出发属于求函数的极值问题,现在我们用物理的方法来解决. 解:如图,在一块木板上画好三个村位置,然后在标有三村位置的点处各钻一孔,再把三条系在一起的绳子分别穿过三个孔,绳子下段各挂有重量比是5:7:9的三个重物,当它们平衡时,绳子结点所在位置,即为所求学校的位置.(利用位能最小原理) 最后我们来看一个求三角函数的例子. 例3:求sin18°的值.

高中物理解题中涉及的数学知识

高中物理解题中涉及的数学知识 物理和数学是联系最密切的两门学科。运用数学工具解决物理问题的能力,是中学物理教学的最基本的要求。高中物理中用到的数学方法有:方程函数的思维方法,不等式法,极限的思维方法,数形结合法,参数的思维方法,统计及近似的思维方法,矢量分析法,比例法,递推归纳法,等等。现就“力学”与“电磁学”中常用数学知识进行归纳。 Ⅰ.力学部分:静力学、运动学、动力学、万有引力、功和能量与几何、代数知识相结合,从而增大题目难度,更注重求极值的方法。 Ⅱ.电磁学部分:电磁学中的平衡、加速、偏转及能量与圆的知识、三角函数,正余弦定理、相似三角形的对应比、扇形面积、二次函数求极值(配方法或公式法)、均值不等式 、正余弦函数、积化和差、和差积化、半角倍角公式、直线方程(斜率,截距)、对称性、)sin(cos sin 22?θθθ++=+b a b a a b =?tan 、数学归纳法及数学作图等联系在一起。 第一章 解三角形 三角函数 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,则有2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 变形公式: ::sin :sin :sin a b c C =A B ; 2、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 3、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:222 cos 2b c a bc +-A = 4、均值定理: 若0a >,0b >,则a b +≥,即2 a b +≥ ()2 0,02a b ab a b +??≤>> ??? ; 2 a b +称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有 ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值 2 4 s . ⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值 1、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α= . 2、弧度制与角度制的换算公式:2360π= ,1180 π = . 3、若扇形的圆心角为()α α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=, 2C r l =+,2112 2 S lr r α==. 4、角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos α αα =. 5、函数的诱导公式:

相关文档
相关文档 最新文档