文档库 最新最全的文档下载
当前位置:文档库 › AR1010收音模块

AR1010收音模块

AR1010收音模块
AR1010收音模块

AR1000 Series Resistive Touch Screen

Controller DS41393A

Contact Information Microchip Technology, Inc.

mTouch Touchscreen Controller Products

9055 N. 51st Street, Suite H Brown Deer, WI 53223 https://www.wendangku.net/doc/205846037.html, Phone: 414-355-4675 Fax: 414-355-4775

Information contained in this publication regarding device

applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, K EE L OQ , K EE L OQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, https://www.wendangku.net/doc/205846037.html,, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICkit, PICDEM, https://www.wendangku.net/doc/205846037.html,, PICtail, PIC 32 logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

? 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC ? MCUs and dsPIC ? DSCs, K EE L OQ ? code hopping

devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

DS41393A-Page ii ? 2009 Microchip Technology, Inc.

TABLE OF CONTENTS

1GENERAL (1)

2FEATURES (1)

3APPLICATIONS (2)

4ORDERING (2)

5BLOCK DIAGRAM (2)

6PIN DIAGRAM (3)

7FUNCTIONAL DESCRIPTION (4)

7.1M AIN S CHEMATIC (4)

7.2B ILL OF M ATERIALS (4)

7.34,5,8-W IRE S ENSOR S ELECTION (5)

7.44-WIRE T OUCH S ENSOR I NTERFACE (5)

7.55-WIRE T OUCH S ENSOR I NTERFACE (6)

7.68-WIRE T OUCH S ENSOR I NTERFACE (7)

7.7C OMMUNICATION I NTERFACE (8)

7.7.1I2C (8)

7.7.2SPI (9)

7.7.3UART (10)

7.8S TATUS LED (10)

7.9ESD C ONSIDERATIONS (11)

7.10N OISE C ONSIDERATIONS (11)

7.11T OUCH R EPORTING P ROTOCOL (11)

7.12C ONFIGURATION R EGISTERS (12)

7.12.1TouchThreshold Register (offset 0x02) (12)

7.12.2SensitivityFilter Register (offset 0x03) (12)

7.12.3SamplingFast Register (offset 0x04) (13)

7.12.4SamplingSlow Register (offset 0x05) (13)

7.12.5AccuracyFilterFast Register (offset 0x06) (13)

7.12.6AccuracyFilterSlow Register (offset 0x07) (13)

7.12.7SpeedThreshold Register (offset 0x08) (13)

7.12.8SleepDelay Register (offset 0x0A) (14)

7.12.9PenUpDelay Register (offset 0x0B) (14)

7.12.10TouchMode Register (offset 0x0C) (15)

7.12.11TouchOptions Register (offset 0x0D) (16)

7.12.12CalibrationInset Register (offset 0x0E) (16)

7.12.13PenStateReportDelay Register (offset 0x0F) (17)

7.12.14TouchReportDelay Register (offset 0x11) (17)

7.12.15User Configuration – Spiking (17)

7.13C OMMAND F ORMAT (17)

7.14C OMMAND R ESPONSE (18)

7.15C OMMANDS (18)

7.15.1Enable Touch - 0x12 (18)

7.15.2Disable Touch - 0x13 (18)

7.15.3Calibrate - 0x14 (19)

7.15.3.1How the Calibration Data is Encoded and Stored in EEPROM (20)

7.15.4Register Read - 0x20 (21)

7.15.5Register Write - 0x21 (21)

7.15.6Register Start Address Request - 0x22 (21)

7.15.7Registers Write to EEPROM - 0x23 (21)

7.15.8EEPROM Read - 0x28 (22)

7.15.9EEPROM Write - 0x29 (22)

7.15.10EEPROM Write to Registers - 0x2B (22)

7.16C ALIBRATION OF T OUCH S ENSOR WITH C ONTROLLER (23)

? 2009 Microchip Technology, Inc. DS41393A-Page iii

8BASICS OF RESISTIVE SENSORS (25)

8.1T ERMINOLOGY (25)

8.2G ENERAL (25)

8.34-W IRE S ENSOR (26)

8.48-W IRE S ENSOR (27)

8.55-W IRE S ENSOR (28)

8.6S UMMARY (28)

9ELECTRICAL SPECIFICATIONS (29)

9.1A BSOLUTE M AXIMUM R ATINGS(?) (29)

10PACKAGING (30)

10.120L EAD SOIC (30)

10.220L EAD SSOP (31)

10.320L EAD QFN(ML) (32)

FIGURES

Figure 1: Block Diagram (2)

Figure 2 : Pin Diagrams – SOIC / SSOP and QFN Packages (3)

Figure 3 : Main Schematic (SOIC, SSOP package pin out) (4)

Figure 4 : 4-wire Touch Sensor Interface (5)

Figure 5 : 5-wire Touch Sensor Interface (6)

Figure 6 : 8-wire Touch Sensor Interface (7)

Figure 7 : I2C Timing Diagram – Receive Data (8)

Figure 8 : I2C Timing Diagram – Transmit Data (8)

Figure 9 : I2C Timing Diagram – Touch Report Protocol (9)

Figure 10 : I2C Timing Diagram – Command Protocol (9)

Figure 11 : SPI Timing Diagram – Bit Timing (9)

Figure 12 : SPI Timing Diagram – Touch Report Protocol (10)

Figure 13 : SPI Timing Diagram – Command Protocol (10)

Figure 14: 4-Wire Decoding (26)

Figure 15: 8-Wire Decoding (27)

Figure 16: 5-Wire Decoding (28)

Figure 17 : 20 Lead SOIC Package (30)

Figure 18 : 20 Lead SSOP Package (31)

Figure 19 : 20 Lead QFN Package (32)

TABLES

Table 1: Ordering Part Numbers (2)

Table 2: Pin Descriptions (3)

Table 3 : Bill of Materials (4)

Table 4 : 4/8-wire vs 5-wire Selection (5)

Table 5 : Communication Selection (8)

Table 6 : Communication Pins (8)

Table 7 : Touch Coordinate Reporting Protocol (11)

Table 8 : Configuration Registers (12)

Table 9 : Command Set Summary (18)

Table 10 : Sensor Comparison (25)

DS41393A-Page iv ? 2009 Microchip Technology, Inc.

1 GENERAL

The mTouch AR1000 Series Resistive Touch Screen Controller is a complete, easy to integrate, cost effective, and universal touch screen controller chip solution.

The AR1000 Series is designed for high volume, small form factor touch solutions with quick time to market requirements.

Developed by touch experts with over 15 years experience, the AR1000 Series has sophisticated proprietary touch screen decoding algorithms allowing it to send your application fully processed and reliable touch coordinates.

2 FEATURES

Special Features:

? RoHS Compliant

? Power-Saving Sleep mode

? Industrial Temperature Range

? Built in drift compensation algorithm

? 128 Bytes of user EEPROM

? 4 x 4 mm QFN package

Power Requirements:

? Operating Voltage: 3.3 to 5.0 volts ±5%

? Standby Sleep Current: <1uA

? Operating “No touch” Current: 3.0mA typ.

? Operating “Touch” Current: 17mA typ

with a touch sensor having 200? layers.

- Actual current is dependent on the touch sensor used. Touch Modes:

? Off, Stream, Down, Up, and more. Touch Sensor Support:

? 4 wire, 5 wire, and 8 wire analog resistive

? Lead to Lead Resistance: 50? to 2,000?

? Layer to Layer Capacitance: 0 to 0.5uF

? Touch Sensor Time Constant: 500us maximum

Touch Resolution:

? 10-bit resolution maximum

Touch Coordinate Report Rate:

? 140 reports per second typ.

with a touch sensor of 0.02uF with 200? layers.

- Actual report rate is dependent on the touch sensor used. Communications:

? SPI, slave mode, p/n AR1020

? I2C?, slave mode, p/n AR1020

? UART, 9600 bps, p/n AR1010

Sensor Support

All 4, 5, and 8-wire sensors are supported, regardless of manufacturer or construction.

See BASICS OF RESISTIVE SENSORS section.

Low-Power Wake-Up

Wake-up from power saving sleep mode, via a touch or communication input.

Configuration Registers

Configuration registers provide user configuration of controller features.

See Configuration Registers section.

Touch Algorithms

Algorithms provide for good calibration-corrected coordinates, with no additional development or code.

? Touch decoding

?Coordinate data filtering

?Calibration corrected coordinate option

?Built-in touch modes

Communication Control

AR1010 supports UART communication. AR1020 supports I2C and SPI communication.

See Communication Interface section.

? 2009 Microchip Technology, Inc. DS41393A-Page 1

3 APPLICATIONS

The AR1000 is suitable for any application that requires fast and reliable integration of touch in the design, including but not limited to:

?Mobile communication devices

?Personal Digital Assistants (PDA)

?Global Positioning Systems (GPS)

?Touch Screen Monitors

? KIOSK

? Media Players

? Portable Instruments

?Point of Sale Terminals

4 ORDERING

Part Number Communication

Temp Range Pin Package Packing

Type

AR1010-I/ML UART –40oC to +85oC QFN, 20 pin Tube

AR1010-I/SO UART –40oC to +85oC SOIC, 20 pin Tube

AR1010-I/SS UART –40oC to +85oC SSOP, 20 pin Tube

AR1010T-I/ML UART –40oC to +85oC QFN, 20 pin T/R

AR1010T-I/SO UART –40oC to +85oC SOIC, 20 pin T/R

AR1010T-I/SS UART –40oC to +85oC SSOP, 20 pin T/R

AR1020-I/ML I2C/SPI –40oC to +85oC QFN, 20 pin Tube

AR1020-I/SO I2C/SPI –40oC to +85oC SOIC, 20 pin Tube

AR1020-I/SS I2C/SPI –40oC to +85oC SSOP, 20 pin Tube

AR1020T-I/ML I2C/SPI –40oC to +85oC QFN, 20 pin T/R

AR1020T-I/SO I2C/SPI –40oC to +85oC SOIC, 20 pin T/R

AR1020T-I/SS I2C/SPI –40oC to +85oC SSOP, 20 pin T/R

Table 1: Ordering Part Numbers

5 BLOCK DIAGRAM

Figure 1: Block Diagram

DS41393A-Page 2 ? 2009 Microchip Technology, Inc.

? 2009 Microchip Technology, Inc. DS41393A-Page 3

6 PIN DIAGRAM

Figure 2 : Pin Diagrams – SOIC / SSOP and QFN Packages

Pin Name

Pin #

Pin Description

SOIC, SSOP QFN

VDD 1 18 Supply Voltage M1 2 19 Communication Selection SY- 3 20 Sense Y- (8-Wire). Tie to VSS, if not used. M2 4 1 4/8-wire or 5-wire Sensor Selection WAKE 5 2 Touch Wake-Up SIQ 6 3 LED drive / SPI Interrupt. No Connect, if not used. SY+ 7 4 Sense Y+ (8-Wire). Tie to VSS, if not used. SS 8 5 Slave Select (SPI). Tie to VSS, if not used. SDO 9 6 SPI Serial Data Output / I 2C Interrupt. Tie to VSS, if UART. NC 10 7 No Connection. No Connect or tie to VSS or VDD. SCK/SCL/TX 11 8 SPI/I 2C Serial Clock / UART Transmit NC 12 9 No Connection. No Connect or tie to VSS or VDD. SDI/SDA/RX 13 10 I 2C Serial Data / SPI Serial Data Input / UART Receive SX+ 14 11 Sense X+ (8-Wire). Tie to VSS, if not used. Y+ 15 12 Y+ Drive Y- 16 13 Y- Drive 5WSX- 17 14 5W Sense (5-Wire) / Sense X- (8-Wire). Tie to VSS, if not used. X+ 18 15 X+ Drive X- 19 16 X- Drive VSS 20 17 Supply Voltage Ground

Table 2: Pin Descriptions

DS41393A-Page 4 ? 2009 Microchip Technology, Inc.

7 FUNCTIONAL DESCRIPTION

7.1 Main Schematic

A main application schematic is shown below for the SOIC/SSOP package pinout. See the Pin Diagram section for the QFN package pinout.

Figure 3 : Main Schematic (SOIC, SSOP package pin out)

7.2 Bill of Materials

Modifying, removing, or adding components may adversely affect touch performance.

Specific manufacturers and part numbers are provided only as a guide. Equivalents can be used.

Label Qty Value Description Manufacturer Part Number C1 1 10 uF Capacitor – Ceramic, 10uF, 20%, 6.3V, X7R, 0603 AVX 06036D106MAT2A C2

1 0.1 uF Capacitor – Ceramic, 0.1uF, 10%, 16V, X7R, 0603 AVX 0603YC104KAT2A C3, C4, C51

2-3 0.01 uF Capacitor – Ceramic, 0.01uF, 10%, 50V, X7R, 0603 AVX 06035C103KAT2A D1-D82

4-8 130 W Diode – Bi-dir., 130W, ESD Protection, SOD323 NXP

PESD5V0S1BA R1 1 20K ohm Resistor - 20K ohm, 1/10W, 5%, 0603 Yageo America RC0603JR-0720KL U1

1

Na

Touch controller IC

Microchip

AR1010 or AR1020

Table 3 : Bill of Materials

Note 1: C5 is only needed for 5-wire applications.

Note 2: D1-D8 are for ESD protection.

? 4-wire touch screen, use D1-D4 ? 5-wire touch screen, use D1-D5 ? 8-wire touch screen, use D1-D8

? 2009 Microchip Technology, Inc. DS41393A-Page 5

7.3 4, 5, 8-Wire Sensor Selection

The desired sensor type of 4/8-Wire or 5-Wire is hardware selectable using pin M2.

Type M2 pin 4/8-wire VSS 5-wire VDD

Table 4 : 4/8-wire vs 5-wire Selection

If 4/8-wire has been hardware selected, then the choice of 4-wire or 8-wire is software selectable, via the TouchOptions configuration register. When 4/8-Wire is hardware selected, the controller defaults to 4-wire operation. If 8-wire operation is desired, then the TouchOptions configuration register must be changed.

7.4 4-wire Touch Sensor Interface

Sensor tail pin-outs can vary by manufacturer and part number. Ensure both sensor tail pins for one sensor axis (layer) are connected to the controller’s X–/X+ pins and the tail pins for the other sensor axis (layer) are

connected to the controller’s Y–/Y+ pins. The controller’s X–/X+ and Y–/Y+ pin pairs do not need to connect to a specific sensor axis. The orientation of controller pins X– and X+ to the two sides of a given sensor axis is not important. Likewise, the orientation of controller pins Y– and Y+ to the two sides of the other sensor axis is not important.

Connections to a 4-wire touch sensor are as follows.

Figure 4 : 4-wire Touch Sensor Interface

Tie unused controller pins 5WSX-, SX+, SY-, and SY+ to VSS.

DS41393A-Page 6 ? 2009 Microchip Technology, Inc.

related sensor corners are connected to the controller’s X–/X+ pins and the tail pins for the other pair of diagonally related corners are connected to the controller’s Y–/Y+ pins. The controller’s X–/X+ and Y–/Y+ pin pairs do not need to connect to a specific sensor axis. The orientation of controller pins X– and X+ to the two selected

diagonal sensor corners is not important. Likewise, the orientation of controller pins Y– and Y+ to the other two selected diagonal sensor corners is not important. The sensor tail pin connected to its topsheet must be connected to the controller’s 5WSX– pin.

Connections to a 5-wire touch sensor are as follows.

Figure 5 : 5-wire Touch Sensor Interface

Tie unused controller pins SX-, SY-, and SY+ to VSS.

? 2009 Microchip Technology, Inc. DS41393A-Page 7

(layer) are connected to the controller’s X–/X+ pins and the tail pins for the other sensor axis (layer) are

connected to the controller’s Y–/Y+ pins. The controller’s X–/X+ and Y–/Y+ pin pairs do not need to connect to a specific sensor axis. The orientation of controller pins X– and X+ to the two sides of a given sensor axis is not important. Likewise, the orientation of controller pins Y– and Y+ to the two sides of the other sensor axis is not important.

The 8-wire sensor differs from a 4-wire sensor in that each edge of an 8-wire sensor has a secondary connection brought to the sensor’s tail. These secondary connections are referred to as “sense” lines. The controller pins associated with the sense line for an 8-wire sensor contain an ‘S’ prefix in their respective names. For example, the SY– pin is the sense line connection associated with the main Y– pin connection.

Consult with the sensor manufacturer’s specification to determine which member of each edge connected pair is the special 8-wire “sense” connection. The controller requires that the main and “sense” tail pin pairs for sensor edges be connected to controller pin pairs as follows.

? Y– and SY– ? Y+ and SY+ ? X– and 5WSX– ? X+ and SX+

Connections to a 8-wire touch sensor are as follows.

Figure 6 : 8-wire Touch Sensor Interface

DS41393A-Page 8 ? 2009 Microchip Technology, Inc.

7.7 Communication Interface

The desired communication type is hardware selectable by chip part number and using pin M1.

Type Chip P/N M1 pin I 2

C AR1020 VSS SPI AR1020 VD

D UART AR1010 VDD

Table 5 : Communication Selection

The communication interface pins are shown below for each communication type.

Type Communication Pins UART RX, TX, VSS I 2C SCL, SDA, SDO (Irq), VSS SPI SCK, SDI, SDO, SS, SIQ (Irq), VSS

Table 6 : Communication Pins

7.7.1 I 2C

I 2C operates in slave mode with 7-bit address of 0x9A.

The SDO pin functions as an interrupt output. It is asserted high when data is available.

Timing diagrams are shown below.

Figure 7 : I 2

C Timing Diagram – Receive Data

Figure 8 : I 2C Timing Diagram – Transmit Data

? 2009 Microchip Technology, Inc. DS41393A-Page 9

Figure 9 : I 2

C Timing Diagram – Touch Report Protocol

Figure 10 : I 2

C Timing Diagram – Command Protocol

7.7.2 SPI

SPI operates in slave mode with an idle low SCK and data transmitted on the SCK falling edge.

The SIQ pin functions as an interrupt output. It is asserted high when data is available. The pin has a dual purpose with driving an optional LED.

The SS pin is optional for “Slave Select” functionality. It is active (selects) when pulled low to VSS. Tie to VSS if not used.

If data is clocked out when the controller has no valid data to provide, then 0x4d (ASCII "M") will be presented.

Timing diagrams are shown below.

Figure 11 : SPI Timing Diagram – Bit Timing

DS41393A-Page 10 ? 2009 Microchip Technology, Inc.

Figure 12 : SPI Timing Diagram – Touch Report Protocol

Figure 13 : SPI Timing Diagram – Command Protocol

7.7.3 UART

The SDO pin is not used and must be left as a “no connect”. Do NOT tie it directly to VSS or VDD.

UART communication is at a fixed 9600 baud rate.

7.8 Status LED

The LED and associated resistor are optional.

The LED serves as a status indicator that the controller is functioning. It will slow flash when the controller is running with no touch in progress. It will flicker quickly (mid level On) when a touch is in progress.

If the LED is used with SPI communication, then the LED will be off with no touch and flicker quickly (mid level On) when a touch is in progress.

7.9 ESD Considerations

ESD protection is shown on the 4-wire, 5-wire, and 8-wire interface applications schematics.

7.10 Noise Considerations

Touch sensor filtering capacitors are included in the reference design.

7.11 Touch Reporting Protocol

Touch coordinates are sent from the controller to the host system in a 5-byte data packet, which contains the X-axis coordinate, Y-axis coordinate, and a “Pen-Up/Down” touch status.

The range for X-axis and Y-axis coordinates is from 0-4095 (12-bit). The realized resolution is 1024, as this product currently defines, in a non-calibrated state, bits X1:X0 and Y1:Y0 as zeros.

It is recommended that applications be developed to read the 12-bit coordinates from the packet and use them in a 12-bit format. This enhances the application robustness, as it will work with either 10 or 12 bits of coordinate information.

The touch coordinate reporting protocol is shown below.

Byte # Bit 7 Bit 6 Bit 5 Bit 4Bit 3Bit 2Bit 1Bit 0

1 1 R R R R R R P

2 0 X6 X5 X4 X

3 X2 X1 X0

3 0 0 0 X11 X10 X9 X8 X7

4 0 Y6 Y

5 Y4 Y3 Y2 Y1 Y0

5 0 0 0 Y11 Y10 Y9 Y8 Y7

Table 7 : Touch Coordinate Reporting Protocol

where:

P : 0 Pen-Up, 1 Pen-Down

R : Reserved

X11-X0 : X-axis coordinate

Y11-Y0 : Y-axis coordinate

? 2009 Microchip Technology, Inc. DS41393A-Page 11

DS41393A-Page 12 ? 2009 Microchip Technology, Inc.

7.12 Configuration Registers

The Configuration Registers allow application specific customization of the controller. The default values have been optimized for most applications and are automatically used, unless you choose to change them.

Unique sensors and/or product applications may benefit from adjustment of configuration registers.

The factory default settings for the Configuration registers can be recovered by writing a value of 0xFF to address 0x00 of the EEPROM, then cycling power.

Register Name Address Offset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Default

Value

TouchThreshold 0x02 Value of: 0-255 0xC5 SensitivityFilter 0x03 Value of: 0-255 0x04 SamplingFast 0x04 Value of: 1, 2, 4, 8, 16, 32, 64, 128 0x04 SamplingSlow 0x05 Value of: 1, 2, 4, 8, 16, 32, 64, 128 0x10 AccuracyFilterFast 0x06 Value of: 1-8 0x02 AccuracyFilterSlow 0x07 Value of: 1-8 0x08 SpeedThreshold 0x08 Value of: 0-255 0x04 SleepDelay 0x0A Value of: 0-255 0x64 PenUpDelay 0x0B Value of: 0-255 0x80 TouchMode 0x0C PD2 PD1 PD0 PM1 PM0 PU2 PU1 PU0 0xB1 TouchOptions 0x0D – – – – – – 48W CCE 0x00 CalibrationInset 0x0E Value of: 0-40 0x19 PenStateReportDelay 0x0F Value of: 0-255 0xC8 TouchReportDelay 0x11 Value of: 0-255 0x00

Table 8 : Configuration Registers

Configuration registers are defined as an Offset value from the S tart address for the register group.

To read or write to a register, do the following.

1) Issue the command to obtain the Start address for the register group. 2) Calculated the desired register’s absolute address by adding the register’s Offset value to Start address for

the register group. 3) Issue the or command, using the calculated register’s absolute address.

7.12.1 TouchThreshold Register (offset 0x02)

The TouchThreshold register sets the threshold for a touch condition to be detected as a touch. A touch is detected if it is below the TouchThreshold setting. Too small of a value might prevent the controller from

accepting a real touch, while too large of a value might allow the controller to accept very light or false touches conditions. Valid values are as follows.

0 ≤ TouchThreshold ≤ 255

7.12.2 SensitivityFilter Register (offset 0x03)

The SensitivityFilter register sets the level of touch sensitivity. A higher value is more sensitive to a touch

(accepts a lighter touch), but may exhibit a less stable touch position. A lower value is less sensitive to a touch (requires a harder touch), but will provide a more stable touch position. Valid values are as follows.

0 ≤ SensitivityFilter ≤ 255

The SamplingFast register sets the level of touch measurement sample averaging, when touch movement is determined to be fast. See the SpeedThreshold register for information on the touch movement threshold. A lower value will provide for a higher touch coordinate reporting rate when touch movement is fast, but may exhibit more high frequency random noise error in the touch position. A higher value will reduce the touch coordinate reporting rate when touch movement is fast, but will reduce high frequency random noise error in the touch position. Valid values are as follows.

SamplingFast: 1, 2, 4, 8, 16, 32, 64, 128

7.12.4SamplingSlow Register (offset 0x05)

The SamplingSlow register sets the level of touch measurement sample averaging, when touch movement is slow. See the SpeedThreshold register for information on the touch movement threshold. A lower value will increase the touch coordinate reporting rate when the touch motion is slow, but may exhibit a less stable more jittery touch position. A higher value will decrease the touch coordinate reporting rate when the touch motion is slow, but will provide a more stable touch position. Valid values are as follows.

SamplingSlow: 1, 2, 4, 8, 16, 32, 64, 128

7.12.5AccuracyFilterFast Register (offset 0x06)

The AccuracyFilterFast register sets the level of an accuracy enhancement filter, used when the touch movement is fast. See the SpeedThreshold register for information on the touch movement threshold. A lower value will provide better touch coordinate resolution when the touch motion is fast, but may exhibit more low frequency noise error in the touch position. A higher value will reduce touch coordinate resolution when the touch motion is fast, but will reduce low frequency random noise error in the touch position. Valid values are as follows.

1 ≤ AccuracyFilterFast ≤ 8

7.12.6AccuracyFilterSlow Register (offset 0x07)

The AccuracyFilterSlow register sets the level of an accuracy enhancement filter, used when the touch movement is slow. See the SpeedThreshold register for information on the touch movement threshold. A lower value will provide better touch coordinate resolution when the touch motion is slow, but may exhibit more low frequency noise error in the touch position. A higher value will reduce touch coordinate resolution when the touch motion is slow, but will reduce low frequency random noise error in the touch position. Valid values are as follows.

1 ≤ AccuracyFilterSlow ≤ 8

7.12.7SpeedThreshold Register (offset 0x08)

The SpeedThreshold register sets the threshold for touch movement to be considered as slow or fast. A lower value reduces the touch movement speed that will be considered as fast. A higher value increases the touch movement speed that will be considered as fast. Valid values are as follows.

0 ≤ SpeedThrshhold ≤ 255

? 2009 Microchip Technology, Inc. DS41393A-Page 13

The SleepDelay register sets the time duration with no touch or command activity that will cause the controller to enter a low power sleep mode. Valid values are as follows.

0 ≤ SleepDelay ≤ 255

Sleep Delay Time = SleepDelay * 100ms

A value of zero disables the Sleep Mode, such that the controller will never enter low power sleep mode.

A touch event will wake the controller from low power sleep mode and start sending touch reports. Communications sent to the controller will wake it from the low power sleep mode and initiate action to the command.

7.12.9PenUpDelay Register (offset 0x0B)

The PenUpDelay register sets the duration of a pen up event that the controller will allow, without sending a pen up report for the event. The delay time is started upon detecting a pen up condition. If a pen down is reestablished before the delay time expires, then pen down reports will continue without a pen up being sent. This effectively debounces a touch event in process.

A lower value will make the controller more responsive to pen ups, but will cause more touch drop outs with a lighter touch. A higher value will make the controller less responsive to pen ups, but will reduce the number of touch drop outs wit a lighter touch. Valid values are as follows.

0 ≤ PenUpDelay ≤ 255

Pen Up Delay Time ≈ PenUpDelay * 240μs

DS41393A-Page 14 ? 2009 Microchip Technology, Inc.

The TouchMode register configures the action taken for various touch states.

There are three states of touch for which the controller touch reporting action can be independently controlled. Touch States:

1) Pen down (initial touch)

User defined 0-3 touch reports, with selectable pen states.

2) Pen Movement (touch movement after initial touch)

User defined no touch reports or streaming touch reports, with selectable pen states.

3) Pen Up (touch release)

User defined 0-3 touch reports, with selectable pen states.

Every touch report include a “P” (Pen) bit that indicates the pen state.

?Pen Down : P = 1

?Pen Up : P = 0

R = Readable bit, W = Writable bit, U = Unimplemented bit read as ‘0’

R/W R/W R/W R/W R/W R/W R/W R/W

PD2 PD1 PD0 PM1 PM0 PU2 PU1 PU0

Bit

7 Bit

bit 7-5 PD<7:5>: Pen Down State bits (action taken upon pen down).

000 = No Touch Report

001 = Touch Report with P=0

010 = Touch Report with P=1

011 = Touch Report with P=1, then Touch Report with P=0

100 = Touch Report with P=0, then Touch Report with P=1, then Touch Report with P=0

101 = Touch Report with P=0, then Touch Report with P=1

bit 4-3 PM<4:3>: Pen Movement State bits (action taken upon pen movement).

00 = No Touch Report

01 = Touch Report with P=0

10 = Touch Report with P=1

bit 2-0 PU<2:0>: Pen Up State bits (action taken upon pen up).

000 = No Touch Report

001 = Touch Report with P=0

010 = Touch Report with P=1

011 = Touch Report with P=1, then Touch Report with P=0

100 = Touch Report with P=0, then Touch Report with P=1, then Touch Report with P=0

101 = Touch Report with P=0, then Touch Report with P=1

A couple of typical setup examples for the TouchMode are as follows.

?Report a pen down P=1 on initial touch, followed by reporting a stream of pen downs P=1 during the touch, followed by a final pen up P=0 on touch release. TouchMode = 0b01010001 = 0x51

?Report a pen up P=0 then a pen down P=1 on initial touch, followed by reporting a stream of pen downs P=1 during the touch, followed by a final pen up P=0 on touch release. TouchMode = 0b10110001 = 0xB1

? 2009 Microchip Technology, Inc. DS41393A-Page 15

DS41393A-Page 16 ? 2009 Microchip Technology, Inc. The TouchOptions register contains various “touch” related option bits.

R = Readable bit, W = Writable bit, U = Unimplemented bit read as ‘0’

U–0 U–0 U–0 U–0 U–0 U–0 R/W R/W

– – – – – – 48W CCE

Bit

7 Bit

bit 7-2 Unimplemented: Read as ‘0’

bit 1 48W: 4-wire or 8-wire Sensor Selection bit

1 = Selects 8-wire sensor operating mode

0 = Selects 4-wire sensor operating mode

bit 0 CCE: Calibrated Coordinates Enable bit

1 = Enables calibrated coordinates, if the controller has been calibrated

0 = Disables calibrated coordinates

7.12.12 CalibrationInset Register (offset 0x0E)

The CalibrationInset register defines the expected position of the calibration points, inset from the perimeter of the touch sensor’s active area, by a percentage of the full scale dimension.

This allows for the calibration targets to be placed inset from edge to make it easier for a user to touch them.

The CalibrationInset register value is only used when the Calibration Mode command is issued to the controller. In Calibration Mode, the controller will extrapolate the calibration point touch report values by the defined CalibrationInset percentage to achieve full scale.

A software application that issues the Calibration Mode command must present the displayed calibration targets at the same inset percentage as defined in this CalibrationInset register.

Valid values are as follows.

0 ≤ CalibrationInset ≤ 40

Calibration Inset = ( CalibrationInset / 2 ) % , Range of 0–20% with 0.5% resolution

For example, CalibrationInset = 25 (0x19) yields a calibration inset of (25 / 2) or 12.5%. During the calibration procedure, the controller will internally extrapolate the calibration point touch values in Calibration Mode by 12.5% to achieve full scale.

12.5% of

Full Scale

12.5% of

收音机性能的测试方法

收音机性能的测试方法 一.标准测试条件 1.标准测试应在网房进行。 2.测试时周围温度须在20±10℃,湿度控制在80%的围。 3.测试时用AC电源﹐须经电源稳压﹐电压值为额定电压值的±2%.频率50HZ或60HZ.测试时用直流电源﹐须采用高稳定度且低阻的直流电源供给器。 4.收音机额定输出功率大于1W时﹐标准输出为500MW﹐100MW至1W之间定为50MW﹐100MW 以下定为5MW。 5.各测试仪并联于负荷中﹐测试输出须接负载为准﹐耳机输出仅作参考。 6.AM的一般测试条件 (1)接收信号方式是环状天线 (IRE LOOP ANT) (2)环状天线与接收机条状天线须垂直﹐且其中心相距60CM﹐因此信号发生器输出信号 (RF)强度衰减26dB,为接收机天线处电场强度。 (3)调制度以调制频率为1000HZ作30%的调制。 7.FM的一般测试条件 (1)接收信号方式采用FM标准仿真天线 (2)连接调频天线须接地。 (3)调制频率为1KHZ﹐频偏为22.5KHZ. 8.以上为一般要求﹐客户有另外标准﹐则以客户要求为标准进行。 二.测试标准 1.收音机 AM部分 1频率围﹕(Frequency Range) 在收音机基本达到温度稳定状态后﹐将收音机置AM波段位置﹐高频信号发生器调制度为30%,调制频率为400HZ﹐输出接环状天线﹐环状天线中心与被测机磁棒距离60CM﹐并互相垂直。 将调谐指针调到最低端﹐调高频信号发生器的频率﹐使收音机达到音频输出最大调谐状态﹐信号输入电平为标准限噪灵敏度电平﹐调节音量控制器﹐使收音机的输出为标准输出﹐此时RF信号的频率就是收音机的低端频率。 将收音机调谐指针调到最高端﹐调RF信号的频率﹐使收音机达到音频输出最大调谐状态﹐此时RF信号的频率就是收音机的高端频率。 2.最大灵敏度 (Maximum Sensitivity) 此指的是收音机所有控制装置均放在最大放大位置﹐达到标准功率输出时﹐所需要的最小输入信号电平即为最大灵敏度。 在AM测试条件下﹐中波选600KHZ﹑1000KHZ﹑1400KHZ作为优选测试频率点。音量调节器最大﹐改变RF信号强度﹐使收音机的输出达标准输出﹐此时RF信号强度扣减26dB为最大灵敏度﹐单位﹕dB

AM收音机测试方法

AM收音机测试方法 1.适用范围: 此测试方法适用于朝日牌子的,接收频率为150KHz-30MHz范围,长波(LW)、中波(MW)、短波(SW)、等波段的调幅收音机,为了性能的比较,作为标准测试方法。 2.有关测试的一般规定: (1)电压值和电流值,在测试中以有效值(RMS)表示电压值、电流值。 (2)电平表示方法:电功率、电压及电场强度用电平分贝0(dB) 表示的时候参考照下表: 表1 (3)标准假负载: 使用等于扬声器标准阻抗值的电阻作标准假负载,假负载的误差为±5%。 (4)标准实验状态 充分屏蔽外部电场,密封室温度20℃、湿度65%。没有特别指定的时候在温度10°C-35°C,湿度45-85%的状态下进行有关测试比较好,有音质调整开关的机子开关需调至 机子音频特性为平坦状态下测试。 (5)电源:(AC/DC式、DC式、AC式)接收机分三种情形考虑使用测试的电源:A.只有一种AC式电源机子时,使用机子上标称标准电源、电压及工频作为测试用电源。 有二种以上AC式电源的机子,可以使用任意使用一种机子标称的电源作为测试电源。 B.只有DC式电源的机子,使用该DC电压值作为测试电源,电源波动在±2%内。 C.A C/DC两用的机子,若没有特别指定可以使用DC来测试,但是使用AC与DC测试S/N、输出功率,交流声寄生调制的数值相差大时,需要使用AC电源测试。 (6)准调制度及调制信号: 没有特别指定的时候使用范围30%调制度,400Hz音频调制信号。 (7)标准输出功率: 一般情况下,机子的10%THD最大输出功率为5W以下时,使用50mW作为标准为标准输出功率,5W以上时,用500mW作为标准输出功率(规格书有标准功率则用规格

收音机性能测试用例

移动手机收音机性能测试用例7.7 1 目的 使用信号发生器、音频分析仪测试手机收音机性能,以保证手机收音机性能参数符合设计要求,满足销售与用户的使用。 2 适用范围 适用品质部测试移动手机收音机性能。 3 测试内容 (1)灵敏度(SENS) (2)接收频带宽度 (3)接收解调输出幅度(VPP-mpx) (4)解调输出信噪比(S/N) (5)解调输出信纳比(SINDA) (6)调制信号最大失真度 (7)FM干扰验证(FM干扰强度与实际聆听FM干扰) 4 接收灵敏度测试(测试用例编号:7.7.1) 4.1 测试条件 1> 对于耦合测试,环境的条件对测试结果有非常明显的影响,为了减小环境对测试结果影响,测试选择在屏蔽房中进行,连接示意图如下:

4.2 测试步骤 1> 将FM测试夹具的标准天线接口接在信号发生器(JSG-1051B)的发射头上,设置JSG-1051B调制信号为1KHz,调制频偏为22 .5KHz;发射频 率分别为87.5 MHz、 98MHz、108 MHz,设置完成后将手机固定在夹具上(如上图位置); 2>设置音频分析仪(KENWOOD VA-2230A)到SINDA功能测试,滤波带宽设为高通200Hz,低通15KHz; ITEM CH HPF PSO LPF SP UNIT Switching time AVGS SINDA L& R 200H z A 15KHz FAST d B SS=1.5s N=8 3> 调节信号发生器(JSG-1051B)RF输出的电平,测试MPX(单声道输出)的信号,当SINDA为26dB的时,信号发生器(JSG-1051B) RF输 出的电平即为接收灵敏度。分别记录87.5 MHz、 98MHz、108 MHz所对应的接收灵敏度。 注:对支持FM外放功能的机型,耦合灵敏度测试须对外放时FM的灵敏度进行测试,测试方法参考耳机灵敏度的测试方法。 4.3 测试预期输出结果 被测机接收灵敏度≥标杆样机 5 接收频带宽度测试(测试用例编号:7.7.2) 5.1 测试条件 1> 对于耦合测试,环境的条件对测试结果有非常明显的影响,为了减小环境对测试结果影响,测试选择在屏蔽房中进行。 2> 确定手机收音机功能正常,然后进入收音机频道列表选项,在频道列表中设置87.5MH z,88MH z,90MH z,97MH z,98MH z,99MH z106MH z, 107.5MH z,108MH z,并将手机音量调到最大。 5.2 测试步骤 1> 设置音频分析仪(KENWOOD VA-2230A)到SINDA功能测试,滤波带宽设为高通200Hz,低通15KHz; 2> 设置信号发生器(JSG-1051B)调制信号为1KHz,调制频偏为22 .5KHz; 3> 调节信号发生器(JSG-1051B)频率输出在87.5~108MHz,FM接收频率与之对应,测试MPX(单声道输出)的信号,当SINDA≥26 dB

Audio FM收音机电性能测试指导书

Audio FM收音机电性能测试指导书

目的:验证FM广播收音机产品的电声性能是否符合规格要求。 1.适用范围 适用于调频广播接收机包括调谐器组合机中的调频收音部分进行电声性能的测量。 2.定义 无 3.职责 无 4.测试程序 5.1 标准测试条件 5.1.1 标准调制度 标准调制度是指调制信号的峰值频偏与系统最大频偏的百分比。 标准调制度规定为30%。 5.1.1.1 标准立体声调制度 100% 调制度对应于±75KHz频偏。 30%调制度对应于±22.5KHz频偏。 5.1.1.2 标准立体声调制度 设整个立体声复合信号的调制度为100%(±75KHz频偏)其中: 导频信号占10%(±7.5KHz频偏) 主、副信号的合成信号占90%(±67.5KHz频偏) 以此主、副信号的合成信号作为100%(±67.5KHz频偏) ,那么,30%的调制度则为±20.25KHz. 对于不同的调制方式,其频偏的分配如下表所示。 5.1.2 标准测试频率

测试频率规定为:88、98、108MHz。 标准测试频率规定为:98MHz。 客户有不同要求时按客户要求执行。 5.1.3 标准输入信号电平 标准输入信号电平规定为71dBf(≈66dBuV/EMF) 5.1.4 标准负载 测量电性能时应该用阻值等于扬声器标称阻抗的纯电阻(误差为 2%)代替扬声器做负载测量声性能,且应按扬声器的标称阻抗计算相应的电压值。 5.1.5 标准输出功率 接收机的输出用加到扬声器上的功率来表示或者用标准负载上所消耗的功率来表示。根据接收机的类别一般可用5mM 10mM 50mM和500mM 作为标准输出功率,其中50mM为优选值。对于更大功率输出的接收机,可用比标称有用功率低10dB的功率作为标准输出功率。根据公司产品的特点,一般定义为1W,产品规格有定义的,以产品规格为准。 5.1.6 音效处理功能的设置 1)均衡(BALANCE EQUALIEER),低音(BASS)和高音(TREBLE)旋钮置于中心位置; 2)音调(回音/ECHO、变调/KEY/TONE等)控旋钮置于中心位置,软件调节的应处于不影响音频特 性输出的位置;

收音机重要指标定义标准及具体测试方法

收音机重要指标定义标准及具体测试方法 基本原理: 调频(FM)是用音频信号去调制高频载波的频率,使高频载波的频率随信号而有规律的变化,载波的幅度保持不变 无线电广播的过程是:首先利用话筒将声音变成音频电信号,经音频放大器放大后送往调制器,对高频载波信号进行调制,从调制器输出的调副或调频信号再经过高频放大器放大后送到发射天线,将载有声音“信息”的无线电波发出。 优点: 1.抗干扰能力好 2.频带宽,音质好 3.频道容量大,解决电台拥挤问题 . 调频收音( FM ,FREQUENCY MODULATION )的测试: 1.FM频率范围( FM RANGE ) 要求: 频偏:22.5KHZ DEV 调制频率:1KHZ 方法: A扭转主机台钮转最低点. B调整RF频率.使收音机得到最强的信号(失真最小)此时的频率为低端 C.将台钮至高端,同样的方法得到高端频率 D,低端-高端为全频覆盖范围 .2 最大灵敏度( MAX SENS ) 要求: 频偏:22.5KHZ DEV,调制频率为:1KHZ,测试频率:90MHZ、98MHZ. 106MHZ。 定义:收音机在最大音量时,输出信号强度达到标准功率时输入信号的强度 要求:

调制度22.5KHZ,调制频率为1KHZ 方法: A.同调(使测试机与RF信号发生器的频率基本一致频率)90MHZ、98MHZ、106KHZ.失真最小 B.将音量(VR)最大,变调电平(ATT)值,使毫伏表指标回到(REF O/P)时的dB数就是最大灵敏度 3.30DB限噪灵敏度(30DB S\N SENS) 方法: 同调90MHZ、98MHZ、106MHZ. 要求:调制度22.5KHZ 调制频率:1KHZ 方法: A.同调(测试机与RF信号发生器的频率基本一致)频率90MHZ,98MHZ, 106MHZ B首先测出它们的最大灵敏度,增加DB数,将音量调到标准输出,关掉调制度(MOD)C衰减毫伏表VTVM下降的数值刚好为30dB,看指标能否回到标准输出 如果没有回到标准输出:,减少电平DB数使它达到 如果超过标准输出:增加电平DB数 例如:标准输出为0.632V -4DB,电平数为21DB假如衰减30BD刚好在-4DB处,然后ATT 值21DB. 21DB就是测试机的限噪灵敏度 注意:测试FM的时候.高频信号发生器应连接至到收音机FM天线PCB板,输入端,断开天线拉杆天线,地线则需要接至收音机高频放大的地线,一般为PVC地线. 4.中频频率/中频抑制( IF FREQUENCY/IF REJECTION) 要求: 调制度为22.5KHZ,调制频率为1KHZ。 方法一: A.同调(测试机与RF信号发生器的频率基本一致)90MHZ, B.将音量(VR)最大,测90HZ的最大灵敏度/或测出限噪灵敏度 C.变调频率为90MHZ-10.7MHZ,再微调+-10.7使毫伏表输出最大,就得出中频

车载收音机电性能检测方法及标准

成品、半成品主要电性能检测方法及标准 ----适用机种TK-20/30/35/50/58/60/80 1. 目的 规范RADIO AM/FM/MP3的电性能测试方法,正确指导测试人员测试,确保电性能参数测试的规范性和准确性 2. 适用范围 本标准规定了RADIO AM/FM/MP3的电性能参数的测试和要求 本标准适用于送样、试产、批量生产的RADIO产品的电性能参数测试 4.测量条件 4.1测试时用AC电源,必须经标准电源稳压器,电压值为额定电压± 2%内,频率 50H Z 或60H Z,测试时用直流电源,必须采用标准直流稳压电源或最新标准电池。 4.2各测试仪并联于负荷中,测试必须将输出接到负载(代替喇叭),输出一般按4Ω或8Ω。 4.3其标准输出为U = PR 。 5.测试报告 《AM/FM新品电性能测试报告》

6. FM电性能检测 序号测试 项目 使用仪器与信号 条件 测定 频率 测试方法规格 测试 部门调制 频率 调制 度 SG 强度 1 频率 范围 高频信号发生器、 双轨迹示波器、毫伏表、 适配器、直流稳压电源 1KHz 22.5 KHz 22dB 低端 首先接收机置FM 波段位置,然后接收机调谐至FM 最低端, SG经相应的模拟天线输出到接收机天线输入端,SG强度为 实用灵敏度状态,调节SG 之频率,使接收机输出到最大, 同时调节音量控制输出为参考输出,此时SG 之频率为FM 低端调谐范围,反之为FM高端范围。单位MHz。 欧洲:87.5-108MHz 澳洲:87.5-108MHz 美国:87.5-107.9MHz 日本:76.0-90.0MHz 俄罗斯:65.0-74.0/ 87.5-108MHz 生产、 品管 高端 2 实用高频信号发生器、1KHz 22.5---- 90.5MHz 首先接收机与SG 同谐于规范上的测试点,调节SG强度及≤22dB 生产、

收音机指标测试方法及仪器

收音机指标测试方法及仪器一、仪器 1:双踪示波器 2:失真仪 3:双针毫伏表 4:电源 5:高频信号发生器 6:低频信号发生器 二、测试方法

FM指标测试 1:最大灵敏度 将高频信号发生器发射90MHz频率,调制度 KHz,调制频率1KHz,被测机也调到90MHz的接收频率,电位器开到最大,调节高频信号发生器的输出电平,使毫伏表的指针指到标准输出,此时高频信号发生器的dB数即是最大灵敏度。 2:-30DB实用灵敏度 将高频信号发生器发射90MHz频率,调制度 KHz,调制频率1KHz,被测机也调到90MHz的接收频率,调节高频信号发生器的输出电平(假设20dB),此时调节被测机电位器使毫伏表的指针指到0dB,去调制,调节毫伏表的旋扭倒腿三挡,此时看毫伏表的指针是否指到0dB,若指针未到0dB,则降低高频信号发生器的输出dB数,若指针超过0dB,则提高高频信号发生器的输出dB数再重测,直到毫伏表的指针指到0dB,此时高频信号发生器的输出dB数为-30dB实用灵敏度。 3:-3DB极限灵敏度 将高频信号发生器发射98MHz频率,调制度 KHz,调制频率1KHz,调制电平60dB,被测机也调试到98MHZ的接收频率,调节被测机电位器使毫伏表的指针指到0dB,降低高频信号发生器的调制电平,使毫伏表的指针降低3dB,此时高频信号发生器的输出dB数为-3dB极限灵敏度。 4:IF中频频率 将高频信号发生器发射90MHz频率,调制度 KHz,调制频率1KHz,被测机也调到90MHz的接收频率。电位器开到最大,此时将高频信号发生器发射的中频频率,调节高频信号发生器的输出电平,使毫伏表的指针指到标准输出。再细调高频信号发生器的发射频率,使毫伏表的指针指到最高,此时高频信号发生器的发射频率即为IF中频频率。 5:中频抑制 将高频信号发生器发射90MHz频率,调制度 KHz,调制频率1KHz,被测机也调到90MHz的接收频率,电位器开到最大,调节高频信号发生器的输出电平,使毫伏表的指针指到标准输出,(即为最大灵敏度,读取其dB数)。此时将高频信号发生器发射的中频频率,调节高频信号发生器的输出dB数,使毫伏表的指针指到标准输出,此时读取的dB数减去最大灵敏度读取的dB数之差即为中频抑制。 6:假像抑制 将高频信号发生器发射106MHZ频率,调制度 KHZ,调制频率1KHz,被测机也调到106MHz的接收频率,电位器开到最大,调节高频信号发射器的输出电平,使毫伏表的指针指到标准输出,(即为最大灵敏度,读取其dB数)。此时将高频信号发生器发射106+=的频率,调节高频信号发射器的输出dB数,使毫伏表的指针指到标准输出,此时读取的dB数减去最大灵敏度读取的dB数之差即为假像抑制。 7:信噪比 将高频信号发生器发射90MHz频率,调制度 KHz,调制频率1KHz,调制电平60dB,被测机也调到90MHz 的接收频率,调节被测机电位器使毫伏表的指针指到0dB,去调制,倒腿毫伏表的旋扭(倒腿一档是十dB),使指针指到0DB。在毫伏表上读取倒退的dB数即为信噪比。 8:AM抑制 将高频信号发生器发射98MHz频率,调制度 KHz,调制频率1KHz,调制电平60dB,被测机也调到98MHz 的接收频率,调节被测机电位器使毫伏表的指针指到标准输出,此时将调制度 KHz改为AM调制度30%, 提高高频信号发生器的输出dB数,使毫伏表的指针指到标准输出,最后读取高频信号发射器的输出dB数

收音机参数及测试方法

FM参数测试方法: 1、噪限灵敏度(使用灵敏度)静噪灵敏度(S/N为50dB)信噪比 信号发生器:1KHz调制频率,±75KHz(AEC)频偏,其他机型22.5KHz频偏,载频分别为90.1MHz、98.1MHz、106.1MHz,输入电平66EMF dBu; EUT:频率分别调谐到90.1MHz、98.1MHz、106.1MHz,音量调到满格; 音频分析仪:200Hz HPF、15KHz LPF,选择ACV档――REL dB,选择S/N档;此时将信号发生器FM-SIG关闭,待音频分析仪上显示的S/N值后,调节信号发生器的输出直至S/N的值为30dB,记录此时信号发生器的输出电平。 2、-3dB极限灵敏度 定义:使标准输出下降3dB,高频信号的电平值即“限幅灵敏度”(考察弱信号时收音机的接收能力)。 音量-标准输出。RF信号-60dB(1MV)、1KHZ、+22.5KHZ。固定频点于中端测量频率点,接收机调整接收在中端测量频率点,使输出为标准状态(视此时为0dB)。降低RF输出电平,使接收输出下降3dB,此时的RF电平即为限幅灵敏度。 3、频率响应(FREQUENCY RESPONE) -3dB频率响应(-3 dB FREQUENCY RESPONE) ⑴在接收机的中端测量频率,标准测量条件下加上预加重进行测量,且高频信 号发生器需外接音频信号源; ⑵在1KHz调制频率时,调节音量控制器至输出达到标准参考输出功率0.5W作 为参考0dB; ⑶缓慢减小外部调制频率直到输出下降3dB,并记下此时的频率; ⑷缓慢增大外部调制频率直到输出下降3dB,同样记下此时的频率; ⑸则所记录的频率分别为被测试机-3dB点的频率范围的上下限。 4、失真及过载失真(DISTORTION/RF OVERLOAD DISTORTION) ⑴在接收机的中端测量频率点测量; ⑵信号发生器设置为调制1KHz、频偏75KHz; ⑶调节音量控制器至输出达到标准参考输出功率0.5W(1.4V); ⑷测量高频输入电平为1mV(60dBuV)时的音频失真; ⑸提高高频输入电平到100mV(100dBuV),并重新调整音量电位器,使音频输出为标准输出功率0.5W; ⑹测定此时的音频过载失真(10% THD+N)。 5、IF FREQUENCY 中频抑制度 (1) 固定高频信号发生器为98 MHz, 先测出此频点的30 dB S/N 限噪灵敏度。 (2) 然后将高频信号改为10.7 MHz,加强RF输出电平并微调10.7 MHz频率是 输出最大,失真最小,直至输出升回原始标准输出值。

收音机(FMAM)的基本原理及相关重要指标定义、标准及具体测试方法剖析

收音机(FM/AM)的基本原理及相关重要指标定义、标准及具体测试方法 第一节A M BAND (调幅式收音机) 基本原理 广播电台将声音信号加到高频电波上即“调制”,意思即用音频信号去调制高频电信号,使高频信号的幅度、频率或相位随音频信号的变化而变化。“连载”音频信号的高频信号即“载波”。 所谓“调幅”是使高频载波的幅度随音频信号的变化而变化。但载波的频率不变,经调幅后产生的信号为“调幅波”。 收音机调试位说明 1.中频位(IF位) 1、中频位有AM中频和FM中频,统称IF位,IF位主要是用来调较中频频率和增益的,按规定AM中频一般为450KHZ/455KHZ/465KHZ 、FM为10.7MHZ。 2、IF位需用仪器:AM中频信号仪、FM中频信号仪、高频示波器、信号衰减器。 3、按图接好仪器与机架 接 F F.M A.M F.R A.R

信号仪上的信号点信号(M)经开关W1转换后,输入到高频示波器背后信号点输入端,为示波器提供频率标点;信号仪上的水平信号(S)经开关W2转换后,输入到高频示波器背后的水平输入端,为示波器提供较机水平线。AM IF信号(ARF)经衰减器调节后从天线(AM COIL)次级输入;FM IF信号(FRF)经衰减器调节后接到机板的FM 19圈半输入(或者接到天线输入端)。AM、FM的振荡用104电容短路接地,输出检波/鉴频信号经104 电容耦合接高频示波器INPUT端。 4、将样机放入机架上(样机调试方法后面介绍)调节衰减器、示波器,使AM/FM波形适中且信号不能过强,否则看不出低机,样机波形用标记贴于示波器上,方便较机员鉴别好坏机。 5、IF位波形AM中频要求455时, 把455调FM中频要求10.7时,把10.7 调 到峰点即可,波形如下:到中点即可,波形如下: 6、调较方法:将机板放入机 架,功能制打到收音位置,波段 制打到FM位置,信号仪转换开关打到FM位置,调节FM中频周,如蓝周、橙周等,使波形增益、频率达到样机以上要求,然后再将波段制/信号仪转换开关打到AM位置,调节AM中频周,如(黄周、白周等),使AM波形增益、频率达到样板机要求,波形不应失真。 2、KC位 AM IF FM IF

汽车收音机测试方法(通用)(2)

汽车收音机测试方法(通用) FM部分 1.频率覆盖范围 仪器:RF信号发生器,双踪示波器,自动失真仪,衰减器(6dB) 测试条件:信号发生器频率分别设定为高低端极限频率, 信号源内阻:75Ω 调制频率:1KHz 调制度:调频频偏22.5KHz 信号发生器输出电平:60dBuV 测试方法:将本接收机的频率分别调到最高端和最低端,然后微调信号发生器的频率,使接收机的输出电平值达到最大输出时的频率,即为本接收机的频率覆盖范围. 2.限噪灵敏度(实用灵敏度) 仪器:RF信号发生器,双踪示波器, 自动失真仪,衰减器(6dB) 测试条件:信号发生器频率分别设定为89.1MHz,94.1 MHz和104.1MHz 信号源内阻:75Ω 调制度:调频频偏22.5KHz 调制频率:1KHz 测试方法:去调制,慢慢增大RF输入灵敏度,使被测接收机输出电平(dBuV)与输出噪声电平(dBuV)之差达到30dB时的RF输入灵敏度,即为接收机的限噪灵敏度 注:因加了6dBuV的衰减器,所以最后的RF输入灵敏度必须减去6dBuV以后的值才为本接收机的限噪灵敏度 指标:≤20dB 3.信噪比 ①单声道信噪比 仪器:RF信号发生器,双踪示波器,自动失真仪,衰减器(6dB); 测试条件:信号发生器频率:分别设定为89.1MHz,94.1 MHz和104.1MHz, 信号源内阻:75Ω 调制频率:1KHz, 调制度:调频频偏22.5KHz 信号发生器输出电平:60dBuV 测试方法:去调制,此时测得接收机标准输出电平(dBuV)与输出噪声电平(dBuV)之差即为该接收机的信噪比. 指标:≥55dB ②立体声信噪比 仪器:RF信号发生器,双踪示波器,自动失真仪,衰减器(6dB); 测试条件:信号发生器频率:分别设定为89.1MHz,94.1 MHz和104.1Hz, 信号源内阻:75Ω 立体声调制; 导频信号频偏:7.5KHz, 调制频率:1KHz, 调制度:调频频偏22.5KHz, 信号发生器输出电平:60dBuV, 测试方法:去调制,此时测得接收机标准输出电平(dBuV)与输出噪声电平(dBuV)之差即为该接收机的信噪比. 指标:≥40dB

移动手机收音机性能测试用例

移动手机收音机性能测试用例 1 目的 使用信号发生器、音频分析仪测试手机收音机性能,以保证手机收音机性能参数符合设计要求,满足销售与用户的使用。 2 适用范围 适用品质部测试移动手机收音机性能。 3 测试内容 (1)灵敏度(SENS) (2)接收频带宽度 (3)接收解调输出幅度(VPP-mpx) (4)解调输出信噪比(S/N) (5)解调输出信纳比(SINDA) (6)调制信号最大失真度 (7)FM干扰验证(FM干扰强度与实际聆听FM干扰) 4 接收灵敏度测试(测试用例编号:7.7.1) 4.1 测试条件 1> 对于耦合测试,环境的条件对测试结果有非常明显的影响,为了减小环境对测试结果 影响,测试选择在屏蔽房中进行,连接示意图如下:

4.2 测试步骤 1> 将FM测试夹具的标准天线接口接在信号发生器(JSG-1051B)的发射头上,设置 JSG-1051B调制信号为1KHz,调制频偏为22 .5KHz;发射频率分别为87.5 MHz、 98MHz、108 MHz,设置完成后将手机固定在夹具上(如上图位置); 2> 设置音频分析仪(KENWOOD VA-2230A)到SINDA功能测试,滤波带宽设为高通200Hz,低通15KHz; ITEM CH HPF PSO LPF SP UNIT Switching time AVGS SINDA L&R 200H z A 15KHz FAST dB SS=1.5s N=8

3> 调节信号发生器(JSG-1051B)RF输出的电平,测试MPX(单声道输出)的信号,当 SINDA为26dB的时,信号发生器(JSG-1051B) RF输出的电平即为接收灵敏度。分别记录87.5 MHz、 98MHz、108 MHz所对应的接收灵敏度。 注:对支持FM外放功能的机型,耦合灵敏度测试须对外放时FM的灵敏度进行测试,测试方法参考耳机灵敏度的测试方法。 4.3 测试预期输出结果 被测机接收灵敏度≥标杆样机 5 接收频带宽度测试(测试用例编号:7.7.2) 5.1 测试条件 1> 对于耦合测试,环境的条件对测试结果有非常明显的影响,为了减小环境对测试结果 影响,测试选择在屏蔽房中进行。 2> 确定手机收音机功能正常,然后进入收音机频道列表选项,在频道列表中设置 87.5MHz,88MHz,90MHz,97MHz,98MHz,99MHz 106MHz,107.5MHz,108MHz,并将 手机音量调到最大。 5.2 测试步骤 1> 设置音频分析仪(KENWOOD VA-2230A)到SINDA功能测试,滤波带宽设为高通200Hz, 低通15KHz; 2> 设置信号发生器(JSG-1051B)调制信号为1KHz,调制频偏为22 .5KHz; 3> 调节信号发生器(JSG-1051B)频率输出在87.5~108MHz,FM接收频率与之对应, 测试MPX(单声道输出)的信号,当SINDA≥26 dB 时,所对应的频率范围即为接收带宽。 5.3 测试预期输出结果 手机要能接收到每一个频点的声音信号

收音机性能的测试方法

收音机性能的测试方法

收音机性能的测试方法 一.标准测试条件 1.标准测试应在网房内进行。 2.测试时周围温度须在20±10℃,湿度控制在80%的范围内。 3.测试时用AC电源﹐须经电源稳压﹐电压值为额定电压值的±2%.频率50HZ或60HZ.测试时用直流电源﹐须采用高稳定度且低内阻的直流电源供给器。 4.收音机额定输出功率大于1W时﹐标准输出为500MW﹐100MW至1W之间定为50MW﹐100MW 以下定为5MW。 5.各测试仪并联于负荷中﹐测试输出须接负载为准﹐耳机输出仅作参考。 6.AM的一般测试条件 (1)接收信号方式是环状天线 (IRE LOOP ANT) (2)环状天线与接收机条状天线须垂直﹐且其中心相距60CM﹐因此信号发生器输出信号 (RF)强度衰减26dB,为接收机天线处电场强度。 (3)调制度以调制频率为1000HZ作30%的调制。 7.FM的一般测试条件 (1)接收信号方式采用FM标准仿真天线 (2)连接调频天线须接地。 (3)调制频率为1KHZ﹐频偏为22.5KHZ. 8.以上为一般要求﹐客户有另外标准﹐则以客户要求为标准进行。 二.测试标准 1.收音机 AM部分 1频率范围﹕(Frequency Range) 在收音机基本达到温度稳定状态后﹐将收音机置AM波段位置﹐高频信号发生器调制度为30%,调制频率为400HZ﹐输出接环状天线﹐环状天线中心与被测机磁棒距离60CM﹐并互相垂直。 将调谐指针调到最低端﹐调高频信号发生器的频率﹐使收音机达到音频输出最大调谐状态﹐信号输入电平为标准限噪灵敏度电平﹐调节音量控制器﹐使收音机的输出为标准输出﹐此时RF信号的频率就是收音机的低端频率。 将收音机调谐指针调到最高端﹐调RF信号的频率﹐使收音机达到音频输出最大调谐状态﹐此时RF信号的频率就是收音机的高端频率。 2.最大灵敏度 (Maximum Sensitivity) 此指的是收音机所有控制装置均放在最大放大位置﹐达到标准功率输出时﹐所需要的最小输入信号电平即为最大灵敏度。 在AM测试条件下﹐中波选600KHZ﹑1000KHZ﹑1400KHZ作为优选测试频率点。音量调节器最大﹐改变RF信号强度﹐使收音机的输出达标准输出﹐此时RF信号强度扣减26dB 2

收音机参数及测试方法(精)

FM 参数测试方法: 1、噪限灵敏度(使用灵敏度静噪灵敏度(S/N为 50dB 信噪比 信号发生器 :1KHz 调制频率,±75KHz(AEC 频偏,其他机型 22.5KHz 频偏, 载频分别为 90.1MHz 、 98.1MHz 、 106.1MHz ,输入电平 66EMF dBu; EUT :频率分别调谐到 90.1MHz 、 98.1MHz 、 106.1MHz ,音量调到满格; 音频分析仪 :200Hz HPF、 15KHz LPF,选择 ACV 档――REL dB,选择 S/N档; 此时将信号发生器 FM-SIG 关闭,待音频分析仪上显示的 S/N值后,调节信号发生器的输出直至 S/N的值为 30dB ,记录此时信号发生器的输出电平。 2、 -3dB 极限灵敏度 定义:使标准输出下降 3dB ,高频信号的电平值即“限幅灵敏度” (考察弱信号时收音机的接收能力。 音量 -标准输出。 RF 信号 -60dB (1MV 、 1KHZ 、 +22.5KHZ。固定频点于中端测量频率点, 接收机调整接收在中端测量频率点, 使输出为标准状态 (视此时为0dB 。降低 RF 输出电平,使接收输出下降 3dB ,此时的 RF 电平即为限幅灵敏度。 3、频率响应 (FREQUENCY RESPONE -3dB 频率响应 (-3 dB FREQUENCY RESPONE ⑴在接收机的中端测量频率,标准测量条件下加上预加重进行测量,且高频信号发生器需外接音频信号源; ⑵在 1KHz 调制频率时,调节音量控制器至输出达到标准参考输出功率 0.5W 作为参考 0dB ; ⑶缓慢减小外部调制频率直到输出下降 3dB ,并记下此时的频率;

收音测试方法

收音测试方法 一.标准测试条件 1.标准测试应在网房内进行。 2.测试时周围温度须在20±10℃,湿度控制在80%的范围内。 3.测试时用AC电源﹐须经电源稳压﹐电压值为额定电压值的±2%. 频率50HZ或60HZ.测试时用直流电源﹐须采用高稳定度且低内阻的直流电源供给器。 4.收音机额定输出功率大于1W时﹐标准输出为500MW﹐100MW至1W之间定为 50MW﹐100MW以下定为5MW。 5.各测试仪并联于负荷中﹐测试输出须接负载为准﹐耳机输出仅作参考。 6.AM的一般测试条件 (1)接收信号方式是环状天线(IRE LOOP ANT) (2)环状天线与接收机条状天线须垂直﹐且其中心相距60CM﹐因此信号发生器输出信号(RF)强度衰减26dB,为接收机天线处电场强度。 (3)调制度以调制频率为1000HZ作30%的调制。 7.FM的一般测试条件 (1)接收信号方式采用FM标准仿真天线 (2)连接调频天线须接地。 (3)调制频率为1KHZ﹐频偏为22.5KHZ. 8.以上为一般要求﹐客户有另外标准﹐则以客户要求为标准进行。 二.测试标准 1.收音机 AM部分 1频率范围﹕(Frequency Range) 在收音机基本达到温度稳定状态后﹐将收音机置AM波段位置﹐高频信号发生器调制度为30%,调制频率为400HZ﹐输出接环状天线﹐环状天线中心与被测机磁棒距离60CM﹐并互相垂直。将调谐指针调到最低端﹐调高频信号发生器的频率﹐使收音机达到音频输出最大调谐状态﹐信号输入电平为标准限噪灵敏度电平﹐调节音量控制器﹐使收音机的输出为标准输出﹐此时RF信号的频率就是收音机的低端频率。将收音机调谐指针调到最高端﹐调RF信号的频率﹐使收音机达到音频输出最大调谐状态﹐此时RF信号的频率就是收音机的高端频率。 2.最大灵敏度(Maximum Sensitivity) 此指的是收音机所有控制装置均放在最大放大位置﹐达到标准功率输出时﹐所需要的最小输入信号电平即为最大灵敏度。在AM测试条件下﹐中波选600KHZ﹑1000KHZ ﹑1400KHZ作为优选测试频率点。音量调节器最大﹐改变RF信号强度﹐使收音

收音机重要指标及测试方法

收錄機的基本測試方法 一、AM的各項重要指標的定義、標準及具體測試方法。 1﹑FREQUENCY RANGE(頻率覆蓋範): A﹑定義:指收音機所能接收頻率的範圍。 B﹑方法:頻率1KHZ,調製度30%,音量輸出標稱電壓,EQ中間。 a)、首先將PVC調到最低端,然後調整高頻信號發生器頻率使信號接收波形最大。失真度最小,此時 的頻率爲最低端頻率。 b)、將PVC調至最高端,照a)方法得到最高端頻率,二者之間的範圍即爲頻率覆蓋範圍。 2、MAXIMUM SENSITIVITY 最大靈敏度: 定義:指收音機在最大音量時,輸出信號強度達到標稱功率時的輸入信號強度。 條件:音量最大(EQ在中間):頻率1KHZ,調製度:30% 方法:首先調到所測點輸出最大,波形最正,失真最小,改變高頻發生器的輸出電平,使收音機輸出的信號在標稱電壓,這時侯信號發生器的電平即爲最大靈敏度。主要測600KHZ、1000KHZ、1400KHZ 三點信號 3、SENSITIVITY 20dB S/N(限噪靈敏度) a)、定義:保證有20dB的信噪比的條件下,所具備達到標稱輸出的接收,即20dB S/N限噪靈敏度。 b)、條件:音量標準輸出(EQ中間)。信號適中,頻率1KHZ,調製度30%。 d)﹑首先調到所測點輸出最大,豪伏表指針打在標稱電壓位置,然後去調製(MOD),再將豪伏表退兩 擋,使豪伏表指針與在有信號輸出時重合。這時高頻信號發生器輸出的電平即為20dB限噪靈敏度。如果指針不重合,這時可增加或降低高頻信號發生器電平,有時要反復多次調整信號發生器電平和音量大小。直致使豪伏表指針與在有信號輸出時重合。 注:必須保持接收信號失真最小,波形最正。分別測600KHZ、1000KHZ、1400KHZ三個點 4、IF REJECTION(中頻抑制比) 條件:音量標準輸出,頻率1KHZ,調製度30%。 a)、先測出600KHZ頻點的20dB限噪靈敏度。 b)、不用改變收音機頻率,將高頻信號發生器信號的600KHZ改變爲455/465KHZ,然後增加高頻信號 發生器的電平,直至使收音機輸出重新達到標準輸出,(偏調455/465KHZ中頻率接收波形最大,最正),此時將高頻信號發生器的電平減去20dB S/N靈敏度時的電平即是中頻抑制。 5、IMAGE REFECTION(鏡像抑制比) 條件:音量標準輸出,頻率1KHZ,調製度30%。 方法: a)、先測出1400KHZ的20dB限噪靈敏度。 b)、再將高頻信號發生器的信號改爲:1400KHZ+2×IF(例IF 455KHZ)=2310KHZ,然後增加高頻信 號發生器的電平使之達到標準輸出,此時將高頻信號發生器的電平減去20dB限噪靈敏度時的電平即爲鏡像抑制。 6、6dB BANDWIDTH(-6dB 帶寬) A﹑定義:收音機接收頻點信號變化6dB所具有的,即“頻寬”。

收音机测试方法

收音机测试方法 1.适用范围: 此测试方法适用于朝日牌子的,接收频率为150KHz-30MHz范围,长波(LW)、中波(MW)、短波(SW)、等波段的调幅收音机,为了性能的比较,作为标准测试方法。 2.有关测试的一般规定: (1)电压值和电流值,在测试中以有效值(RMS)表示电压值、电流值。 (2)电平表示方法:电功率、电压及电场强度用电平分贝0(dB) 表示的时候参考照下表: 表1 (3)标准假负载: 使用等于扬声器标准阻抗值的电阻作标准假负载,假负载的误差为±5%。 (4)标准实验状态 充分屏蔽外部电场,密封室温度20℃、湿度65%。没有特别指定的时候在温度10°C-35°C,湿度45-85%的状态下进行有关测试比较好,有音质调整开关的机子开关需调至 机子音频特性为平坦状态下测试。 (5)电源:(AC/DC式、DC式、AC式)接收机分三种情形考虑使用测试的电源:A.只有一种AC式电源机子时,使用机子上标称标准电源、电压及工频作为测试用电源。 有二种以上AC式电源的机子,可以使用任意使用一种机子标称的电源作为测试电源。 B.只有DC式电源的机子,使用该DC电压值作为测试电源,电源波动在±2%内。 C.A C/DC两用的机子,若没有特别指定可以使用DC来测试,但是使用AC与DC测试S/N、输出功率,交流声寄生调制的数值相差大时,需要使用AC电源测试。 (6)准调制度及调制信号: 没有特别指定的时候使用范围30%调制度,400Hz音频调制信号。 (7)标准输出功率: 一般情况下,机子的10%THD最大输出功率为5W以下时,使用50mW作为标准为标准输出功率,5W以上时,用500mW作为标准输出功率(规格书有标准功率则用规格

相关文档