文档库 最新最全的文档下载
当前位置:文档库 › 混流式水轮机电站运行稳定性与装机容量选择的探讨

混流式水轮机电站运行稳定性与装机容量选择的探讨

混流式水轮机电站运行稳定性与装机容量选择的探讨
混流式水轮机电站运行稳定性与装机容量选择的探讨

混流式水轮机电站运行稳定性与装机容量选择的探讨

混流式水轮机;稳定性;装机容量;水电站

摘要:当前电力系统希望水电站能以较高的保证率发足装机容量,也就是要求较低的额定水头;但从混流式水轮机稳定的要求出发,希望额定水头、设计水头都不能低于Hmax/1.1,怎样才能既满足电力系统的要求又能使水轮机稳定运行呢。建议采取提高额定水头,增加机组台数或加大单机容量的方式来协调解决。

混流式水轮机运行存在的不稳定现象是其本身的固有特性,早期由于水轮机的容量较小,转轮直径相对较小,不稳定现象尚不突出,一般采取避开不稳定区运行来解决。近10多年来,随着岩滩、五强溪、小浪底等大容量、大直径水轮机,以及世界上已在运行的水头变幅大的大型混流式水电机组的相继投产,都程度不同的存在水力振动大和转轮叶片出现裂纹问题,只能避开振动区运行或停机检修,给电站造成巨大的经济损失。

混流式水轮机运行不稳定性的程度与其运行水头偏离设计水头(效率最高的水头)的幅度有关,幅度越大,振动也越大。额定水头(发足额定出力的最低水头)既关系着电站的装机容量又关系着电站在电力系统中应承担的预想出力(在一定水头下),在确定的装机容量下(即一定的额定出力下),额定水头高了,预想出力会减小(受阻容量增大),额定水头低了,预想出力会增大(受阻容量减小)。从机组运行稳定性出发,额定水头应适当提高,靠近设计水头,预想出力必然减少;相反从保证电站的预想出力出发,额定水头要适当降低,增大预想出力,从而出现了稳定性与预想出力之间的矛盾,核心是解决好额定水头的选定及其随之引发的问题。

1 额定水头选择对运行稳定性的影响

不少水电站,由于各种原因,额定水头定得较低,如为了在洪水期泄洪,降低水位运行时多发电,或为了减少受阻容量,要求在尽可能多的时间里发足额定出力等。

由于混流式水轮机固有因水头、出力的变化对其效率、空蚀、稳定性等会产生一定影响的特性,特别是随着一些大型水轮机的投运,水轮机的稳定性问题日益暴露出来,在水轮机能量、空化、稳定三大性能中,运行稳定性占有更为重要的地位,因为不能稳定运行的机组,再高的能量指标也是无法体现的。由于稳定性差,水轮机往往在远未发生空蚀损坏之前就会因压力脉动等不稳定因素导致叶片开裂,止漏环脱落,尾水管里衬漏水,轴承支持件松动等现象,严重时甚至无法并入电网运行,的确有“稳定是压倒一切的”感觉,因此,当今许多大型混流式水轮机的选择都把稳定性放在首位。

根据大多数混流式水轮机运行情况统计,其运行不稳定现象主要发生在大约1.1倍设计水头H0以上的水头和小于大约0.85倍最优流量Q0(效率最高的流量)的出力。根据混流式水轮机运行特性要求,其设计水头H0最好不低于Hmax/1.1,额定水头Hr最好不低于Hmax/1.155,这样高的设计水头必然影响电站在较低水头时的发电效益,而这样高的额定水头又直接增加了电站的受阻容量,影响系统的电力电量平衡。

对于要留出较大防洪库容的水电工程总是在低水头时泄洪,提高额定水头后低水头泄洪时的出力必然减少,从而使年电量减少,丢失了季节性电能,出现了一面泄洪,一面又发不出装机容量的现象,使稳定和效益形成了尖锐的矛盾。

2 提高运行稳定性的措施

大型水轮发电机组常常需在电力系统中承担调频调峰任务,要求有较好的稳定性,但国内外许多大型水轮机都程度不同的存在稳定问题,虽然表现形式各不相同,但就水力因素而言,大致有以下一些共同的特点:

(1)水头变幅小的水电站机组运行较稳定。我国水电站的最大水头和最小水头之比除个别水电站较小(盐锅峡水电站为1.07,天生桥二级水电站为1.17)外,绝大多数的水电站均在1.4以上,有的高达1.85(三峡水电站),甚至超过2(岩滩水电站为2.086,丹江口水电站为2.26,潘家口水电站为2.36),因此对我国水电站水轮机参数的选择应格外重视稳定问题。

(2)水轮机在无涡区运行。实际运行反映,水轮机在最优工况点和无涡区运行,一般都是很稳定的,因此,水轮机的参数应按使重要的运行区和经常的运行区处于最优工况点和无涡区的要求来选择。

(3)稳定运行的水头范围。对大多数电站的统计和分析表明,当运行水头H 在水轮机设计水头H 0的下述范围内是比较稳定的:(0.6~0.65)H0≤H≤(1.1~1.15)H0,运行水头H偏离H0越小越稳定。过低的水头会引起叶片进口边正面

脱流空化涡带,过高的水头会引起叶片进口边背面脱流空化涡带和叶道涡,后者更为严重,因此对于巨型水轮机的运行水头H最好不超过1.1 H0,即Hmax≤1.1 H0。

(4)合理的运行范围。根据国内外许多学者的研究分析以及模型试验和原型观察发现,在最优流量

为最优单位流量)的82%附近会出现高部分负荷水压脉动(即特殊水压脉动)最大值(水力设计得好也可能不明显),73%附近会出现叶道涡,60%附近会出现尾水管涡带的最大值。当然各种压力脉动的强度、位置以及分布状况,不同的水轮机是不完全相同的。并和转轮的水力设计有关,以上只是一般的规律。值得注意的是:在大流量区出现叶片进口边正面脱流空化涡带和较强的尾水管涡带是在常规的水轮机出力限制线以外,因此我们应该把水轮机的主要运行区安排在(Q′1r 为水轮机额定单位流量)范围之内。

(5)水轮机额定水头大于或等于设计水头。为了使水轮机在最高水头运行时有尽可能大的稳定出力调整范围,最好使水轮机额定水头Hr≥H0,至少1.05

Hr≥H0。

(6)水轮机的水力稳定与吸出高度有关。吸出高度小(即安装高程低)运行较稳定,应通过模型试验获得合适的电站空化系数范围,以避开过大的压力脉动。

(7)带副叶片的转轮对水轮机稳定有利,x型叶片对稳定也有些作用,但D2/D1不宜大,一般宜小于1。

(8)轴心补气能降低涡带压力脉动,但补气量、补气位置、补气阀及补气系统要设

(9)适当增加尾水管高度h(例如h≥3 D1),能降低压力脉动的影响。

(10)避开振动区。运行中避开振动区,采用计算机按水轮机稳定运行特性分配负荷,可使机组经常在稳定区运行。

(11)避免共振。在水电站设计中,注意使机组、厂房、引水系统的自振频率远离各种水压脉动的频率,避免共振。

(12)提高水轮机顶盖、座环、主轴等主要部件的刚度、强度。

(13)提高机组制造、安装质量,消除机械、电气振动因素,改善转轮结构,降低疲劳应力。

转轮的水力设计是水轮机运行稳定的关键,应该针对每个大型水电站的水力条件进行转轮的水力设计,不仅要求水力效率高,更要求高效区要宽;限制工况单位流量

之比宜大于1.25,最好达1.4或更大;无涡区要宽,压力脉动值要低,叶片进口边正、背面脱流空化涡带及叶道涡限制线形成的包围区要宽。要全面达到这些要求是很难的,只能根据水电站的特点去要求。

3 选择好设计水头和额定水头

在水电站设计阶段正确选择H0、Hr是水轮机稳定性工作的第一步,也是打基础的一步。过去为了获得更高的效益,都要求水轮机设计水头H0等于电站的电能加权平均水头,近年来则是根据电能加权因子计算出最高的电能加权平均效率,以确定水轮机的工作位置和设计水头。从稳定性的要求出发应取H0=Hmax /(1.1~1.15),对于转轮直径超过6 m的水轮机应更严格些,希望H0=Hmax/1.1,而额定水头Hr最好等于或大于H0,至少不小于H0/1.05,这实际上要求额定水头应大于0.86 Hmax,这必然和电站的发电效益发生矛盾。对于泄洪水位较低的电站,提高额定水头就减少了年电量,对于泄洪水位较高的大水库电站,虽不一定会减少年电量,但增加了电站枯水期的受阻容量,减少了机组的调峰能力,如果用补充火电装机容量和火电电量来满足系统的电力电量平衡将是很不经济的。

4 提高额水头与容量受阻问题

怎样才能妥善的解决机组稳定和容量受阻或发电量减少的矛盾呢我们认为,在提高额定水头的同时增加装机容量将是值得研究采纳的办法。方法之一是单机容量不变,额定水头提高,增加机组台数,并使在原额定水头下的机组总出力基本等于原装机容量,这样,改变后的机组尺寸、重量变小,设计、制造、运输、安装难度有所降低,但台数增加,工程量要增加,投资亦有所增加。这方案机组台数增加不多,总体布置上的困难不会太大,对于额定水头增加较多的电站比较适用。方法之二是随着额定水头的提高,增大单机容量,台数不变,装机容量也随之增加,并使在原额定水头下的单机出力仍等于原额定出力。这样改变后的水轮机尺寸、重量增加不多,发电机尺寸、重量会有明显增加,总的设计、制造、运输、安装的难度会有所增加,由于台数不变,工程量增加不多,投资增加也较少,这方案对于机组容量、尺寸增加不算很大,技术上比较有把握,对于额定水头增加不多的电站比较适用。这两种方法的共同特点都是增加装机容量,在原额定水头下的电站总出力基本不变,超过原额定水头时,电站的总出力将增加,从而提高了电站的调峰能力,对于在高水位下泄洪的电站还能增加年电量,无疑都增加了电站的效益,也都增加了投资,但这比补充火电装机容量和火电电量需要的费用便宜得多。

5 设计实例

以某水电站为例,该电站是一座水头高、水头变幅大(87 m),在系统中担负调频、调峰和事故备用的电站。该水电站原可行性研究成果为:最大水头251 m,加权平均水头224.14 m,最小水头164 m,选用6台额定出力为700 MW的水轮发电机组,总装机容量4200 MW,水轮机的额定水头为204 m,额定转速为142.86 r/min。此成果能够满足在173.5 m水头下发出3 204 MW(即单机534 MW)预想出力的要求,但因额定水头偏离设计水头和最大水头较远,对水轮机稳定运行不利,为了兼顾二者,现将额定水头提高至228m(215/1.1-228 m),并对增加机组台数和增加单机容量的两种方法和原可行性研究成果比较如表1。

上述3个方案水轮机的比转速及有关参数是不同的,为了排除不同性能的模型对比较的影响,计算中采用同一个综合特性曲线,但

纵座标为[img]/scjs/UploadFiles_5017/200710/20071009170810274.jpg[/img],横座标为[img]/scjs/UploadFiles_5017/200710/20071009170810838.jpg[/img] 转轮的限制单位流量

[img]/scjs/UploadFiles_5017/200710/20071009170810510.jpg[/img]

和最优单位流量

[img]/scjs/UploadFiles_5017/200710/20071009170810302.jpg[/img]

之比均为1.3。水轮机稳定运行最小出力按流量

[img]/scjs/UploadFiles_5017/200710/20071009170810820.jpg[/img]

确定,最大出力根据水轮机出力限制线和发电机额定出力确定。

为了更直观,在综合特性曲线图上以阴影范围表示稳定运行区。图1为

Hr=204 m方案的稳定运行区(其中H>1.1 H0为246.6 m,即假想线以下范围能否稳定运行尚无把握),图2为Hr=228 m方案的稳定运行区。两图中阴影较深的范围对应的H为220~251m,约占全年60%的时间和65%的电量,是要求机组有良好调峰调频性能的主要运行范围,显然Hr=228 m的稳定范围比Hr=204 m 的大得多。

从表1可知,增加台数的方案,机组、厂房、引水系统的投资增加约2.2亿元,装机容量增至4900MW,技术难度有所降低,机组稳定范围增加,最高水头的稳定调节功率约175MW,比原方案77 MW增加2.27倍,预计能在164~251 m水头范围内稳定运行(原方案估计只能在164~246.6 m水头范围内稳定运行),但主厂房和进水口前沿长度增加20 m左右,布置上需进一步研究。增大单机容量的方案,机组、厂房、引水系统的投资增加约1.4亿元,装机容量增至5030MW,但机组的技术难度和运输难度均有所增加,需深入研究其可行性,机组稳定范围更有所增大,最高水头的稳定调节功率约210 MW,较原方案增加2.72倍,预计能在164~251m范围稳定运行,主厂房和进水口前沿长度不增加,布置上无困难。两种方法增加装机容量后电站的年利用小时仍在3800h以上,并不算低,发达国家水电站的年利用小时仅1000~2000h。

目前国内随着系统容量的增大,峰谷差不断增加,为了充分发挥水电机组调节性能好的特点,许多新老大型水电站,特别是有大库容的水电站都在增容扩机增大调峰容量和备用容量,据不完全统计,大型水电站增容情况如表2。

增容的单位千瓦投资平均约为2000元/kW,是比较便宜的,但发电多年后再扩机远比初建时就增容麻烦得多,也贵得多,如果在初建时就适当增加装机容量肯定投资少,工程处理简单,尤其是大型地下水电站更应增加容量,一次建成。

如果该水电站将额定水头提高到228 m,装机容量不变,机组稳定运行范围大了,但受阻容量增加695 MW,用火电装机补偿,需增加投资31.3亿元。因此采用提高额定水头增加装机容量的办法改善机组的稳定性,同时又能增加电站的调峰能力和备用容量,满足系统峰谷差日益增大的要求,投资增加很少,是很有利的

水电站复习题2014分析

第一章 一、填空题: 1.水电站生产电能的过程是有压水流通过水轮机,将转变为,水轮机又带动水轮发电机转动, 再将转变为。 2.和是构成水能的两个基本要素,是水电站动力特性的重要表征。 3.我国具有丰富的水能资源,理论蕴藏量为kW,技术开发量为kW。 4.水轮机是将转变为的动力设备。根据水能转换的特征,可将水轮机分为和 两大类。 5.反击式水轮机根据水流流经转轮的方式不同分为、、、几种。 6.反击式水轮机的主要过流部件(沿水流途经从进口到出口)有:,,, ,。 7.冲击式水轮机按射流冲击转轮的方式不同可分为、和三种。 8.混流式水轮机的转轮直径是指;轴流式水轮机的转轮直径是 指。 9.冲击式水轮机的主要过流部件有、、、。 10.水轮机的主要工作参数有、、、、等。 包括、、,其关系是。11.水轮机的总效率 12.水轮机工作过程中的能量损失主要包括、、三部分。 二、简答题 1.水力发电的特点是什么? 2.我国水能资源的特点? 3.反击式水轮机主要过流部件有哪些?各有何作用? 4.当水头H,流量Q不同时,为什么反击式水轮机转轮的外型不相同? 5.水轮机是根据什么分类的?分成哪些类型?。 6.反击式水轮机有哪几种?根据什么来区分? 7.冲击式水轮机有哪几种?根据什么来区分? 三、名词解释 1.HL240—LJ—250: 2.2CJ30—W—150/2×10: 3.设计水头: 4.水轮机出力: 5.水轮机效率: 6.最优工况: 7.水头: 8.转轮的标称直径

第二章 一、填空题 1.水轮机工作过程中的能量损失主要包括、、三部分。 2.根据水轮机汽蚀发生的条件和部位,汽蚀可分为:、、三种主要类型。3.气蚀现象产生的根本原因是水轮机中局部压力下降到以下. 4.水轮机的总效率 包括、、,其关系是。 5.立式水轮机的安装高程是指高程,卧式水轮机的安装高程是指。 6.水轮机的吸出高度是指转轮中到的垂直距离。 7.蜗壳根据材料可分为蜗壳和蜗壳两种。 8.金属蜗壳的断面形状为形,混凝土蜗壳的断面形状为形。 二、名词解释 1.汽化压力: 2.汽蚀现象: 3.水轮机安装高程: 4.吸出高度: 5.气蚀系数: 4.包角φ: 5.尾水管高度: 三、简答题 1.为什么高水头小流量电站一般采用金属蜗壳,低水头大流量电站采用混凝土蜗壳? 2.水轮机的尾水管有哪些作用? 3.蜗壳水力计算有哪些假定原则,各种计算方法的精度如何? 4.汽蚀有哪些危害? 5.防止和减轻汽蚀的措施一般有哪些? 6.水轮机安装高程确定的高低各有什么优缺点? 7.各类水轮机的安装高程如何确定?特别是要注意到哪些因素? 8.尾水管的作用、工作原理是什么?尾水管有哪几种类型? 四、计算 1.某水轮机采用金属蜗壳,最大包角为345○,水轮机设计流量Q○=10 m3/s,蜗壳进口断面平均流速v e=4m3/s,试计算蜗壳进口断面的断面半径ρe。 2.某水电站采用混流式水轮机,所在地海拔高程为450.00米,设计水头为100米时的汽蚀系数为0.22,汽蚀系数修正值为0.03,试计算设计水头下水轮机的最大吸出高度H S。

水电站主要参数选择

第11章水能计算及水电站主要参数选择 46.什么是水能计算,它的目的和任务是什么? 水能开发的主要方式是水力发电。水电是一种清洁的能源。 我国水能资源十分丰富,水能资源理论蕴藏量为6.8亿千瓦,可开发水能资源为3.8亿千瓦,居世界第1位。但目前我国水能资源开发利用程度还比较低,水能资源总开发利用率不足20%。从全国看,我国待开发的水能资源主要集中在西南和西北地区,同时小水电的开发也具有广阔的前景。 水电站的装机容量、出力和发电量等是水电站重要的指标。有关水电站出力、发电量和其他参数的计算称为水能计算。 在规划设计阶段,进行水能计算的目的主要是选择和水电站及其水库有关的参数,如水电站装机容量、正常蓄水位、死水位等。 在运行阶段,水电站的规模已经确定,进行水能计算的目的主要是为了确定水电站在电力系统中最有利的运行方案。 47.什么是电力系统,什么是电力系统负荷图? 在一个区域中,将各种发电站用输电线路联系起来统一向用电户供电称为电力系统。 电力系统的容量和发电量应满足国民经济各个部门的需要。电力系统的负荷是随时变化的。目前,电力还不能大规模地储存,故系统中各种电站的发电出力需按照负荷的变化而变化。电力系统负荷图即为反映电力系统负荷随时间变化的图线。 (1)电力系统日负荷图 文字教材中的图11.14为电力系统日负荷图及电能累计曲线。该图左边为日负荷图,其纵轴表示电力负荷(单位为万千瓦或者兆瓦),横轴表示时间(单位为小时)。电力系统日负荷图表示在一天之内负荷随时间变化的情况。按照负荷变化的情形,日负荷图可分为峰荷、腰荷、基荷三个区(如文字教材图11.13所示)。图11.14的右边为日电能累计曲线,它表示电力负荷与其相应的日电能的关系。不同负荷在日负荷图中对应的面积即为日电能,在图中以横坐标表示。

水轮机的选型设计说明

水轮机的选型设计 水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。 水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一:水轮机选型的内容,要求和所需资料 1:水轮机选择的内容 (1)确定单机容量及机组台数。 (2)确定机型和装置型式。 (3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。(4)绘制水轮机的运转综合特性曲线。 (5)估算水轮机的外形尺寸,重量及价格。 wertyp9 ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。 2.水轮机选择的基本要求 水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。 (1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。 (2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。 (3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。 (4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。 (5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。 (6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。 3.水轮机选型所需要的原始技术材料 水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料: (1)枢纽资料:包括河流的水能总体规划,流域的水文地质,水能开发方式,水库的调节性能,水利枢纽布置,电站类型及厂房条件,上下游综合利用的要求,工程的施工方式和规划等情况。还应包括严格分析与核准的水能基本参数,诸如电站的最大水头Hmax、最小水头Hmin,加权平均水头Ha,设计水头Hr,各种特征流量Qmin、Qmax、Qa,典型年(设计水平年,丰水年,枯水年)的水头、流量过程。此外还应有电站的总装机容量,保证出力以及水电站下游水位流量关系曲线。 (2)电力系统资料:包括电力系统负荷组成,设计水平年负荷图,典型日负荷

水电站(问答题版)

水电站复习思考题(1) 复习思考题(水轮机部分)(一) 1.水电站的功能是什么,有哪些主要类型? 2.水电站的装机容量如何计算? 3.水电站的主要参数有哪些(H、Q、N、N装、P设、N保),说明它们的含义? 4.我国水能资源的特点是什么? 5.水力发电有什么优越性? 复习思考题(水轮机部分)(二) 1.水轮机是如何分为两大类的?组成反击式水轮机的四大部件 是什么? 水轮机根据转轮内的水流运动和转轮转换水能形式的不同可分为反击式和冲击式水轮机两大类。 组成反击式水轮机的四大部件是:引水部件、导水部件、工作部件、泄水部件 2.反击式和冲击式水轮机各是如何调节流量的? 反击式水轮机:水流在转轮空间曲面形叶片的约束下,连续不断地改变流速的大小和方向。 冲击式水轮机:轮叶的约束下发生流速的大小和方向的改变,将其大部分的动能传递给轮叶,驱动转轮旋转。

3.什么是同步转速,同步转速与发电机的磁极对数有什么关系?尾水管的作用是什么? 同步转速:电机转子转速与定子的旋转磁场转速相同(同步)。同步转速与发电机的磁极对数无关。 尾水管的作用:①将通过水轮机的水流泄向下游;②转轮装置在下游水位之上时,能利用转轮出口与下游水位之间的势能H2;③回收利用转轮出口的大部分动能 4.水轮机的型号如何规定?效率怎样计算? 根据我国“水轮机型号编制规则”规定,水轮机的型号由三部分组成,每一部分用短横线“—”隔开。第一部分由汉语拼音字母与阿拉伯数字组成,其中拼音字母表示水轮机型式。第二部分由两个汉语拼音字母组成,分别表示水轮机主轴布置形式和引水室的特征;第三部分为水轮机转轮的标称直径以及其它必要的数据。 水轮机的效率:水轮机出力(输出功率)与水流出力(输入功率)之比。?=P/Pw 5.什么是比转速? n s 表示当工作水头H=1m、发出功率N=1kw时,水轮机所具有的转速n称为水轮机的比转速。

《水电站》考试选择题

1.下列四组水轮机属于反击式水轮机的是( ) (A)斜击式、双击式;(B)斜流式、贯流式;(C)混流式、水斗式;(D)斜流式、斜击式。答:B 2.当水电站压力管道的管径较大、水头不高时,通常采用的主阀是( )。 (A)蝴蝶阀;(B)闸阀;(C)球阀;(D其它。 答:A 3.有压进水口事故闸门的工作条件是( )。 (A)动水中关闭,动水中开启;(B)动水中关闭,静水中开启; (C)静水中关闭,动水中开启;(D)静水中关闭,静水中开启。 答:B 4?拦污栅在立面上常布置成倾斜的进水口型式是( )。 (A)塔式和坝式;(B)隧洞式和坝式;(C)压力墙式和塔式;(D)隧洞式和压力墙式。答:D 5 ?选择水电站压力前池的位置时,应特别注意( )。 (A)地基稳定和排污排沙;(B)地基渗漏和水头损失; (C)地基稳定和地基渗漏;(D)排污排沙和水头损失 答:C 6 ?反击式水轮机的主要空化形式为( )。 (A)翼型空化;(B)间隙空化;(C)空腔空化;(D)局部空化。 答:C 7 ?为避免明钢管管壁在环境温度变化及支座不均匀沉陷时产生过大的应力及位移,常在镇 墩的下游侧设置( )。 (A)支承环;(B)伸缩节;(C)加劲环;(D)支墩。 答:B &当压力水管发生直接水锤时,只有在阀门处产生最大水锤压强的关闭时间应为:( ) (A)Ts=O ;(B)L/a2L/a ;(D)Ts=2L/a 。 答:D 9?在水头和功率相同的条件下,要使机组转速愈高,机组尺寸较小,厂房尺寸减小,降低电站投资,则机组的比转速应选择( )。 (A)愈小;(B)愈大;(C)不变值;(D)任意值。 答:B 10.求引水调压室最高涌波水位时,上游库水位取( )。 (A)最高水位;(B)设计水位;(C)正常蓄水位;(D)死水位。 答:C 11 ?阀门瞬时全部关闭,在第一状态产生的波为(

水电站装机容量

题目:《无调节水电站装机容量的选择》 第一章设计水电站的开发任务及设计要求 (1) 1.1 自然条件 (1) 1.1.1 流域概况 (1) 1.1.2 水文气象条件 (1) 1.2 工程地质 (1) 1.3 设计要求 (1) 第二章基本资料及数据 (2) 2.1基本资料和数据 (2) 2.1.1电力系统负荷资料及有火电站的资料: (2) 2.2某径流式水电站的基本情况 (3) 2.3电力系统有关经济资料 (3) 第三章径流调节与水能计算 (4) 3.1 月平均出力及发电量的计算 (4) 3.2 保证出力的计算 (6) 第四章保证出力的确定 (8) 4.1 海森格纸的绘制 (8) 4.2 绘制经验频率曲线 (10) 4.3 绘制P-Ⅲ曲线 (11) 4.4 统计参数对理论频率曲线形状的影响 (12) 4.5 相关分析 (13) 第五章装机容量选择 (14) 5.1 最大工作容量的确定 (14) 5.1.1 水电站的最大工作容量 (14) 5.1.2 火电站的最大工作容量 (14) 5.2 备用容量与重复容量的选择 (14) 5.2.1 备用容量 (14) 5.2.2 重复容量 (15) 第六章电力电能平衡分析 (17) 6.1 电力电量的平衡分析: (17) 6.2 电力电能平衡图的绘制 (18) 第七章水电站多年平均年发电量 (20)

第一章设计水电站的开发任务及设计要求 1.1 自然条件 1.1.1 流域概况 该水电站位于河流中,河流全长较长,流域面积较大。流域面积内气候温和湿润,山脉多呈东西走向,地势东、西、北高,中南部低,海拨高程不高,属于深切割中山地貌。 该河道属峡谷型河道,弯曲多,坡度大。控制流域面积大,总库容可到12.52亿立方米,为无调节水电站。 该水电站为无调节水电站,河流较长,流域面积大,年最大负荷可达到90万kW,因此可以建设水电站充分利用水资源发电,也同时可用于农业灌溉等方面,建设水电站可以提高整个地区的综合效益。 1.1.2 水文气象条件 该流域属于亚热带暖湿季风区。受山脉影响,流域内气候温和湿润。根据气象站资料统计,多年平均气温15.6℃,气温随地面高程变化较大。流域内雨量较多,多年平均降雨量可达1524.0mm。每年3月到7月为雨季,降雨量占年降雨量的绝大部分。 1.2 工程地质 水电站所在的库区内地形切割强烈,地形较陡,库岸山体雄厚,山坡布局岩体完整性差,抗风化能力弱。 两岸山体雄厚,地层走向与河流走向夹角较大,同时岩石透水性较差,渗漏量较小。水库库岸即为现在河谷两岸山体,稳定性较好,局部地段会发生坍岸,但规模小,对工程施工、运行及环境地质影响较小。 水电站的建设是为了充分利用我国的水能资源。要注意以下几点: (1)要符合当地的地形地质条件,水文条件,考虑具体的经济条件。 (2)考虑建设水电站的经济性和可行性。 (3)建设的水电站主要任务是发电,同时考虑其他的效益,达到水电站的综合效益最大。 (4)水电站的效益计算必须与电力系统负荷预测、电源规划、电力平衡等工作联系起来,根据电力系统拟建水电站的原则,比较电力系统整体效果的变化,对水电站效益进行经济评价。 1.3 设计要求 毕业设计是本科四年中的一个重要环节。毕业设计虽然不能涵盖这四年中的全部学科内容,但是是对某一类课程的系统总结,是综合检验学习成果和应用能力的手段。在设计中,要深入理解相关知识,总结相关学科内容,关注设计的每一个环节对整个设计的影响。 《某水电站水库水文水能规划设计》的设计要求如下: 1)熟悉已知资料,查找相关规范,复习所学课程。 2)熟练掌握Excel的操作,学以致用。 3)掌握无调节保证出力的计算,熟练掌握有关公式及参数。 4)掌握无调节水电站保证电能的计算。 5)掌握无调节水电站最大工作容量的选择,了解火电站最大装机容量的选择,并根据实际情况及规范 选择备用容量及重复容量。

水轮机课程设计

目录 第一章基本资料 (1) 第二章机组台数与单机容量的选择 (2) 第三章水轮机主要参数的选择与计算 (5) 第四章水轮机运转特性曲线的绘制 (10) 第五章蜗壳设计 (13) 第六章尾水管设计 (17) 第七章心得体会 (20) 参考文献 (20) 第一章基本资料 基本设计资料 黄河B水电站是紧接L水电站尾水的黄河上游的一个梯级水电站。水库正常蓄水位2452 m,电站总装机容量4200 MW,额定水头205 m。 经水能分析,该电站有关动能指标如表1所示: 表1 动能指标 第二章机组台数与单机容量的选择 水电站的装机容量等于机组台数和单机容量的乘积。根据已确定的装机容量,就可以拟定可能的机组台数方案,选择机组台数与单机容量时应遵循如下原则: 机组台数与工程建设费用的关系 在水电站的装机容量基本已经定下来的情况下,机组台数增多,单机容量减小。通常小机组单位千瓦耗材多、造价高,相应的主阀、调速器、附属设备及电气设备的套数增加,投资亦增加,整体设备费用高。另外,机组台数多,厂房所占的平面尺寸也会增大。一般情况下,台数多对成本和投资不利。因此,较少的机组台数有利于降低工程建设费用

机组台数与设备制造、运输、安装以及枢纽安装布置的关系 单机容量大,可能会在制造、安装和运输方面增加一定的难度。然而,有些大型或特大型水电站,由于受枢纽平面尺寸的限制,总希望单机容量制造得大些。 机组台数对水电站运行效率的影响 水轮机在额定出力或者接近额定出力时,运行效率较高。机组台数不同,水电站平均效率也不同。机组台数较少,平均效率越低。机组台数多,可以灵活改变机组运行方式,调整机组负荷,避开低效率区运行,以是电站保持较高的平均效率。但机组台数多到一定程度,再增加台数对水电站运行效率增加的效果就不显着。当水电站在电力系统中担任基荷工作时,引用流量较固定,选择机组台数较少,可使水轮机在较长时间内以最大工况运行,使水电站保持较高的平均效率。当水电站担任系统尖峰负荷并且程度调频任务时,由于负荷经常变动,而且幅度较大,为使每台机组都可以在高效率区工作,则需要更多的机组台数。 另外,机组类型不同,高效率范围大小也不同,台数对电厂平均效率的影响就不同。对于高效率工作区较窄的,机组台数应适当多一些。轴流转浆式水轮机,由于单机的效率曲线平缓且高效区宽,台数多少对电厂的平均效率影响不明显;而混流式、轴流定浆式水轮机其效率曲线较陡,当出力变化时,效率变化较剧烈,适当增加台数可明显改善电厂运行的平均效率。 机组台数与水电站运行维护的关系 机组台数多,单机容量小,水电站运行方式较灵活机动,机组发生事故停机产生的影响小,单机轮换检修易于安排,难度也小。但台数多,机组开、停机操作频繁,操作运行次数随之增多,发生事故的几率也随之增高,对全厂检修很麻烦。同时,管理人员多,维护耗材多,运行费用也相应提高。故不能用过多的机组台数。 机组台数与其他因素的关系 对于区域电网的单机:装机容量较小≯15%系统最大负荷(不为主导电站);装机容量较大≯10%系统容量(系统事故备用容量),因而,单机容量与台数选取不受限制。 根据设计规范要求,机组单机容量应以水轮机单机运行时其出力在机组的稳定运行区域范围内确定为原则。不同型式的水轮机的稳定运行负荷区域如表1。 表2 不同型式的水轮机的稳定运行负荷区域

(完整word版)水轮机结构

水轮机结构 一、简介 (一)、简介水轮机是水电厂将水轮转换为机械能的重要设备。 1、按能量方式转换的不同,它可分为反击式和冲击式两类。反击型利用水 流的压能和动能,冲击型利用水流动能。 2、反击式中又分为混流、轴流、斜流和贯流四种; 3、冲击式中又分为水斗、斜击和双击式三种。 1)、混流式:水流从四周沿径向进入转轮,近似轴向流出应用水头范围:30m~700m 特点:结构简单、运行稳定且效率高 2)、轴流式水流在导叶与转轮之间由径向运动转变为轴向流动应用水头:3~80m 特点:适用于中低水头,大流量水电站分类:轴流定桨、轴流转桨 3)、冲击式 转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已经转变为高速射流,冲击转轮叶片作功。 水头范围:300~1700m 适用于高水头,小流量机组。 (二)、水轮机主要类型归类 二、水轮机主要基本参数 1、水轮机主要基本参数

水头:Hg、H、Hmax、Hmin、Hr (设计水头) 流量:Q 转速:f=np/60 出力:N=9.81QH n(Kw) 效率:n 2、水轮机型式代号 混流式:HL 斜流式:XL 轴流转桨式:ZZ 轴流定桨式:ZD 冲击(水斗式):CJ 双击式:SJ 斜击式:XJ 贯流转桨式:GZ 贯流定桨式:GD 对于可逆式,在其代号后增加N 3、混流式水轮机 型号:HL100—LJ—210 HL :代表混流式水轮机 100:转轮型号(也称比转速) LJ:立式金属蜗壳 210:转轮直径(210 厘米)

4、轴流式水轮机 ZZ560—LH —1130 ZZ:轴流转桨式水轮机 560:转轮型号 LH :立式混凝土蜗壳1130:表示转轮直径为1130 厘米 5、冲击式水轮机 CJ47—W—170/2X15.0 CJ:冲击式 W :卧轴 170:转轮直径170cm 2: 2 个喷嘴 15.0:射流直径三、水轮机主要部件(一)、组成 引水部件、导水部件、工作部件、泄水部件 1、引水部件 组成:引水室(蜗壳)、座环作用:以较小的水力损失把水流均匀地、对称地引入导水部件,并在进入导叶前形成一定的环量。 2、导水部件 组成:导叶及其操作机构、顶盖、底环 作用:调节进入转轮的流量和形成转轮所需的环量 3、工作部件

水斗式水轮机选型实例

水斗式水轮机选型实例 水斗式水轮机选型实例(20080710修改) 2006年曾经写过一篇,方法不再累述,这次的就修改一下,简要说说这2年半来选型的趋势,与时俱进吧。 首先更改一下以前的实例5,最后的型号居然是186/4*12.5.,不好意思,东电哈电的业绩确实太难得到了。 下面是摘抄的各个水斗式生产厂家近2年比较典型的对外宣传业绩: 总的说来具有一下趋势: 1、A475被广泛的应用,基本在600米以下开始取代A237了。横比各个厂家的业绩看出A475成了首选,看来A475比A237的优势被广泛认同。 2、在600~800米水头出现了A870,有几个电站的实例了。 3、在1000米水头段出现了105,有5个以上电站的实例运行了。 4、出现了一些新的型线代号,很多是国外进口转轮的代号。如 A1085 244 520 K001 DF01 T5317 等(新型号有些是厂家自己取的名字,真实性不敢肯定) 5、选型出现了追求价格不计性能的趋势。这个不支持。比如325米 4250千瓦选择105/2*12.5 ;210米2500千瓦选择100/2*12 ;370米4000千瓦110/2*10等等。这样选型都不出问题,什么才会出问题呢,大厂都这样了,小厂是一直都有这种趋势。这2年来钢材上涨的价格吓人,而厂家也在增多,行业价不升反降,分蛋糕的越来越多,所以技术含量不高的厂家报的价格基本都是白菜价了~~~大厂也开始饥不择食了,小机器一样也做。 6、单位转速普遍在39.5~41之间。至于原因上文说到的新的理论已经出版了,名字是《水斗式水轮机基础理论与设计》,书里面有说明。至于485米60MW 选217.2/6*18.1有点太偏颇了。

论混流式水轮机各部件功能及其安装程序和要求

论混流式水轮机各部件功能及其安装程序和要求 导叶:由导叶体和导叶轴两部分组成。为减轻导叶重量,常做成中空导叶。导叶的断面形状为翼型。导叶轴颈通常比连接处的导叶体厚度大,在连接处采用均匀圆滑过渡形状,以避免应力集中。 导叶轴承:上、中、下轴套,高水头机组为防止导叶上浮力超过导叶自重,保证导叶上端面间隙,在导叶套筒的法兰上一般设有止推装置(止推压板或止推块)。 导叶传动机构:导叶传动机构由控制环、连杆、导叶臂三部分组成,用于传递接力器操作力矩,使导叶转动,调节水轮机流量。该机构形式有叉头式受力情况较好和耳柄式受力情况相对较差。导水叶外围,座环的蝶形边与蜗壳相连,并被蜗壳包围。导轴承位于顶盖上,控制环口通过推拉环与接力器相连。在座环下发布置有基础环,通过锥形环与尾水管相连。混流式水轮机附属装置还有布置在顶盖上的真空破坏阀、吸力补气阀和放水阀等。 水轮机的导水机构是有导叶、传动机构(转臂、连杆、控制环)、接力器、和推拉杆等组成。 水轮机的底环是由上环、下环、和固定导叶三部分组成,它既是水轮机的通水部件,机组安装时的基准部件,又是机组运行的承重部件。要求具有水力损失小,具有一定的强度和刚度。 混流式水轮机的转轮主要由上冠、叶片、下环、止漏环、泄水锥和减

压装置等组成。 水轮机的转轮包括转体、叶片、泄水锥等。 立轴混流式水轮机引水室采用金属焊接蜗壳,其进口与压力水管相连接,其余各节与座环相连。为了便与检修,在蜗壳上开有专门进人孔(蜗壳人孔门),其底部并有排水孔和阀门,以便排出蜗壳积水。 座环位于蜗壳里,布置导水机构,它是水轮机的承重部分,又是过流部件在安装时它还是一个主要基准件,因此它要符合水力,强度和刚强等诸方面的要求。 基础环埋在混凝土内,是转轮室的组成部分,早机组安装和检修拆卸转轮时,用来支撑水轮机转轮。混流式转轮上叶片(24),呈空间扭曲状,断面为流线型,是直接将谁能转换为机械能的最主要部件。止漏装置 止漏装置的作用是用来减小转动部分与固定部分之间的漏水损失。止漏装置分为固定部分和转动部分,为防止水流向上和向下漏出,水轮机上一般装有上、下两道止漏环。上止漏环固定部分装在顶盖上,其转动部分装在上冠上,下止漏环的固定部分一般装在底环上,转动部分装在转轮的下环上。目前广泛采用的止漏环结构型式有间隙式,迷宫式,梳齿式和阶梯式四种,止漏环又称迷宫环,作用是阻止水流从转轮上、下间隙处漏出,分转动和固定部分。 水轮机导轴承的作用:一是承受机组在各种工况下运行时由主轴传来

水轮机型号选择

水轮机型号选择 根据水电站的水头变化范围36.0m~38.0m,在水轮机洗力型谱表3-3,表3-4中查出适合的机型有HL240和ZZ440两种,现将这两种水轮机作为初选方案,分别求出有关参数,并进行比较分析。 一)HL240型水轮机方案的主要参数选择 1).转轮直径D1计算 查表3-6和图3-12可得HL240型水轮机在限制工况下的单位流量 Q '1 = 1.24 s m 3 效率m η =92%,由此可初步假定原型水轮机在该工况 下的单位流量Q '1=Q M '1=1.24s m 3 上述的 Q '1,η和额定出力r N =kw kw N gr gr 40816% 984==万η r H =36m 1D = η 2\3181.9Hr Q Nr '= 92 .03624.181.940816 2 \3??=4.109 m 选用与之接近而偏大的标称直径 D1=4.5m 2) 转速n 计算 查表3-4可得HL240型水轮机在最优工况下单位转速 M n 10 '=72min r ,初步假定10n '=M n 10'将已知的10n '和加权平均水头av H =36m, 1D =4.2m 代入 n= 965 .4367211 =?='D H n min r 故选用与之接近而偏大的用步转速n=100min r 3) 效率及单位参数修正 查表3-6可得HL240型水轮机在最优工况下的模型最高效率为 M m a x η=92% 模型转轮直径为M D 1=0.46m 根据式(3-14) ,求得原型效率 %9.945 .446.0)92.01(1)1(155 11max max =--=--=D D M M ηη则效率修正值为 %9.2%92%9.94max max =-=-=?M ηηη 考

水电站设计方案

坝后式水电站毕业设计 5.1 设计内容 5.1.1 基本内容 5.1.1.1 枢纽布置 (1) 依据水能规划设计成果和规范确定工程等级及主要建筑物的级别; (2) 依据给定的地形、地质、水文及施工方面的资料,论证坝轴线位置,进行坝型选择; (3) 论证厂房型式及位置; (4) 进行水库枢纽建筑物的布置(各主要建筑物的相对位置及形式,划分坝段),并绘制枢纽布置图。 5.1.1.2 水轮发电机组选择 (1) 选择机组台数、单机容量及水轮机型号; (2) 确定水轮机的尺寸(包括水轮机标称直径D1、转速n、吸出高度Hs、安装高程Za); (3) 选择蜗壳型式、包角、进口尺寸,并绘制蜗売单线图; (4) 选择尾水管的型伏及尺寸; (5) 选择相应发电机型号、尺寸,调速器及油压装置。 5.1.1.3厂区枢纽及电站厂房的布置设计 (1) 根据地形、地质条件、水文等资料,进行分析比较确定厂房枢纽布置方案; (2) 核据水轮发甴机的资料,选择相应的辅助设备,进行主厂房的各层布置设计; (3) 确定主厂房尺寸; (4) 副厂房的布置设计; (5) 绘制主厂房横剖面图、发电机层平面图、水轮机层和蜗壳层平面图各?张。 5.1.0 选作内容 5.1.2.1 引水系统设计 (1) 进水口设计。确定进水口高程、型式及轮廓尺寸; (2) 压力管道的布置设计。确定压力管道的直径;确定压力管道的布置方式和各段尺寸; 5.2 基本资料 本水电站在MD江的下游,位于木兰集村下游2km处。坝址以上流域控制面积

30200km2。 本工程是一个发电为主,兼顾防洪、灌溉、航运及养鱼等综合利用的水利枢纽。电站投入运行后将承担黑龙江东部电网的峰荷,以缓解系统内缺乏水电进行调峰能力差的局面。 本工程所在地点交通比较方便,建筑材料比较丰富,是建设本工程的有利条件。电站地理位置图见图5-1。 图5-1 电站地理位置图

(财务知识)小型水电站装机容量选择的经济计算方法探讨最全版

(财务知识)小型水电站装机容量选择的经济计算方 法探讨

小型水电站装机容量选择的经济计算方法探讨 壹、前言 装机容量是水电站的壹项重要功能经济指标。装机容量的确定涉及到许多自然条件和技术条件,如河流的水力资源、站址的地质和地形条件、设计保证率,水库调节性能和综合利用特性,用电情况和电力系统对水电站的要求等。但更为重要的应该是经济条件,必须用经济效益来决定小水电是否值得开发及装机应该多大。 欧美及日本等国都很重视小水电的经济论证工作。在可行性研究阶段,经济分析和财务分析占据着重要的地位。小水电的经济计算方法主要有俩种,壹种是分别计算小水电和小火电在建成后第壹年及前十年的效益比,要求它们达到规定的数值;第二种是和替代的小火电厂或小柴油发电厂比较,根据使用年限内的支出和收入,计算其经济的单位千瓦投资值。 我国在选定小水电的装机容量时,常用的选择方法有保证出力倍比法、年利用小时数法,规定单位千瓦投资法等,这些方法显然考虑了壹些经济因素,但都十分粗略,尤其是壹些系数的变化范围很大,甚至相差好几倍,难以精确掌握。有的小水电在规划设计时,采用投资回收年限法来衡量其经济性,这是较好的,但由于没有进壹步和替代电站作比较仍然不能说明它是最优方案。 为了合理地开发小水电,且使我国当前有限的资金发挥最大的效益,应该不断完善小水电装机容量选择的经济计算方法。 二、经济计算公式

小水电装机容量的经济计算应在技术比较的基础上进行。根据天然条件及用电条件选出几个装机容量方案,首先用投资回收年限法选出壹个最经济方案,然后和替代电站作比较。 我国大中型水电站在和替代电站比较时大都采用抵偿年限法。这种方法概念是清楚的,但由于规定的抵偿年限在理论上难以确定,所以用起来比较困难。本文采用单位千瓦投资效益法进行小水电和小火电之间的经济比较。这种方法以效益和利润率为基础,更为符合实际。 我国当前小水电的投资是贷款加补助的方式,贷款占主要部分,补助约占四分之壹左右。在计算时,我们把投资都当作贷款来考虑。 (壹)投资回收年限法: 在某壹装机容量方案下计算出来的投资回收年限只有等于或小于规定的投资回收年限才是经济的。 T、计=≤T回、规(年)(1) 式中: T回、计——计算投资回收年限(年); T回、规——规定投资回收年限(年); K水——水电站基本建设投资(元); S水——水电站年毛收入(元);

(一)水电站水轮机选型设计方法及案例

水电站水轮机选型设计总体思路和基本方法 水轮机选型是水电站设计中的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的动能经济指标及运行稳定性、可靠性都有重要的影响。 水轮机选型过程中,一般是根据水电站的开发方式、动能参数、水工建筑物的布置等,并考虑国内外已经生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一 已知参数 1 电站规模:总装机容量:32.6MW 。 2 电站海拔:水轮机安装高程:▽=850m 3 水轮机工作水头: max H =8.18m ,min H =8.3m ,r H =14.5m 。 二 机组台数的选择 对于一个确定了总装机容量的水电站,机组台数的多少将直接影响到电厂的动能经济指标与运行的灵活性、可靠性,还将影响到电厂建设的投资等。因此,确定机组台数时,必须考虑以下有关因素,经过充分的技术经济论证。 1机组台数对工程建设费用的影响。 2机组台数对电站运行效率的影响。

3机组台数对电厂运行维护的影响。 4机组台数对设备制造、运输及安装的影响。 5机组台数对电力系统的影响。 6机组台数对电厂主接线的影响。 综合以上几种因素,兼顾电站运行的可靠性和设备运输安装的因素,本电站选定机组为:4×8.15MW 。 三 水轮机型号选择 1 水轮机比转速s n 的选择 水轮机的比转速s n 包括了水轮机的转速、出力与水头三个基本工作参数,它综合地反映了水轮机的特征,正确的选择水轮机的比转速,可以保证所选择的水轮机在实际运行中有良好的能量指标与空化性能。 各类水轮机的比转速不仅与水轮机的型式与结构有关,也与设计、制造的水平以及通流部件的材质等因素有关。目前,世界各国根据各自的实际水平,划定了各类水轮机的比转速的界限与范围,并根据已生产的水轮机转轮的参数,用数理统计法得出了关于水轮机比转速的统计曲线或经验公式。当已知水电站的水头时,可以用这些曲线或公式选择水轮机的比转速。 轴流式水轮机的比转速与使用水头关系 中国: s n =H 2300 (m ·KW ) 日本: s n = 5020 20000 ++H (m ·KW )

小型水电站装机容量选择的经济分析

小型水电站装机容量选择的经济分析 一、对于选择装机容量的看法 按目前常的方法选择装机容量,除了范围太大,不好掌握以外,更重要的是对于经济上的可行性缺乏较明确的论证,因此,有必要提出几个能够论证其经济上可行性的指标,作为选择水电站装机容量的主要依据。 选择小型水电站的装机容量,通常不考虑水、火电之间的经济比较,这是由于:1、其投资不大,生产的电能不多,在系统中所占的比重较小,似乎不值得进行比较;2、由于小型水电站的特点,进行水、火电之间的比较确实存在一些困难。我们变为,小型水电站投资也高达数百万元甚至千万元以上;再则,既然水火电都能达到同样供电的目的,则理应选择其中耗费社会劳动量较小的一种。这样做虽有一些具体困难,但应朝此方向不断探索,使其逐步完善。下面说明对于选择装机容量的具体意见。 1、选择水电站的装机容量时,要比较水、火点的电能成本,对此本文提出一个新的指标,称为比较电能成本。将其方案的水电站的比较电能成本C水和达到同样目的的火电站的比较电能成本C火相比较,作为方案取舍的重要依据。 当C水 <C火则说明水电站方案从长远的观点来看,在经济上肯定是可行的。由于水电站具有利用再生能源和不污染环境的优点,因此从保护煤炭资源和防止火电污染环境的观点出发,当C水大于C火 ,或C水∠KC 火 (K>1)时,水电站方案也是可以研究的,但又考虑到我国建设资金短缺,不应以过多地提高水电站的比较电能权威性本为代价,来扩大水电建设规模或增加水电建设项目,故建议K值暂取1.0-1.05当时则水电站方案不宜采用。 2、如果C水∠KC火,还应计算水电站的还本年限,以检验当前在资金安排上是否可行.允许的还本所限应有一定的变动范围,一般情况下可采用5-10年,但如电力供应紧张,以致使工农业生产受到较大影响时,还可突破上述界限. 3、在C水∠KC火的情况下,如果水电站的还本年限较长(例如超过10年),而供电又较紧张,则应进一步分析有关用电行业的效益,建设再计算一个经济指标,称为等价回收电价(并不是真正的售电价格).将还本年限定为本地区或本部门能以接受的年限(如5-10年),再反算水电站的售电价格,即为造价回收电价.如该电价能为用电行业所接受供电部门的平均售电价格)对其发展生产仍然有好处,那么,该水电站方案仍是可行的,这是因为:第一,由于今后若干年内,总的趋势是供电紧张,系统内(或某一局部地区)需要增加容量,又因C 水∠KC火,所以应建水电站;第二,表面上看电业部门的利润养活甚至没有利润,但从全局看可以相关效益中得到补赏. 对于没有条件和火电相比较的小水电站(如跟电网太远或容量太小),可以主要考虑造价回收这一指标. 在负荷需要和资金能够解决的情况下,应尽量先用符合上述原则的装机容量较大的方案. 有关水能利用率问题可以不作为进行方案比较的一项指标.水利用率的合理数值应以是否符合上述指标为准。 为了较真实地反映经济效益,不论实际上在使用资金时计算与否,在计算经济指标时应计入所有资金的利息。否则不能反映资金在扩大再生产方面的作用。 下面谈谈经济指标的具体计算方法。 二、四项经济指标的计算。 1、水、火电站的比较电能成本计算。

水电站介绍及分类

行业网络招聘专家 一览英才网招聘网站成员 水电站介绍及分类 水电站是将水能转换为电能的综合工程设施。又称水电厂。它包括为利用水能生产电能而兴建的一系列水电站建 筑物及装设的各种水电站设备。利用这些建筑物集中天 然水流的落差形成水头,汇集、调节天然水流的流量, 并将它输向水轮机,经水轮机与发电机的联合运转,将 集中的水能转换为电能,再经变压器、开关站和输电线 路等将电能输入电网。有些水电站除发电所需的建筑物 外,还常有为防洪、灌溉、航运、过木、过鱼等综合利 用目的服务的其他建筑物。这些建筑物的综合体称水电站枢纽或水利枢纽。 将水能转换为电能的综合工程设施 。一般包括由挡水、泄水建筑物形成的水库和水电站引水系统、发电厂房、机电设备等。水库的高水位水经引水系统流入厂房推动水轮发电机组发出电能,再经升压变压器、开关站和输电线路输入电网。 一.站分类: 按照水电站利用水源的性质,可分为三类。 ① 常规水电站:利用天然河流、湖泊等水源发电; ② 抽水蓄能电站:利用电网中负荷低谷时多余的电力,将低处下水库的水抽到高处上水库 存蓄,待电网负荷高峰时放水发电,尾水至下水库,从而满足电网调峰等电力负荷的需要; ③ 潮汐电站:利用海潮涨落所形成的潮汐能发电。 二.电站对天然水流的利用方式和调节能力,可以分为两类。 ①径流式水电站:没有水库或水库库容很小,对天 然水量无调节能力或调节能力很小的水电站; ②蓄水式水电站:设有一定库容的水库,对天然水流具有不 同调节能力的水电站。 三.站工程建设中,还常采用以下分类方法。 ①按水电站的开发方式,即按集中水头的手段和水电站的工程布置,可分为坝式水电站、引水式水电站和坝-引水混合式水电站三种基本类型。这是工程建设中最通用的分类方法。 ②按水电站利用水头的大小,可分为高水头、中水头和低水头水电站。世界上对水头的具体划分没有统一的规定。有的国家将水头低于 15m 作为低水头水电站,15~70m 为中水头水电站,71~250m 为高水头水电站,水头大于250m 时为特高水头水电站。中国通常称水头大于70m 为高水头水电站,低于30m 为低水头水电站,30~70m 为中水头水电站。这一分类标准与水电站主要建筑物的等级划分和水轮发电机组的分类适用范围,均较适应。 ③按水电站装机容量的大小,可分为大型、中型和小型水电站。各国一般把装机容量5000kW 以下的水电站定为小水电站,5000~10万kW 为中型水电站,10万~100万kW 为大型水电

水轮机选择(经典)

第四章水轮机选择 §4.1 水轮机的标准系列 由于各开发河段的水力资源和开发利用的情况不同,水电站的工作水头和引用流量范围也不同,为了使水电站经济安全和高效率的运行,就必须有很多类型和型式的水轮机来适应各种水电站的要求。 一、反击式水轮机的系列型谱 表4—1、4—2、4—3、4—4中给出了轴流式、混流式水轮机转轮的参数。 1)、水轮机的使用型号规定一律采用统一的比转速代号。 2)、每一种型号水轮机规定了适用水头范围。水头上限是根据该型水轮机的强度和汽蚀条件限制的,原则上不允许超过;下限主要是考虑到使水轮机的运行效率不至于过低。 二、水斗式水轮机转轮参数 表4—5,系列型谱尚未形成 三、水轮机转轮尺寸系列表(表4—6) 四、水轮发电机标准同步转速(表4—7) 五、水轮机系列应用范围图 为纵座标绘制某一系列水轮机应用范围。 以H为横座标,N 单 1、根据H r、N r→范围→D1,n。 2、水轮机吸出高度的确定H s:根据h s~H的关系曲线确定。 由H r→h s,H s=h s-▽/900

§4.2水轮机的选择 一、水轮机选择的意义、原则、内容 1、意义 水轮机是水电站中最主要动力设备之一,影响电站的投资、制造、运输、安装、安全运行、经济效益,因此根据H、N的范围选择水轮机是水电站中主要设计任务之一,使水电站充分利用水能,安全可靠运行。 2、原则 (1)、充分考虑电站特点(水文水能、电力系统技术条件,电站总体布置)。 (2)、有利于降低电站投资、运行费、缩短工期,提前发电 (3)、提高水电站总效率,多发电 (4)、便于管理、检修、维护,运行安全可靠,设备经久耐用 (5)、优先考虑套用机组 3、内容 (1)、确定机组台数及单机容量 (2)、选择水轮机型式(型号) (3)、确定水轮机转轮直径D1、n、H s、Z a;Z0、d0 (4)、绘制水轮机运转特性曲线

水电站项目基本情况[详细]

1工程概况 1.1工程建设必要性 花坪河水库坝址位于巴东县大支坪镇,距离野三河汇合口12.56千米,坝址以上流域面积172.4千米2,占支井河流域面积的71.1%. 巴东县电网以水电为主,自八十年代后期开始,陆续建成了多座小型水电站,大大改善了巴东县电网的组成结构.但随着国民经济的高速发展,电力供需矛盾仍很严重,枯水期调峰容量依然不足.每年需从州网购电,为此,兴建花坪河水电站,对提高巴东县用电的保证率有重要作用. 花坪河水电站的兴建,是合理开发利用河流水能资源的需要,工程建成后不仅可增加巴东县电网的电力供应,缓解电力供需矛盾,而且还可带动和促进本地区经济发展,节省煤耗,保护环境,其兴建有很好的经济和社会效益,工程建设是十分必要的. 1.2初步设计审查意见 2012年5月14湖北省水利厅印发《关于巴东县花坪河水电站工程初步设计报告的审查意见》,鄂水利电函[2012]334号文.部分内容如下: 四、同意工程开发任务为发电 同意发电死水位640.00米,同意设置极限死水位636.00米. 同意电站装机容量30兆瓦. 基本同意洪水调节计算方法及成果.同意采用敞泄方式进行洪水调节,水库50年一遇设计洪水位为670.00米,1000年一遇校核洪水位为672.80米;厂房50年一遇设计洪水位为402.07米,200年一遇校核洪水位为404.82米. 五、电站水库总库容2238万立方米、总装机30兆瓦,属三等中型工程.大坝、溢洪道、引水发电系统、电站厂房等主要建筑物为3级建筑物,由于大坝最大坝高97米(坝高超过70米),按2级建筑物设计,但洪水标准不予提高.同意钢筋砼面板堆石坝、溢洪道、发电隧洞进口按50年一遇洪水设计、1000年一遇洪水校核,电站厂房按50年一遇洪水 1

相关文档
相关文档 最新文档