文档库 最新最全的文档下载
当前位置:文档库 › 实验3.09磁场分布

实验3.09磁场分布

实验3.09磁场分布
实验3.09磁场分布

实验3.9 磁场分布测量

磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。

3.9.1实验目的

1.学习电磁感应法测磁场的原理;

2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理;

4.了解亥姆霍兹线圈磁场的特点。

3.9.2实验原理

3.9.2.1电磁感应法测磁场

当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。

因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。

为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为

θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感

应电动势,其值为

θωωφ

cos cos t B NS dt

d e m i -=-=

(3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有

θωcos rms B NS e U ==

(3.9.2)

从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为

ω

NS U

B max =

(3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。

图3.9.1感应法测磁场原理图

B 的方向本来可以根据数字电压表的示值最大时探测线圈的法线n 的方向来确定,但这样做磁场方向不容易定准,不如根据数字电压表读数为最小(实际为零)来判断磁场方向较为准确。这是因为这时探测线圈的n 与磁场方向垂直,而U 对θ的导数在θ=π/2时最大。

值得指出的是,公式(3.9.3)是用普通的探测线圈在均匀场条件下得出来的。如果磁场分布不均匀,情况就复杂多了。用普通探测线圈只能测出线圈平面内磁感应强度法向分量的平均值,而不能测出非均匀磁场中各点的值,除非将探测线圈做得非常小,但这又会使NS 很小而降低测量的灵敏度。为解决这一矛盾,人们设计出一种特殊尺寸的圆柱形线圈,用它探测非均匀场时,保证平均场同探测线圈几何中心上的磁场相等。这种线圈满足如下条件:①线圈长度L 和外径d 0之比为0.72(或近似取为2/3);②内径d i 不大于外径d 0的1/3(本实验中取d i =d 0/3);③线圈体积适当小。这样,线圈的平均面积S 为

2

108

13d S π=

(3.9.4) 在上述条件下,将磁场在线圈中心附近用泰勒级数展开,可以求出通过线圈的总磁通φ和线圈中心磁感应强度B 0的关系为

0NSB =φ

(3.9.5)

这样,就可用B 0和平均面积S 代入(3.9.3)式,并将ω以2πf 代入,可得

2

2max 2

0max

02610813108fd N U d N U B π

ω

π=

=

(3.9.6)

式中f 为磁场变化的频率。N 和d 0分别为探测线圈的匝数和外径,U max 为感应电压最大值。当U max 用V 作单位、d 0用m 作单位时,由(3.9.6)式求得的B 0单位为T 。实验中所用的探测线圈外形图见图3.9.2。当频率f 和探测线圈一定时,(3.9.6)式可改写为

max 0kU B =

(3.9.7)

式中

2

226108

fd N k π=

(3.9.8)

3.9.2.2载流圆线圈和亥姆霍兹线圈的磁场 1.载流圆线圈的磁场

设有一半径为R 的线圈,通以电流,如图3.9.3所示。根据毕奥-沙伐尔定律,可计算出在圆形电流轴线上各点的磁感应强度B 。它是一个非均匀磁场,其方向沿轴线方向,其量值为

2

322200)(2x R I

R N B +=

μ (3.9.9)

式中N 0是圆线圈的匝数,R 为圆线圈的平均半径,I 为线圈中的电流(本实验中应以有效值代入),x 为轴线上观测点离圆线圈中心O 的距离。以上各量均采用SI 单位,式中μ0= 4π?10-7H/m (亨利每米)为真空磁导率。

2.亥姆霍兹线圈的磁场

图3.9.2 圆柱形探测线圈

理论计算表明,如果有一对相同的载流圆线圈彼此平行且共轴,通以同方向电流I ,当线圈间距a 等于线圈半径R 时,则两个载流线圈的总磁场在轴的中点附近的较大范围内是均匀的,这对线圈称为亥姆霍兹线圈,如图3.9.4-a 所示。轴上磁场分布的示意图如图3.9.4-b 所示。它在科学实验中应用较广泛,尤其是当所需均匀磁场不太强时,亥姆霍兹线圈能较容易地提供范围较大而又相当均匀的磁场。

磁场在中点附近的均匀性证明如下:

各单个线圈在轴线上离二线圈中心O 点的距离为x 的一点处的磁场分别为:

[]

[]

2

32

2

2

0II 2

32

2

2

0I )2(2

)2(2

a x R

R

NI

B a x R

R NI

B -+=

++=μμ

合成后在x =0处展开

++

+

=+===20

220

0II I d d !21d d x x B x x

B

B B B B x x

对于这样的泰勒展开式,由于对称性可以证明所有奇次阶微分在x =0处均为零。而对偶次阶,当a =R 时

0d d 0

2

2==x x B ,所以

???

?

????+??? ??-=++

== 404

04

401251441d d !41R x B x x B

B B x

可知在轴线中心区磁场是很均匀的,例如在x =±R /3处,方括号中第二项为1.4%。

3.9.3实验仪器

非均匀磁场测量仪器包括圆形电流线圈盒、探测线圈和测量仪主机三部分。

1.圆形电流线圈盒:两个完全相同的圆线圈I 和II 平行共轴地装在仪器盒上,其间距等于线圈的平均半径,R =10.9cm 。每个线圈匝数N 0=500匝。I 和II 线圈的接线端分别为1,2和3,4。线圈可单独通电,也可串联接通。5和6端之间还要接一电阻R s (约3.00Ω左右),7和8接交流数字电压表,9和10端接探测线圈。仪器盒上还装有一个双刀双掷开

图3.9.3

图3.9.4

I

I

关K ,当K 合向5、6端时可通过测R s 上的电压求得流过R s 及与它串联的线圈中的电流值,K 合向9、10端直接测感应电压U 。

2.探测线圈:见图 3.9.2 ,线圈匝数约为4000匝(确切参数标在探测线圈上),外径d 0=1.20cm ,内径d i =0.40cm ,长度

cm 80.03

2

0≈=d L ,圆底座上刻度分度为2°,在垂直于线圈法线的方向上刻有一个小箭头,以

便测出磁场的方向。

3.测量仪主机:测量仪主机由400Hz 电源和三位半交流数字电压表两部分组成。 左部为400Hz 电源,是给线圈供电的电源,以产生交变磁场,频率为400Hz ,输出电压在 0—10V 间连续可调。 右部为交流数字电压表,这是一个具有三个量程的交流数字电压表,在仪器面板上有三个琴键开关,按下

时可选择不同的量程。按下标有信号源V 的档,用于测400Hz 电源的输出电压。按下标有20mV 、200mV 档,用于测量从接线柱两端输入的电压。其测量不确定度:对5—15mV 为≤±2%;对全量程为≤±4%。

3.9.4实验任务 1.分别测量两个单个圆线圈通电流时沿轴线方向的磁场分布,并测出轴外M 点的磁感应强度的大小和方向。按矢量叠加原理算出合磁场。参考实验线路图(图 3.9.7)接线,通以5mA 左右的电流,图中R s 值标在电阻盒上。各测量点间隔为1cm 。 将两个圆线圈Ⅰ和Ⅱ串接起来,仍通以相同的电流,测量沿轴线上各点的磁场分布,并测出轴外M 点的磁场大小和方向。将此结果与上面分别测得的单个线圈通电时的磁场叠加后的结果加以比较,验证磁感应强度的大小和方向是否符合矢量叠加原理。

2.测量亥姆霍兹线圈轴线附近的磁场分布情况。除已测得的轴上各点的磁场外,再在轴线中点附近两侧各测若干点(4-8点)的磁感应强度大小和方向。将所有数据进行比较,可粗略地了解亥姆霍兹线圈轴线附近一定区域内磁场的均匀情况。

3.线圈Ⅰ单独通电时,测量线圈平面内中心O 点和边缘Q 点的磁感应强度的大小和方向。

3.9.5数据表格与数据处理

图3.9.5 圆型电流线圈盒

图3.9.6

非均匀磁场测量仪

图3.9.7实验线路图

先记录下列参数:

圆线圈仪器盒编号,圆线圈匝数N0= ,平均半径R=cm。

探测线圈编号,探测线圈匝数N= ,外径d0=cm。

电阻R s= Ω,R s上电压大小R s I=mV

1.表格中指磁场方向与圆线圈轴线方向的夹角,记录θ角时应标明磁场相对于轴线的正方向。测量磁场方向时,M点必须测,其他点只要测3-4个有代表性的点即可。

2.对单个圆线圈轴上各点的磁场分布,应画出B-x曲线。并比较实验值与由(3.9.9)式算得的理论值二者之间是否一致。

3.从轴外点M的测量数据出发,验证矢量叠加原理。报告中要有该点处B的矢量合成图和B的大小、方向计算过程。

3.9.5.2测量亥姆霍兹线圈磁场情况。数据表格自拟。根据这些测量结果,对其磁场均匀情况作一简单的说明。

3.9.5.3记下圆线圈平面内Q点的磁感应强度的大小和方向,比较O、Q两点中哪一点的B 值大,并定性说明其理由。

3.9.6思考题

1.电磁感应法测磁场的原理是什么?本实验测磁感应强度的计算公式是什么?

2.用探测线圈测磁场时,探测线圈输出电压的极大值可确定磁场的,输出为极小值时探测线圈的方位可用来判断磁场的。

3.亥姆霍兹线圈是怎么组成的?其基本条件是什么?它的磁场特点是什么?

4.如果亥姆霍兹线圈的两个圆线圈通以相反的电流,其磁场分布又将如何?

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

初中物理实验题汇总(全面)全解

初中物理实验题汇总 熔化 [示例]一、小方同学发现:炎热的夏季,家中的蜡烛、柏油路上的沥青会变软;而冰块熔化时,没有逐渐变软的过程.由此推测,不同物质熔化时,温度的变化规律可能不同.于是,小方同学选用碎冰和碎蜡研究物质的熔化过程.他实验装置如图甲所示,碎冰或碎蜡放在试管中,在烧杯中倒入水进行加热并记录数据. (1)小方同学应在试管中加入多少碎冰或碎蜡 ( ) A .越少越好 B .越多越好 C .能将温度计的玻璃泡浸没其中即可 D .随意多少 (2)在熔化冰的实验中,用水而不用酒精灯直接加热的目的是____________________。 (3)根据实验数据,他画出了冰和蜡的熔化图象.其中,图乙是 (冰/蜡)的温度随 时间变化的图象。 二、图(3)是给某种固体加热时温度随时间变化的曲线,请根据图像回答下列问题:(1)由图像可知,该固体一定是________。(“晶体”或“非晶体”) (2)在第1分钟时,处于________状态;在第6分钟时,处于________状态;在2~5min 这段时间内处于__________状态,要____热量,但温度________。 (3)由图可知该固体的熔点是________℃。 (一)观察水的沸腾 某组同学做“观察水的沸腾”实验,用酒精灯给盛了水的烧杯加热,注意观察温度计的示数,实验装置如下图所示.当水温升到90℃时,每隔1min 记录1次水温如下表.(9分) (1)这次实验所用的器材除图中的,还应有 ,他们看到当水沸腾时,水中形成气泡,这些气泡上升,体积_____ ____,到水面破裂开,里面的___ _散发到空气中;由此可知水沸腾时,______和______同时发生剧烈的______现象,水在沸腾过程中要______热,但温度_____ __,停止加热后,水将______(选填”能”或”不能”)继续沸腾。由此可知水沸腾需要两个条件:一是_____ _ _ __; 二是_____ ______ __。 甲 乙 O

700223霍尔效应法测螺线管磁场(实验23)

霍耳效应法测螺线管磁场实验报告 【一】实验目的及实验仪器 实验目的 1.了解和熟悉霍尔效应的重要物理规律 2.熟悉集成霍尔传感器的特性和应用,掌握测试霍尔效应器件的工作特性 3.学习用霍尔效应测量磁场的原理和方法 4.学习用霍尔器件测绘长直螺线管的轴向磁场分布 实验仪器FD-ICH-II 新型螺线管磁场测定仪 【二】实验原理及过程简述 霍尔元件如图4-23-1所示。若电流I流过厚度为d的半导体薄片,且磁场B垂直于该半导体,于是电子流方向由洛伦磁力作用而发生改变,在薄片两个横向面a,b之间应产生电势差,这种现象称为霍尔效应。在与电流I、磁场B垂直方向上产生的电势差称为霍尔电势差,通常用UH 表示。霍尔效应的数学表达式为: 随着科技的发展,新的集成元件不断被研制成功。本实验采用的SS95A型集成霍尔传感器,是一种高灵敏度集成化传感器,它由霍尔元件放大器和薄膜电阻剩余电压补偿组成,测量时输出信号大,并且剩余电压的影响已被消除。SS95A型集成霍尔传感器,他的工作电流已设定被称为标准,工作电流使用传感器时,必须使工作电流处在该标准状态,在实验 室只要在磁感应强度为零条件下调节v +v - 所接的电源电压是输出电压为 2.500伏,则传感器就可处在标准工作状态之下。 当螺线管内有磁场且集成霍尔传感器的标准工作电流时 螺线管是由绕在圆柱面上的导线构成的,对于密绕的螺线管可以看成是一列有共同轴线的圆形线圈的并列组合,因此一个载流长直螺线管轴线上某点的磁感应强度,可以从对各圆电流在轴线上该点所产生的磁感应强度进行积分求和得到,对于一限长的螺线管,在距离两端等远的中心点磁

感应强度为最大,且等于 过程简述 1.装置接线 2.断开开关K2,调节使集成霍尔传感器达到标准化工作状态。 3.测量霍尔传感器的灵敏度 4.测量通电螺线管中的磁场分布 【三】实验数据处理及误差计算: 5让风吹 1.根据实验所测,描绘螺线管中间位置霍尔电势差与螺线管通电电流的关系; 2.求出K/ 和r以及K; ∴K’=0.4169V/A r=1

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

永磁体【发电机磁场分析方法

永磁同步发电机磁场分析方法 哈尔滨工业大学电磁与电子技术研究所 2008年7月

一、概述 此文档介绍了利用Ansoft Maxwell2D 11.0电磁场有限元分析软件对永磁同步发电机进行磁场分析的方法,读者应先了解Ansoft软件的基本使用方法后阅读本文,Ansoft软件的基本使用方法可参阅《Ansoft工程电磁场有限元分析》(刘国强著,电子工业出版社)。永磁同步发电机磁场分析的基本流程见图1。 图1 磁场分析的基本流程 二、求解空载磁场

1.绘制有限元模型(Define Model) Ansoft Maxwell2D 有限元建模的方法主要有三种,一是直接在Maxwell2D 中绘制,选择Define Model-Draw Model 进 入后在软件提供的绘图界面上绘制电机模型。

二是利用Ansoft RMXpert导入,点开Maxwell 11 3D的界面,选择Project-Insert RMxpert Design,然后逐项输入电机各项数据。 输入完各项数据后,点击RMxpert-Analyze all,求解电机模型。 求解完成后,点击RMxpert-Analysis Setup-Export-Maxwell 2D Project,生成

一个Maxwell 2D模型。 在弹出的对话框中,Project Name中填写模型的名字,Location填写模型存放的路径。 三是用AutoCAD绘制后导入。将绘制后的AutoCAD图形存成*.dxf格式,

在Ansoft Maxwell2D 绘图界面中点击File-Import,选中*.dxf文件 在出现的设置转换参数对话框中,将Number of segments for poligonalization of a circle 和Number of segments between control points of a spline 后的数量设置得大一点,点击ok,将AutoCAD图形转换为Maxwell 2D模型图形*.sm2。

初中物理实验常用的十二种方法

中学物理实验常用方法 一、观察法 物理是一门以观察、实验为基础的学科。人们的许多物理知识是通过观察和实验认真地总结和思索得来的。著名的马德堡半球实验,证明了大气压强的存在。在教学中,可以根据教材中的实验,如长度、时间、温度、质量、密度、力、电流、电压等物理量的测量实验中,要求学生认真细致的观察,进行规范的实验操作,得到准确的实验结果,养成良好的实验习惯,培养实验技能。大部分均利用的是观察法。 观察是学习物理最基本的方法,是科学归纳的必要条件, 学生对学习活动的外部表现进行有目的、有计划的观察、记录, 能够为物理概念的形成、物理知识的理解、物理规律的探究提供信息和依据。常用观察方法有: 1.观察重点, 排除无关因素的干扰。如做气体膨胀对外做功的实验时,学生只听到“嘭”的一声, 看到瓶塞跳得很高, 对真正需要看的现象———塑料瓶口出现的酒精烟雾却视而不见, 这就需要教师及时交待, 提醒学生, 然后再进行 分析。 2.前后对比观察, 抓住因果关系。如学习密度一节时, 我首先让学生区分铜块、铁块、铝块、石块、酒精、水等物体, 通过观察它们的颜色、状态、软硬来辨认。然后出示用纸包住的相同体积的铜块、铁块、铝块, 怎样区分它们? 学生通过实验发现, 它们的质量不同, 因而得出相同体积的物体质量不同, 也是物 质的一种特性, 从而引入密度概念。 3.正、反对比观察, 深化认识。在指导学生观察时, 多采用一些正反对比的方法, 可以加深学生理解知识, 拓宽思路。如探究声音的产生, 即无声又有声;探究沸点与气压的关系时, 即增大气压, 沸点升高, 减小气压, 沸点降低。 二、控制变量法 控制变量法是指一个物理量与多个物理量有关, 把多因素的问题变成多个 单因素的问题, 分别加以研究, 最后再综合解决。利用控制变量法研究物理问题, 有利于扭转“重结论、轻过程”的倾向, 有利于培养学生的科学素养, 使学生学会学习。如导体中的电流与导体两端的电压和导体的电阻都有关系, 研究导体中的电流跟这段导体两端的电压时, 控制导体的电阻不变, 改变导体两端电压, 看导体中电流的变化, 通过学生实验, 得出欧姆定律I=U/R。另外,研究导体的 电阻大小、滑动摩擦力的大小、液体压强的大小、浮力大小、动能和重力势能大小、电流的热量的大小、压力的作用效果、滑轮组的机械效率、电磁铁的磁性强弱、产生感应电流方向也都用到了控制变量法。

永磁体基本性能参数

永磁体基本性能参数 永磁材料:永磁材料被外加磁场磁化后磁性不消失,可对外部空间提供稳定磁场。钕铁硼永磁体常用的衡量指标有以下四种: 剩磁(Br)单位为特斯拉(T)与高斯(Gs) 1Gs =0、0001T 将一个磁体在闭路环境下被外磁场充磁到技术饱与后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中磁体的磁感应强度都小于剩磁。钕铁硼就是现今发现的Br 最高的实用永磁材料。 磁感矫顽力(Hcb)单位就是安/米(A/m)与奥斯特(Oe)或 1 Oe≈79、6A/m 处于技术饱与磁化后的磁体在被反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只就是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般就是11000Oe以上。 内禀矫顽力(Hcj)单位就是安/米(A/m)与奥斯特(Oe)1 Oe≈79、6A/m 使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力就是衡量磁体抗退磁能力的一个物理量,如果外加的磁场等于磁体的内禀矫顽力,磁体的磁性将会基本消除。钕铁硼的Hcj会随着温度的升高而降低所以需要工作在高温环境下时应该选择高Hcj的牌号。

磁能积(BH)单位为焦/米3(J/m3)或高?奥(GOe) 1 MGOe≈7、96k J/m3 退磁曲线上任何一点的B与H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积(BH)max。磁能积就是恒量磁体所储存能量大小的重要参数之一,(BH)max越大说明磁体蕴含的磁能量越大。设计磁路时要尽可能使磁体的工作点处在最大磁能积所对应的B与H附近。 各向同性磁体:任何方向磁性能都相同的磁体。 各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。烧结钕铁硼永磁体就是各向异性磁体。 取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作“取向轴”,“易磁化轴”。 磁场强度:指空间某处磁场的大小,用H表示,它的单位就是安/米(A/m),也有用奥斯特(Oe)作单位的。 磁感应强度:磁感应强度B的定义就是:B=μ0(H+M),其中H与M分别就是磁化强度与磁场强度,而μ0就是真空导磁率。磁感应强度又称为磁通密度,即单位面积内的磁通量。单位就是特斯拉(T)。 磁化强度:指材料内部单位体积的磁矩矢量与,用M表示,单位就是安/米(A/m)。它与磁感应强度与磁场强度有如下关系 B=(M+H)μ0 在各向同性线性媒质中,磁化强度M与磁场强度H成正比,M=XmH, Xm就是磁化率。上式可改写成

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

霍尔效应法测量螺线管磁场

研胳wZprtf 霍尔效应法测量螺线管磁场实验报告 【实验目的】 1?了解霍尔器件的工作特性。 2?掌握霍尔器件测量磁场的工作原理。 3?用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1?霍尔器件测量磁场的原理 图1霍尔效应原理 如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电 极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速 ur ir u 度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累 urn 过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir 的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由 数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,可以推导出 式中,R H为霍耳系数,通常定义K H R H /d , 由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下, U H R H U H满足: 世K H IB , d K H称为灵敏度。

研 島加吋 与B有一一对应关系。 2?误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B、丨方 向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间 连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节 滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等 势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电 压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实 验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差3?载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是 一系列园线圈并排起来组成的。如果其半径为R、总长度为L,单位长度的匝数为n,并取螺线管的轴线 为x轴,其中心点0为坐标原点,贝U (1)对于无限长螺线管L 或L R的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: uu B o o NI 式中0――真空磁导率;N ――单位长度的线圈匝数;I ――线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: uu 1 B! —oNI 2 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图2 图3

通过使永磁体同极相对进而提高磁场强度的研究

通过使永磁体同极相对进而提高磁场强度 的研究 钟华1,白武帅1,侯志坚2 (1.北京科技大学工程师学院,北京 100083;2.北京科技大学自然科学基础实验中心,北京 100083)摘要:外力促使磁体同极对接可以获得接近单个磁极二倍的磁场强度。通过实验获得同极对接磁体的磁感 线分布状态及磁体周围场强分布情况。分析否定了磁极对接可能使磁体产生消磁现象,探讨了通过对接磁极获得高强磁场的具体应用及未来发展趋势和方向。 关键词:钕铁硼永磁材料;高强磁场;磁体同极对接;磁场分布;复合磁场 Research of increasing the magnetic field strength by connecting the same pole together Zhong hua1, bai wushua1, hou zhijian2 (1. School of advanced engineer, University of Science and Technology Beijing 100083,China;2.Basic Exp erimental Center for Natural Science, University of Science and Technology Beijing 100083,China; ) Abstract: take external force to press the same pole together can get close to twice the magnetic field strength of a single pole. through experiments Obtained the distribution of same-pole-butted magnet magnetic field lines and the distribution state of magnetic field strength around the magnet. Through the Analysis negated the possible that same-pole-butted will degaussing the magnet.discuss the specific applications and future development trends and direction of the high-strength magnetic field which obtained from same-pole-butted magnet. Keywords:Nd-Fe-B permanent magnet materials; high-strength magnetic field; magnet same-pole-butted; magnetic field distribution; complex magnetic field 在信息、通讯、交通与自动化这些发展速度最快、对社会影响最大的领域中,磁性材料都发挥着不可替代的重要作用。永磁材料作为当今工业社会最重要的功能材料之一,已广泛应用于计算机、扬声器、家用电器、仪器仪表、磁力机械、各种电机、医疗器械等仪器设备中。我国是稀土王国和永磁材料生产大国,是被誉为“永磁王”的钕铁硼的发明国之一。现代高技术对永磁体的性能与质量提出了更高的要求,而第三代永磁体(NdFeB)满足不了这些要求,目前第四代永磁体的研制尚未取得重大突破。因此,在现有条件下,通过磁铁同极相对获得高强磁场的方法具有实际意义[1]。 2收稿日期:2012-12-27 基金项目:教育教学改革项目(2011重点)“研究型和创新型基础实验教学体系建设”(JG2011Z14) 通讯作者简介:侯志坚(1960—),男,北京,学士,高级工程师,主要从事物理实验教学及其方法研究. E-mail:zhijianhou@https://www.wendangku.net/doc/25101435.html,

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

初中物理实验题全部汇总情况(含问题详解)74941

一、力学部分 (一)用天平、量筒测密度 [示例]在一次用天平和量筒测盐水密度的实验中,老师让同学们设计测量方案,其中小星和小王分别设计出下列方案: 方案A:(1)用调节好的天平测量出空烧杯的质量m1; (2)向烧杯中倒入一些牛奶,测出它们的总质量m2,则这些牛奶质量为________________;(3)再将烧杯中的牛奶倒入量筒中,测出牛奶的体积V1; (4)计算出牛奶的密度ρ. 方案B:(1)用调节好的天平测出空烧杯的总质量m1; (2)将牛奶倒入量筒中,记录量筒中牛奶的体积V; (3)将量筒的牛奶倒入烧杯测出它们的总质量m2; (4)计算出牛奶的密度ρ=________.(用m1、m2、V表示) 通过分析交流上述两种方案后,你认为在方案A中,牛奶的________(选填“质量”或“体积”)测量误差较大,导致牛奶密度的测量值比真实值偏________(选填“大”或“小”).在方案B中,牛奶的________(选填“质量”或“体积”)测量误差较大,牛奶密度的测量值与真实值相比________(选填“大”或“相等”或“小”). (二)测滑动磨擦力 [示例]小明在探究滑动摩擦力的大小与哪些因素有关的实验中,实验过程如图所示 (1)在实验中,用弹簧测力计拉着木块时,应沿水平方向拉动,且使它在固定的水平面上________运动.根据________条件可知,此时木块所受的滑动摩擦力与弹簧拉力的大小_______.这种测摩擦力的方法是________(填“直接”或“间接”)测量法. (2)比较(a)、(b)两图说明滑动摩擦力的大小与____________有关;比较____________两图说明滑动摩擦力的大小与接触面的粗糙程度有关. (3)在上述实验中,对于摩擦力大小的测量你认为是否准确?请你作出评价. (三)探究浮力大小 [示例]小明用如图所示装置研究“浮力大小跟物体排开液体体积关系”实验时,将一个挂在弹簧测力计下的金属圆柱体缓慢地浸入水中(水足够深),在接触容器底之前,分别记下圆柱体下面所处的深度h、弹簧测力计相应的示数F,实验数据如下表: (1)验数据可知,金属块重 N,完全浸没时受到的浮力是 N,物体的

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

霍尔效应法测量螺线管磁场

霍尔效应法测量螺线管磁场实验报告 【实验目的】 1.了解霍尔器件的工作特性。 2.掌握霍尔器件测量磁场的工作原理。 3.用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1.霍尔器件测量磁场的原理 图1 霍尔效应原理 如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速 度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =? 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE = ,与m e F ev B =? 反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足: H H H IB U R K IB d =? =?, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。 由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,

与B 有一一对应关系。 2.误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节滑动触头2,使数字电压表所测 电压为零,这样就消除了1、2两引线间的不等势电势差,而 且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍 尔电压测量部分就采用了这种电路,使得整个实验过程变得 较为容易操作,不过实验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的“不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。 3.载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则 (1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: 00B NI μ= 式中0μ——真空磁导率;N ——单位长度的线圈匝数;I ——线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: 101 2 B NI μ= 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图 2

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

初中物理实验工作总结(完美版)

初中物理实验工作总结 【导语】当工作进行到一定阶段或告一段落时,需要我们来对前段时期所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,以便于更好的做好下一步工作。 篇一: 本学期我担任初三5-6班的物理教学任务,在此期间我认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,把新课程标准的新思想、新理念和物理课堂教学的新思路、新设想结合起来收到较好的效果。 一、积极参加各种培训和业务学习、教研活动。 为了不断提中教学水平和教学质量,积极参加各种培训和业务学习、教研活动,向老教师学习和交流取长补短。 二、认真学习新课程标准。 本学期我认真学习新课程标准,发现《物理新课程标准》对物理的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求。为此,我不断教学理论理念,,深入研究拳的课标,明晰的目标,从而对新课程标准的基本理念,设计思路,课程目标,内容标准及课程实施建议有了更深的了解,本学期我在新课程标准的指导下教育教学工作跃上了一个新的台阶。 三、在课堂教学中,坚持学生为主体。

本学期,为保证新课程标准的落实,在课堂教学中,坚持学生为主体实行师生之间、学生之间互动,创造有利于学生主动探索的学习环境,使学生在获得知识和不断提中技能的同时,在情感、态度价值观等方面都能够充分发展。作为教学改革的基本指导思想,把物理教学看成是师生之间学生之间交往互动,共同发展的过程。课前精心备课,撰写教案,课后认真写反思,记下自己执教时的切身体会或疏漏,记下学生学习中的闪光点或困惑。在课堂教学中,坚持学生为主体,提倡自主性学习,学生在观察、操作、实验、讨论、交流、猜测、分析和整理的过程中,获得知识。这样的探索实验让学生成了学习的主人,学习成了他们的需求,学中有发现,学中有乐趣,学中有收获,教学质量得到了提中。期考成绩优秀率、及格率、平均分分别为…… 四、改革评价方法,激励促进学生全面发展。 本学期彻底改变了过去单一用分数来评价学生的方法,全面考察学生的学习状况,如学习热情,学习过程,学习态度等,关注他们情感与态度的形成和发展,既关注学生物理学习的结果,更关注他们在学习过程中的变化和发展,促进了学生全面发展。 通过我一学期来不断的工作,我的物理教学工作也取得了较好的成绩,以后我将一如既往,再接再厉,把工作搞得更好。 篇二: 一、思想方面 一个学期以来,我思想积极要求进步。爱岗敬业。努力工作。工作中关心自己任教的班级,爱护自己所教的学生。服从领导,团结同

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

相关文档
相关文档 最新文档