文档库 最新最全的文档下载
当前位置:文档库 › 启发式搜索 八数码问题

启发式搜索 八数码问题

启发式搜索 八数码问题
启发式搜索 八数码问题

启发式搜索

1. 介绍

八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。

要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。

所谓问题的一个状态就是棋子在棋盘上的一种摆法。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。

2. 使用启发式搜索算法求解8数码问题。

1) A ,A 星算法采用估价函数

()()()()w n f n d n p n ??=+???

, 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。

2)

宽度搜索采用f(i)为i 的深度,深度搜索采用f(i)为i 的深度的倒数。

3. 算法流程

① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ;

② 如果OPEN 是空表,则失败退出,无解;

③ 从OPEN 表中选择一个f 值最小的节点i 。如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ;

④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中;

⑤ 如果i 是个目标节点,则成功退出,求得一个解;

⑥ 扩展节点i ,生成其全部后继节点。对于i 的每一个后继节点j :

计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把

它添入OPEN 表中。从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。如果新的f 较小,则

(I)以此新值取代旧值。

(II)从j 指向i ,而不是指向他的父节点。

(III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。

⑦ 转向②,即GOTO ②。

4. 估价函数

计算一个节点的估价函数,可以分成两个部分:

1、 已经付出的代价(起始节点到当前节点);

2、 将要付出的代价(当前节点到目标节点)。

节点n 的估价函数)(n f 定义为从初始节点、经过n 、到达目标节点的路径的最小代价的估计值,即)(*n f = )(*n g + )(*

n h 。 )(*n g 是从初始节点到达当前节点n 的实际代价;

)(*n h 是从节点n 到目标节点的最佳路径的估计代价,体现出搜索过程中采用的启发式信息(背景知识),称之为启发函数。

)(*n g 所占的比重越大,越趋向于宽度优先或等代价搜索;反之,)(*n h 的比重越大,表示启发性能就越强。

5. 实验代码

为方便起见,目标棋局为不变

(1)以下代码估价函数为深度+错放棋子个数 (2) 若估价函数为深度+每个棋子与其目标位置之间的距离总和,则加入估价函数

int calvalue1(int a[]) //不在位棋子数

{

int c = 0;

int b=0;

for (int i = 0;i <= 8;i++)

for (int j = 0;j <= 8;j++)

if (a[i] = goal[j])

if (goal[j] != 0)

c=c+abs(i%3-j%3)+abs((i- i%3)/3+(j- j%3)/3);

return c;

}

(3)宽度搜索采用OPEN->jiedian.f = depth;

(4) 深度搜索采用OPEN->jiedian.f = -depth;

源代码:

1. #include "stdio.h"

2.

3. int goal[9] = { 1,2,3,8,0,4,7,6,5 }, sgoal[9];//goal 为棋盘的目标布局,并用中间

状态sgoal与之比较

4.

5.struct Board

6.{

7.int shuzu[9];

8.int d, f, e;//d:深度;f:启发函数;e:记录前一次的扩展节点

9.};

10.

11.struct NodeLink

12.{

13.Board jiedian;

14.NodeLink *parent;

15.NodeLink *previous;

16.NodeLink *next;

17.NodeLink *path;

18.};

19.//更新纪录八数码的状态

20.void setboard(int a[], int b[], int flag) //flag=0,写棋子;flag=1,写棋盘

21.{

22.for (int i = 0;i <= 8;i++)

23.if (flag)

24.a[b[i]] = i;

25.else

26.b[a[i]] = i;

27.}

28.//计算启发值的函数

29.int calvalue(int a[]) //不在位棋子数

30.{

31.int c = 0;

32.for (int i = 0;i <= 8;i++)

33.if (a[i] != goal[i])

34.if (goal[i] != 0)

35.c++;

36.return c;

37.}

38.//生成一个新节点的函数

39.NodeLink *newnode(NodeLink *TEM, int depth, int flag)

40.{

41.NodeLink *temp = new NodeLink;

42.for (int i = 0;i <= 8;i++)

43.temp->jiedian.shuzu[i] = TEM->jiedian.shuzu[i];

44.switch (flag)

45.{

46.case 1:

47.{

48.temp->jiedian.shuzu[0]--;

49.temp->jiedian.shuzu[sgoal[temp->jiedian.shuzu[0]]]++; //向左移

50.break;

51.}

52.case 2:

53.{

54.temp->jiedian.shuzu[0]++;

55.temp->jiedian.shuzu[sgoal[temp->jiedian.shuzu[0]]]--; //向右移

56.break;

57.}

58.case 3:

59.{

60.temp->jiedian.shuzu[0] -= 3;

61.temp->jiedian.shuzu[sgoal[temp->jiedian.shuzu[0]]] += 3; //向上移

62.break;

63.}

64.case 4:

65.{

66.temp->jiedian.shuzu[0] += 3;

67.temp->jiedian.shuzu[sgoal[temp->jiedian.shuzu[0]]] -= 3; //向下移

68.break;

69.}

70.}

71.temp->jiedian.d = depth + 1;

72.setboard(sgoal, temp->jiedian.shuzu, 1);

73.temp->jiedian.f = temp->jiedian.d + calvalue(sgoal);

74.temp->jiedian.e = flag;

75.temp->parent = TEM;

76.return temp;

77.}

78.//把新节点加入OPEN队列

79.NodeLink *addnode(NodeLink *head, NodeLink *node) //把node插入到head链中

80.{

81.NodeLink *TEM;

82.TEM = head;

83.head = node;

84.head->next = TEM;

85.head->previous = NULL;

86.if (TEM)

87.TEM->previous = head; //TEM已为空,无需操作

88.return head;

89.}

90.

91.//求启发值最小的结点

92.NodeLink *minf(NodeLink *head)

93.{

94.NodeLink *min, *forward;

95.min = head;

96.forward = head;

97.while (forward)

98.{

99.if (min->jiedian.f>forward->jiedian.f)

100.min = forward;

101.forward = forward->next;

102.}

103.return min;

104.}

105.

106.int main()

107.{

108.int depth = 0;

109.int source[9];

110.int i, j;

111.

112.NodeLink *OPEN = new NodeLink;

113.NodeLink *TEMP, *TEM;

114.

115.printf("请输入初始状态:\n");

116.for (i = 0;i<9;i++)

117.scanf_s("%d", &source[i]);

118.

119.setboard(source, OPEN->jiedian.shuzu, 0);

120.OPEN->jiedian.d = depth;

121.OPEN->jiedian.e = 0;

122.OPEN->jiedian.f = depth + calvalue(source);

123.OPEN->next = NULL;

124.OPEN->previous = NULL;

125.OPEN->parent = NULL;

126.

127.while (OPEN)

128.{

129.TEMP = minf(OPEN); //求具有最小启发值的节点

130.setboard(sgoal, TEMP->jiedian.shuzu, 1); //写棋盘131.if (!calvalue(sgoal))

132.break;

133.if (TEMP != OPEN) //如果不是第一个节点

134.{

135.TEMP->previous->next = TEMP->next;

136.TEMP->next->previous = TEMP->previous;

137.}

138.else //是第一个节点

139.{

140.if (OPEN->next) //如果还有节点

141.{

142.OPEN = OPEN->next;

143.OPEN->previous = NULL;

144.}

145.else OPEN = NULL; //否则置为空

146.}

147.

148.if (TEMP->jiedian.shuzu[0] - 1 >= 0 && TEMP->jiedian.e != 2) //防止棋子回到原状态

149.OPEN = addnode(OPEN, newnode(TEMP, depth, 1));

150.if (TEMP->jiedian.shuzu[0] + 1 <= 8 && TEMP->jiedian.e != 1)

151.OPEN = addnode(OPEN, newnode(TEMP, depth, 2));

152.if (TEMP->jiedian.shuzu[0] - 3 >= 0 && TEMP->jiedian.e != 4)

153.OPEN = addnode(OPEN, newnode(TEMP, depth, 3));

154.if (TEMP->jiedian.shuzu[0] + 3 <= 8 && TEMP->jiedian.e != 3)

155.OPEN = addnode(OPEN, newnode(TEMP, depth, 4));

156.depth++;

157.}

158.

159.if (OPEN) //如有解,则打印出解的步骤

160.{

161.TEMP->path = NULL;

162.while (TEMP->parent) //每次回溯父节点,生成路径

163.{

用A算法解决八数码问题演示教学

用A算法解决八数码 问题

用A*算法解决八数码问题 一、 题目:八数码问题也称为九宫问题。在3×3的棋盘,有八个棋子,每个 棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 二、 问题的搜索形式描述 状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。 初始状态:任何状态都可以被指定为初始状态。 操作符:用来产生4个行动(上下左右移动)。 目标测试:用来检测状态是否能匹配上图的目标布局。 路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。 现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态算法介绍 三、 解决方案介绍 1.A*算法的一般介绍 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。对 于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价 值,即 ()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--; 这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制 约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的方向进行。明显优于盲目搜索策略。

A star算法在静态路网中的应用 2.算法伪代码 创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算起点的估价值,将起点放入OPEN表。 while(OPEN!=NULL) { 从OPEN表中取估价值f最小的节点n; if(n节点==目标节点) {break;} for(当前节点n 的每个子节点X) { 算X的估价值; if(X in OPEN) { if( X的估价值小于OPEN表的估价值 ) {把n设置为X的父亲; 更新OPEN表中的估价值; //取最小路径的估价值} } if(X inCLOSE) { if( X的估价值小于CLOSE表的估价值 )

八数码问题求解--实验报告讲解

实验报告 一、实验问题 八数码问题求解 二、实验软件 VC6.0 编程语言或其它编程语言 三、实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 四、实验数据及步骤 (一、)实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 2 8 3 1 2 3 1 4 8 4 7 6 5 7 6 5 (a) 初始状态(b) 目标状态 图1 八数码问题示意图 (二、)基本数据结构分析和实现 1.结点状态 我采用了struct Node数据类型 typedef struct _Node{

int digit[ROW][COL]; int dist; // distance between one state and the destination一 个表和目的表的距离 int dep; // the depth of node深度 // So the comment function = dist + dep.估价函数值 int index; // point to the location of parent父节点的位置 } Node; 2.发生器函数 定义的发生器函数由以下的四种操作组成: (1)将当前状态的空格上移 Node node_up; Assign(node_up, index);//向上扩展的节点 int dist_up = MAXDISTANCE; (2)将当前状态的空格下移 Node node_down; Assign(node_down, index);//向下扩展的节点 int dist_down = MAXDISTANCE; (3)将当前状态的空格左移 Node node_left; Assign(node_left, index);//向左扩展的节点 int dist_left = MAXDISTANCE; (4)将当前状态的空格右移 Node node_right; Assign(node_right, index);//向右扩展的节点 int dist_right = MAXDISTANCE; 通过定义结点状态和发生器函数,就解决了8数码问题的隐式图的生成问题。接下来就是搜索了。 3.图的搜索策略 经过分析,8数码问题中可采用的搜速策略共有:1.广度优先搜索、2.深度优先搜索、2.有界深度优先搜索、4.最好优先搜索、5.局部择优搜索,一共五种。其中,广度优先搜索法是可采纳的,有界深度优先搜索法是不完备的,最好优先和局部择优搜索法是启发式搜索法。 实验时,采用了广度(宽度)优先搜索来实现。 (三、)广度(宽度)优先搜索原理 1. 状态空间盲目搜索——宽度优先搜索 其基本思想是,从初始节点开始,向下逐层对节点进形依次扩展,并考察它是否为目标节点,再对下层节点进行扩展(或搜索)之前,必须完成对当层的所有节点的扩展。再搜索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面,后进入的节点排在后面。其搜索过程如图(1)所示。

启发式搜索 八数码问题

启发式搜索 1. 介绍 八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。 要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 所谓问题的一个状态就是棋子在棋盘上的一种摆法。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。 2. 使用启发式搜索算法求解8数码问题。 1) A ,A 星算法采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 2) 宽度搜索采用f(i)为i 的深度,深度搜索采用f(i)为i 的深度的倒数。 3. 算法流程 ① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ; ② 如果OPEN 是空表,则失败退出,无解; ③ 从OPEN 表中选择一个f 值最小的节点i 。如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ; ④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中; ⑤ 如果i 是个目标节点,则成功退出,求得一个解; ⑥ 扩展节点i ,生成其全部后继节点。对于i 的每一个后继节点j : 计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把 它添入OPEN 表中。从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。如果新的f 较小,则 (I)以此新值取代旧值。 (II)从j 指向i ,而不是指向他的父节点。 (III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。 ⑦ 转向②,即GOTO ②。

C语言实现8数码问题

1、实验目的 (1)熟悉人工智能系统中的问题求解过程; (2)熟悉状态空间中的盲目搜索策略; (3)掌握盲目搜索算法,重点是宽度优先搜索和深度优先搜索算法。 2、实验要求 用VC语言编程,采用宽度优先搜索和深度优先搜索方法,求解8数码问题 3、实验内容 (1)采用宽度优先算法,运行程序,要求输入初始状态 假设给定如下初始状态S0 2 8 3 1 6 4 7 0 5 和目标状态Sg 2 1 6 4 0 8 7 5 3 验证程序的输出结果,写出心得体会。 (2)对代码进行修改(选作),实现深度优先搜索求解该问题 提示:每次选扩展节点时,从数组的最后一个生成的节点开始找,找一个没有被扩展的节点。这样也需要对节点添加一个是否被扩展过的标志。 4 源代码及实验结果截图 #include #include #include

//八数码状态对应的节点结构体 struct Node{ int s[3][3];//保存八数码状态,0代表空格 int f,g;//启发函数中的f和g值 struct Node * next; struct Node *previous;//保存其父节点 }; int open_N=0; //记录Open列表中节点数目 //八数码初始状态 int inital_s[3][3]={ 2,8,3,1,6,4,7,0,5 }; //八数码目标状态 int final_s[3][3]={ 2,1,6,4,0,8,7,5,3 }; //------------------------------------------------------------------------ //添加节点函数入口,方法:通过插入排序向指定表添加 //------------------------------------------------------------------------ void Add_Node( struct Node *head, struct Node *p) { struct Node *q;

实验一 启发式搜索算法

实验一启发式搜索算法 学号:2220103430 班级:计科二班 姓名:刘俊峰

一、实验内容: 使用启发式搜索算法求解8数码问题。 1、编制程序实现求解8数码问题A *算法,采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 2、 分析上述⑴中两种估价函数求解8数码问题的效率差别,给出一个是()p n 的上界 的()h n 的定义,并测试使用该估价函数是否使算法失去可采纳性。 二、实验目的: 熟练掌握启发式搜索A * 算法及其可采纳性。 三、实验原理: (一)问题描述 在一个3*3的方棋盘上放置着1,2,3,4,5,6,7,8八个数码,每个数码占一格,且有一个空格。这些数码可以在棋盘上移动,其移动规则是:与空格相邻的数码方格可以移入空格。现在的问题是:对于指定的初始棋局和目标棋局,给出数码的移动序列。该问题称八数码难题或者重排九宫问题。 (二)问题分析 八数码问题是个典型的状态图搜索问题。搜索方式有两种基本的方式,即树式搜索和线式搜索。搜索策略大体有盲目搜索和启发式搜索两大类。盲目搜索就是无“向导”的搜索,启发式搜索就是有“向导”的搜索。 启发式搜索:由于时间和空间资源的限制,穷举法只能解决一些状态空间很小的简单问题,而对于那些大状态空间的问题,穷举法就不能胜任,往往会导致“组合爆炸”。所以引入启发式搜索策略。启发式搜索就是利用启发性信息进行制导的搜索。它有利于快速找到问题的解。 由八数码问题的部分状态图可以看出,从初始节点开始,在通向目标节点的路径上,各节点的数码格局同目标节点相比较,其数码不同的位置个数在逐渐减少,最后为零。所以,这个

用盲目搜索技术解决八数码问题

. 用盲目搜索技术解决八数码问题 题目 在3×3的棋盘,有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上 标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 算法流程 使用宽度优先搜索 从初始节点开始,向下逐层对节点进形依次扩展,并考察它是否为目标节点,再对下层节点进行扩展(或搜索)之前,必须完成对当层的所有节点的扩展。再搜 索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面, 后进入的节点排在后面。 宽度优先算法如下: 把初始结点S0放入OPEN表中 若OPEN表为空,则搜索失败,问题无解 取OPEN表中最前面的结点N放在CLOSE表中,并冠以顺序编号n 若目标结点,则搜索成功,问题有解N?Sg若N无子结点,则转2 扩展结点N,将其所有子结点配上指向N的放回指针,依次放入OPEN表的尾部,转2 源程序 #include 文档Word . #include #include

using namespace std; const int ROW = 3;//行数 const int COL = 3;//列数 const int MAXDISTANCE = 10000;//最多可以有的表的数目const int MAXNUM = 10000; typedef struct _Node{ int digit[ROW][COL]; int dist;//distance between one state and the destination 一个表和目的表的距离 int dep; // the depth of node深度 // So the comment function = dist + dep.估价函数值 int index; // point to the location of parent父节点的位置} Node; Node src, dest;// 父节表目的表 vector node_v; // store the nodes存储节点 文档Word . bool isEmptyOfOPEN() //open表是否为空

启发式搜索算法解决八数码问题(C语言)

1、程序源代码 #include #include struct node{ int a[3][3];//用二维数组存放8数码 int hx;//函数h(x)的值,表示与目标状态的差距 struct node *parent;//指向父结点的指针 struct node *next;//指向链表中下一个结点的指针 }; //------------------hx函数-------------------// int hx(int s[3][3]) {//函数说明:计算s与目标状态的差距值 int i,j; int hx=0; int sg[3][3]={1,2,3,8,0,4,7,6,5}; for(i=0;i<3;i++) for(j=0;j<3;j++) if(s[i][j]!=sg[i][j]) hx++; return hx; } //-------------hx函数end----------------------// //-------------extend扩展函数----------------// struct node *extend(node *ex) { //函数说明:扩展ex指向的结点,并将扩展所得结点组成一条//单链表,head指向该链表首结点,并且作为返回值 int i,j,m,n; //循环变量 int t; //临时替换变量 int flag=0; int x[3][3];//临时存放二维数组 struct node *p,*q,*head; head=(node *)malloc(sizeof(node));//head p=head; q=head; head->next=NULL;//初始化 for(i=0;i<3;i++)//找到二维数组中0的位置 { for(j=0;j<3;j++)

八数码难题 Matlab

一、实验目的 1、熟悉和掌握启发式搜索的定义、估价函数和算法过程。 2、利用A*算法求解N数码难题,理解求解流程和搜索顺序。 二、实验内容 以八数码为例实现A或A*算法。 1、分析算法中的OPEN表CLOSE表的生成过程。 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。 2、分析估价函数对搜索算法的影响。

3、分析启发式搜索算法的特点。 广度优先搜索和双向广度优先搜索都属于盲目搜索,这在状态空间不大的情况下是很合适的算法,可是当状态空间十分庞大时,它们的效率实在太低,往往都是在搜索了大量无关的状态结点后才碰到解答,甚至更本不能碰到解答。 搜索是一种试探性的查寻过程,为了减少搜索的盲目性引,增加试探的准确性,就要采用启发式搜索了。所谓启发式搜索就是在搜索中要对每一个搜索的位置进行评估,从中选择最好、可能容易到达目标的位置,再从这个位置向前进行搜索,这样就可以在搜索中省略大量无关的结点,提高了效率。 启发式函数选取为:f*(n)=g*(n)+ h*(n) 其中: g*(n)是搜索树中节点n的深度 h*(n)用来计算对应于节点n的数据中错放的棋子个数。 三、实验结果

八数码宽度优先搜索

/*程序利用C++程序设计语言,在VC6.0下采用宽度优先的搜索方式, 成功的解决了八数码问题。程序中把OPEN表和CLOSED表用队列的方式存储, 大大地提高了效率,开始的时候要输入目标状态和起始状态,由于在宽度优先搜索的情况下,搜索过程中所走过的状态是不确定且很庞大的,所以程序 最后输出宽度优先情况下最少步数的搜索过程以及程序运行所需要的时间*/ #include "iostream" #include "stdio.h" #include "stdlib.h" #include "time.h" #include "string.h" #include #include using namespace std; constint N = 3;//3*3图 enum Direction{None,Up,Down,Left,Right};//方向 staticint n=0; staticint c=0; struct Map//图 { int cell[N][N];//数码数组 Direction BelockDirec;//所屏蔽方向 struct Map * Parent;//父节点 }; //打印图 voidPrintMap(struct Map *map) { cout<<"*************************************************"<cell[i][j]<<" "; } cout<

采用A算法解决八数码问题

人工智能实验一报告题目:采用A*算法解决八数码问题 姓名: XXX 学号: 10S003028 专业:计算机科学与技术 提交日期: 2011-05-04

目录 1问题描述........................................................................................................................... - 2 - 1.1待解决问题的解释............................................................................................... - 2 - 1.2问题的搜索形式描述............................................................................................ - 2 - 1.3解决方案介绍(原理)........................................................................................ - 3 - 2算法介绍........................................................................................................................... - 4 - 2.1A*搜索算法一般介绍............................................................................................ - 4 - 2.2 算法伪代码........................................................................................................... - 4 - 3算法实现........................................................................................................................... - 5 - 3.1 实验环境与问题规模........................................................................................... - 5 - 3.2 数据结构............................................................................................................... - 5 - 3.3 实验结果............................................................................................................... - 6 - 3.4系统中间及最终输出结果.................................................................................... - 6 - 4参考文献........................................................................................................................... - 7 - 5附录—源代码及其注释................................................................................................... - 7 -

“八”数码问题的宽度优先搜索与深度优先搜索

“八”数码问题的宽度优先搜索与深度优先 搜索 我在观看视频和查看大学课本及网上搜索等资料才对“八”数码问题有了更进一步的了解和认识。 一、“八”数码问题的宽度优先搜索 步骤如下: 1、判断初始节点是否为目标节点,若初始节点是目标节点则搜索过程结束;若不是则转到第2步; 2、由初始节点向第1层扩展,得到3个节点:2、 3、4;得到一个节点即判断该节点是否为目标节点,若是则搜索过程结束;若2、3、4节点均不是目标节点则转到第3步; 3、从第1层的第1个节点向第2层扩展,得到节点5;从第1层的第2个节点向第2层扩展,得到3个节点:6、7、8;从第1层的第3个节点向第2层扩展得到节点9;得到一个节点即判断该节点是否为目标节点,若是则搜索过程结束;若6、7、8、9节点均不是目标节点则转到第4步; 4、按照上述方法对下一层的节点进行扩展,搜索目标节点;直至搜索到目标节点为止。 二、“八”数码问题的深度优先搜索 步骤如下: 1、设置深度界限,假设为5;

2、判断初始节点是否为目标节点,若初始节点是目标节点则搜索过程结束;若不是则转到第2步; 3、由初始节点向第1层扩展,得到节点2,判断节点2是否为目标节点;若是则搜索过程结束;若不是,则将节点2向第2层扩展,得到节点3; 4、判断节点3是否为目标节点,若是则搜索过程结束;若不是则将节点3向第3层扩展,得到节点4; 5、判断节点4是否为目标节点,若是则搜索过程结束;若不是则将节点4向第4层扩展,得到节点5; 6、判断节点5是否为目标节点,若是则搜索过程结束;若不是则结束此轮搜索,返回到第2层,将节点3向第3层扩展得到节点6; 7、判断节点6是否为目标节点,若是则搜索过程结束;若不是则将节点6向第4层扩展,得到节点7; 8、判断节点7是否为目标节点,若是则结束搜索过程;若不是则将节点6向第4层扩展得到节点8; 9、依次类推,知道得到目标节点为止。 三、上述两种搜索策略的比较 在宽度优先搜索过程中,扩展到第26个节点时找到了目标节点;而在深度优先搜索过程中,扩展到第18个节点时得到了目标节点。

八数码问题报告

八数码问题分析 班级:计算机1041 学号:01 姓名:李守先 2013年9月26日

摘要 八数码问题(Eight-puzzle Problem )是人工智能中一个很典型的智力问题。 本文以状态空间搜索的观点讨论了八数码问题,给出了八数码问题的Java 算法与实现的思想, 分析了A*算法的可采纳性等及系统的特点。 关键词 九宫重排, 状态空间, 启发式搜索, A*算法 1 引言 九宫重排问题(即八数码问题)是人工智能当中有名的难题之一。问题是在3×3方格盘上,放有八个数码,剩下一个位置为空,每一空格其上下左右的数码可移至空格。问题给定初始位置和目标位置,要求通过一系列的数码移动,将初始状态转化为目标状态。状态转换的规则:空格周围的数移向空格,我们可以看作是空格移动,它最多可以有4个方向的移动,即上、下、左、右。九宫重排问题的求解方法,就是从给定的初始状态出发,不断地空格上下左右的数码移至空格,将一个状态转化成其它状态,直到产生目标状态。 图1 许多学者对该问题进行了有益的探索[1,2,4,6]。给定初始状态,9个数在3×3中的放法共有9!=362880种,其状态空间是相当大的。因此, 有必要考虑与问题相关的启发性信息来指导搜索,以提高搜索的效率。当然,还有个很重要的问题:每个初始状态都存在解路径吗?文献给出了九宫重排问题是否有解的判别方法:九宫重排问题存在无解的情况,当遍历完所有可扩展的状态也没有搜索到目标状态就判断为无解。可以根据状态的逆序数来先验的判断是否有解,当初始状态的逆序数和目标状态的逆序数的奇偶性相同时,问题有解;否则问题无解。状态的逆序数是定义把三行数展开排成一行,并且丢弃数字 0 不计入其中,ηi 是第 i 个数之前比该数小的数字的个数,则 η=Σηi 是该状态的逆序数,图2说明了逆序数计算的过程 。 本文介绍用JAVA 编写九宫重排问题游戏。游戏规则是,可随机产生或由用户设置初始状态,由初始状态出发,不断地在空格上下左右的数码移至空格,若能排出目标状态,则成功。为了避免对无解节点进行无用搜索,首先对初始节点进行逆序数分析,对有解的节点进行搜索,从而节省了资源,也提高了效率。本文内容安排: 第2部分介绍几个相关的概念和A*算法以及可采纳性 ;

八数码问题A算法的实现及性能分析

八数码问题A*算法的实现及性能分析 计算机科学与技术学院 专业:计算机科学与技术 161210404 杨凯迪

目录 一、8数码问题 (3) 1.问题描述 (3) 2.八数码问题形式化描述 (3) 3.解决方案 (4) 二、A*算法 (4) 1.A*搜索算法一般介绍 (4) 2. A*算法的伪代码 (5) 3. 建立合适的启发式 (6) 三、算法实现及性能比较 (7) 四、算法性能分析 (8) 五、结论 (9) 六、参考文献 (10) 附录 (10)

一、8数码问题 1.问题描述 八数码问题是指这样一种游戏:将分别标有数字1,2,3,…,8 的八块正方形数码牌任意地放在一块3×3 的数码盘上。放牌时要求不能重叠。于是,在3×3 的数码盘上出现了一个空格。现在要求按照每次只能将与空格相邻的数码牌与空格交换的原则,不断移动该空格方块以使其和相邻的方块互换,直至达到所定义的目标状态。空格方块在中间位置时有上、下、左、右4个方向可移动,在四个角落上有2个方向可移动,在其他位置上有3个方向可移动,问题描述如图1-1所示 初始状态过渡状态最终状态 图1-1 八数码问题执行过程 2.八数码问题形式化描述 初始状态: 初始状态向量:规定向量中各分量对应的位置,各位置上的数字。把3×3的棋盘按从左到右,从上到下的顺序写成一个一维向量。我们可以设定初始状态:<1,5,2,4,0,3,6,7,8> 后继函数: 按照某种规则移动数字得到的新向量。例如: <1,5,2,4,0,3,6,7,8> <1,0,2,4,5,3,6,7,8> 目标测试: 新向量是都是目标状态。即<1,2,3,4,5,6,7,8,0>是目标状态? 路径耗散函数: 每次移动代价为1,每执行一条规则后总代价加1。

八数码问题人工智能实验报告

基于人工智能的状态空间搜索策略研究 ——八数码问题求解 (一)实验软件 TC2.0 或VC6.0编程语言或其它编程语言 (二)实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 (三)需要的预备知识 1. 熟悉TC 2.0或VC6.0 编程语言或者其它编程语言; 2. 熟悉状态空间的宽度优先搜索、深度优先搜索和启发式搜索算法; 3. 熟悉计算机语言对常用数据结构如链表、队列等的描述应用; 4. 熟悉计算机常用人机接口设计。 (四)实验数据及步骤 1. 实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 图1 八数码问题示意图 请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。 2. 实验步骤 (1)分析算法基本原理和基本流程; 程序采用宽度优先搜索算法,基本流程如下:

(2)确定对问题描述的基本数据结构,如Open表和Closed表等;

(3)编写算符运算、目标比较等函数; (4)编写输入、输出接口; (5)全部模块联调; (6)撰写实验报告。 (五)实验报告要求 所撰写的实验报告必须包含以下内容: 1. 算法基本原理和流程框图; 2. 基本数据结构分析和实现; 3. 编写程序的各个子模块,按模块编写文档,含每个模块的建立时间、功能、输入输出参数意义和与其它模块联系等; 4. 程序运行结果,含使用的搜索算法及搜索路径等; 5. 实验结果分析; 6. 结论; 7. 提供全部源程序及软件的可执行程序。 附:实验报告格式 一、实验问题 二、实验目的 三、实验原理 四、程序框图 五、实验结果及分析 六、结论

八数码难题的搜索求解演示

人工智能实验报告 学院:信息科学与工程学院 班级:自动化0901班 学号: 06 姓名:孙锦岗 指导老师:刘丽珏 日期:2011年12月20日

一、实验名称、目的及内容 实验名称: 八数码难题的搜索求解演示 实验目的: 加深对图搜索策略概念的理解,掌握搜索算法。 实验内容要求: 以八数码难题为例演示广度优先或深度优先搜索、A算法(本实验使用的是广度优先搜索)的搜索过程,争取做到直观、清晰地演示算法。 八数码难题:在3 X 3方格棋盘上,分别放置了标有数字 123,4,5,6,7,8 的八张牌,初始状态SO,目标状态如图所示,可以 使用的操作有:空格上移,空格左移,空格右移,空格下移。试编一程序实现这一搜索过程。 二、实验原理及基本技术路线图 实验原理: 八数码问题中,程序产生的随机排列转换成目标共有两种可能,而且这两种不可能同时成立,也就是奇数排列和偶数排列。我们可以把一个随机排列的数组从左到右从上到下用一个数组表示,例如{8,

7,1,5,2,6,3,4,0}其中0代表空格。它在奇序列位置上。 在这个数组中我们首先计算它能够重排列出来的结果,公式就是: E(F(X))=Y,其中F (X),就是一个数他前面比这个数小的数的个数,Y为奇数和偶数个有一种解法。那么上面的数组我们就可以解出它的结果。 数据结构: 本实验使用的数据结构是队列,应用队列先进先出的特点来实现对节点的保存和扩展。首先建立一个队列,将初始结点入队,并设置队列头和尾指,然后取出队列(头指针所指)的结点进行扩展,从它扩展出子结点,并将这些结点按扩展的顺序加入队列,然后判断扩展出的新结点与队列中的结点是否重复,如果重复则,否则记录其父结点,并将它加入队列,更新队列尾指针,然后判断扩展出的结点是否是目标结点,如果是则显示路径,程序结束。否则如果队列头的结点可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步,知道扩展出的结点是目标结点结束,并显示路径。 算法分析: 九宫问题的求解方法就是交换空格(0)位置,直至到达目标位置为止。如图所示:

深度宽度优先搜索 - 八数码

Y 八数码问题 具体思路: 宽度优先算法实现过程 (1)把起始节点放到OPEN表中; (2)如果OPEN是个空表,则没有解,失败退出;否则继续; (3)把第一个节点从OPEN表中移除,并把它放入CLOSED的扩展节点表中; (4)扩展节点n。如果没有后继节点,则转向(2) (5)把n的所有后继结点放到OPEN表末端,并提供从这些后继结点回到n的指针; (6)如果n的任意一个后继结点是目标节点,则找到一个解答,成功退出,否则转向(2)。

深度优先实现过程 (1)把起始节点S放入未扩展节点OPEN表中。如果此节点为一目标节点,则得到一个解;(2)如果OPEN为一空表,则失败退出; (3)把第一个节点从OPEN表移到CLOSED表; (4)如果节点n的深度等于最大深度,则转向(2); (5)扩展节点n,产生其全部后裔,并把它们放入OPEN表的前头。如果没有后裔,则转向(2); (6)如果后继结点中有任一个目标节点,则得到一个解,成功退出,否则转向(2)。 方法

一:用C语言实现 #include #include #include typedef long UINT64; typedef struct { char x; //位置x和位置y上的数字换位 char y; //其中x是0所在的位置 } EP_MOVE; #define SIZE 3 //8数码问题,理论上本程序也可解决15数码问题, #define NUM SIZE * SIZE //但move_gen需要做很多修改,输入初始和结束状态的部分和check_input也要修改 #define MAX_NODE 1000000 #define MAX_DEP 100 #define XCHG(a, b) { a=a + b; b=a - b; a=a - b; } #define TRANS(a, b) /*{ long iii; (b)=0; for(iii=0; iii < NUM; iii++) (b)=((b) << 4) + a[iii]; }*/ //将数组a转换为一个64位的整数b #define RTRANS(a, b) \ { \ long iii; \ UINT64 ttt=(a); \

八数码难题的搜索求解演示

人工智能实验报告 学院:信息科学与工程学院 班级:自动化0901班 学号: 姓名:孙锦岗 指导老师:刘丽珏 日期:2011年12月20日

一、实验名称、目的及内容 实验名称: 八数码难题的搜索求解演示 实验目的: 加深对图搜索策略概念的理解,掌握搜索算法。 实验内容要求: 以八数码难题为例演示广度优先或深度优先搜索、A算法(本实验使用的是广度优先搜索)的搜索过程,争取做到直观、清晰地演示算法。 八数码难题:在3×3方格棋盘上,分别放置了标有数字1,2,3,4,5,6,7,8的八张牌,初始状态S0,目标状态如图所示,可以使用的操作有:空格上移,空格左移,空格右移,空格下移。试编一程序实现这一搜索过程。 二、实验原理及基本技术路线图 实验原理: 八数码问题中,程序产生的随机排列转换成目标共有两种可能,而且这两种不可能同时成立,也就是奇数排列和偶数排列。我们可以把一个随机排列的数组从左到右从上到下用一个数组表示,例如{8,

7,1,5,2,6,3,4,0}其中0代表空格。它在奇序列位置上。 在这个数组中我们首先计算它能够重排列出来的结果,公式就是:∑(F(X))=Y,其中F(X),就是一个数他前面比这个数小的数的个数,Y为奇数和偶数个有一种解法。那么上面的数组我们就可以解出它的结果。 数据结构: 本实验使用的数据结构是队列,应用队列先进先出的特点来实现对节点的保存和扩展。首先建立一个队列,将初始结点入队,并设置队列头和尾指,然后取出队列(头指针所指)的结点进行扩展,从它扩展出子结点,并将这些结点按扩展的顺序加入队列,然后判断扩展出的新结点与队列中的结点是否重复,如果重复则,否则记录其父结点,并将它加入队列,更新队列尾指针,然后判断扩展出的结点是否是目标结点,如果是则显示路径,程序结束。否则如果队列头的结点可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步,知道扩展出的结点是目标结点结束,并显示路径。 算法分析: 九宫问题的求解方法就是交换空格(0)位置,直至到达目标位置为止。如图所示:

人工智能启发式图搜索算法

启发式图搜索算法 摘要:启发式搜索策略概述和有序搜索。启发式搜索弥补盲目搜索的不足,提高搜索效率。一种方法用于排列待扩展节点的顺序,即选择最有希望的节点加以扩展,那么,搜索效率将会大为提高。进行搜索技术一般需要某些有关具体问题领域的特性的信息。 关键词:启发式搜索;估价函数;有序搜索;A*算法; 正文: 启发式图搜索的意义因为无信息图搜索算法的效率低,耗费过多的计算空间与时间,这是组合爆炸的一种表现形式。所以引入了启发式图搜索算法。 启发式图搜索算法就是进行搜索技术一般需要某些有关具体问题领域的特性的信息,把此种信息叫做启发信息。利用启发信息的搜索方法叫做启发式搜索方法。关于图搜索的启发式搜索算法就叫做启发式图搜索算法。 启发式图搜索策略:假设初始状态、算符和目标状态的定义都是完全确定的,然后决定一个搜索空间。因此,问题就在于如何有效地搜索这个给定空间。 启发信息按其用途可分为下列3种: (1) 用于决定要扩展的下一个节点,以免像在宽度优先或深度优先搜索中那样盲目地扩展。 (2) 在扩展一个节点的过程中,用于决定要生成哪一个或哪几个后继节点,以免盲目地同时生成所有可能的节点。 (3) 用于决定某些应该从搜索树中抛弃或修剪的节点。 启发信息的状态空间搜索算法,即决定哪个是下一步要扩展的节点。这种搜索总是选择“最有希望”的节点作为下一个被扩展的节点。这种搜索叫做有序搜索(ordered search)。有关具体问题领域的信息常常可以用来简化搜索。一个比较灵活(但代价也较大)的利用启发信息的方法是应用某些准则来重新排列每一步OPEN表中所有节点的顺序。然后,搜索就可能沿着某个被认为是最有希望的边缘区段向外扩展。应用这种排序过程,需要某些估算节点“希望”的量度,这种量度叫做估价函数(evalution function)。所谓的估价函数就是为获得某些节点“希望”的启发信息,提供一个评定侯选扩展节点的方法,以便确定哪个节点最有可能在通向目标的最佳路径上。f(n)——表示节点n的估价函数值建立估价函数的一般方法:试图确定一个处在最佳路径上的节点的概率;提出任意节点与目标集之间的距离量度或差别量度;或者在棋盘式的博弈和难题中根据棋局的某些特点来决定棋局的得分数。这些特点被认为与向目标节点前进一步的希望程度有关。 有序搜索应用某个算法(例如等代价算法)选择OPEN表上具有最小f值的节点作为下一个要扩展的节点。这种搜索方法叫做有序搜索(ordered search)或最佳优先搜索 (best-first search),而其算法就叫做有序搜索算法或最佳优先算法。尼尔逊曾提出一个有序搜索的基本算法。估价函数f是这样确定的:一个节点的希望程序越大,其f值就越小。被选为扩展的节点,是估价函数最小的节点。选择OPEN表上具有最小f值的节点作为下一个要扩展的节点,即总是选择最有希望的节点作为下一个要扩展的节点。 有序状态空间搜索算法 (1) 把起始节点S放到OPEN表中,计算f(S)并把其值与节点S联系起来。 (2) 如果OPEN是个空表,则失败退出,无解。 (3) 从OPEN表中选择一个f值最小的节点i。结果有几个节点合格,当其中有一个为目标节点时,则选择此目标节点,否则就选择其中任一个节点作为节点i。

八数码实验报告

利用人工智能技术解决八数码游戏问题 1.八数码游戏问题简介 九宫排字问题(又称八数码问题)是人工智能当中有名的难题之一。问题是在 3×3方格盘上,放有八个数码,剩下第九个为空,每一空格其上下左右的数码可移至空格。问题给定初始位置和目标位置,要求通过一系列的数码移动,将初始位置转化为目标位置。 2.八数码游戏问题的状态空间法表示 ①建立一个只含有初始节点s0的搜索图g,把s0放入open表中 ②建立closed表,且置为空表 ③判断open表是否为空表,若为空,则问题无解,退出 ④选择open表中的第一个节点,把它从open表移出,并放入closed表中,将此节点记为节点n ⑤考察节点n是否为目标节点,若是,则问题有解,成功退出。问题的解就是沿着n到s0的路径得到。若不是转⑥ ⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记为集合m,将m中的这些节点作为n的后继节点加入图g中 ⑦对未在g中出现过的(open和closed表中未出现过的)集合m中的节点, 设置一个指向父节点n的指针,并把这些节点放入open表中;对于已在g中出现过的m中的节点,确定是否需要修改指向父节点的指针;对于已在g中出现过并已在closed表中的m中的节点,确定是否需要修改通向他们后继节点的指针。 ⑧按某一任意方式或某种策略重排open表中节点的顺序 ⑨转③ 3.八数码游戏问题的盲目搜索技术 宽度优先搜索: 1、定义 如果搜索是以接近起始节点的程度依次扩展节点的,那么这种搜索就叫做宽度优先搜索(breadth-first search)。 2、特点 这种搜索是逐层进行的;在对下一层的任一节点进行搜索之前,必须搜索完本层的所有节点。 3、宽度优先搜索算法 (1) 把起始节点放到open表中(如果该起始节点为一目标节点,则求得一个解答)。 (2) 如果open是个空表,则没有解,失败退出;否则继续。 (3) 把第一个节点(节点n)从open表移出,并把它放入closed的扩展节点表中。 (4) 扩展节点n。如果没有后继节点,则转向上述第(2)步。 (5) 把n的所有后继节点放到open表末端,并提供从这些后继节点回到n的指针。 (6) 如果n的任一个后继节点是个目标节点,则找到一个解答,成功退出;否则转向第(2)步。 流程图: 性质: 当问题有解时,一定能找到解。 当问题为单位消耗值,且问题有解时,一定能找到最优解。 算法与问题无关,具有通用性。 时间效率和空间效率都比较低。 深度优先搜索:

相关文档
相关文档 最新文档