文档库 最新最全的文档下载
当前位置:文档库 › 电压保护装置

电压保护装置

电压保护装置
电压保护装置

电压保护装置采用面板式安装,高雅、亮丽的外观,为低压电控装置提升档次。

相序保护器、过欠压保护器等)主要用于交流50/60Hz,

400V)、440V(460V)、660V等电压级别的各种故障检测,对三相输入电源的电压过高、电压过低、断相、错相(逆相序)、三相电压不平衡等提供继电保

复位方式:相序、缺相故障手动复位;不平衡、过欠压故障自动复位,也可按复位键手动复位。断

电后故障锁存功能。

JL-410电压保护装置功能选型

电压保护装置按功能的组合分以下四个系列,每个系列都有不同电压等级的产品。

●表示具有该功能 ○表示不具有该功能

电压保护装置不同电压等级的产品选型

产品选型举例

1. 如用户需要全部保护功能(过电压保护、欠电压保护、缺相保护、三相电压不平衡保护、相序保护),

使用于380V 电压,那所选择的电压保护装置产品型号,应该为JL-410。

2. 如用户只需要相序保护,缺相保护两种功能,使用于煤矿660V 的电压,那所选的电压保护装置产品

型号应该为JL-411-60。

JL-410电压保护装置功能描述:

1、过压保护:当电网电压大于设定值时启动该项保护功能,动作门限值设定范围OFF-390-490V ,动作

方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到小于设定值10V 以上时,保护器

自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。

2、欠压保护:当电网电压小于设定值时启动该项保护功能,动作门限值设定范围300-370V-OFF ,动作

方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到大于设定值10V 以上时,保护器

自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。

3、三相电压不平衡保护:当电网电压三相不平衡度大于设定值时启动该项保护功能,不平衡度动作门

限值设定范围OFF-5-30%,动作方式为定时限,动作时间设置范围1-25s 。当电网电压三相不平衡度恢复

到小于设定门限值2%以上时,保护器自动复位,也可按复位键手动复位。用户可选择是否启用该项保护

功能。

三相电压不平衡度计算公式:

A ——电压不平衡度

max U ——三相线电压中最大线电压值

%

100max

min

max ?-=U U U A

min

U——三相线电压中最小线电压值

4、缺相保护:当电网电压三相不平衡度大于30%时启动该项保护功能,动作时间1s。当断相故障消失后,可按复位键手动复位。三相电压不平衡保护关闭时,断相保护功能也随之关闭。

5、相序保护:当三相电源相序错误时启动该项保护功能,动作方式为定时限,动作时间1s。当相序错误故障消失后,可按复位键手动复位。用户可选择是否启用该项保护功能。

6、故障记忆:能记忆最近三次故障信息,故障序号1为最近一次故障信息,当故障信息大于三次时,自动把最早的故障信息删除。

7、声光报警:保护器显示屏的背光作为光报警信号,当保护器检测到任何故障时,保护器还未动作脱扣时,故障指示符长亮,背光闪烁;当保护器动作脱扣动作后,故障指示符闪烁,背光长亮,蜂鸣器断续鸣叫,此时按任意键可消除声音报警。按复位键或故障自动复位后光报警才停止。

8、背光技术:操作任意按键背光点亮,方便全天候的操作、观察。在正常工作状态下无按键操作25秒后关闭背光;在报警状态下无按键操作5秒后背光闪烁。

9、声报警: 保护器进入和退出设置状态时蜂鸣器发“嘟”声提示。在报警状态下蜂鸣器发出断续报警声音,此时按任意键取消报警音,直到下次报警时才发出响声。

10、电压表功能:正常运行状态:保护器默认显示“A相、B相”及电压值,即A、B相线电压Uab。此时按“▲”“▼”键可切换显示“B相、C相”及电压值,即B、C相线电压Ubc;或“A相、C相”及电压值即A、C相之间线电压Uac。

JL-410电压保护装置技术参数

额定控制电压Ue ·相电压

·线电压

AC-220V

AC-380V

功耗2VA

供电压电压误差-30% (30)

供电电压频率50/60Hz

供电时间100%

监视功能过/欠电压、相序、缺相、不平衡

测量范围相电压:150/300V 线电压:280/500V

阀值可调

过/欠电压迟滞10V

测量频率50/60Hz±10%

电压响应时间50ms

供电误差范围内测量误差≤0.5%

温度范围内测量误差0.06%/℃

过/欠电压0.1-25S范围可调相序1S

缺相1S

三相电压不平衡1-25s

产品标准IEC255-6、EN60255-6 EMC导则89/366/EEC

CE标志测量和控制继电器符合欧洲相关的CE 标准

正常供电电压显示工作电压值输出继电器动作显示故障信息

过电压故障显示【过压】,数字窗显示最大相电压值

欠电压故障显示【欠压】,数字窗显示最小相电压值

缺相故障显示【缺相】,数字窗显示000 相序故障显示【相序】,数字窗显示电压值

三相电压不平衡故障显示【不平衡】,数字窗显示最小相电压值

输出回路 95/96 97/98

触点数量2C/O触点动作原则闭路原则触点材料AgNi

额定电压VDE0110、IEC 6094-1 250V

最大开关电压440V

额定开关电流(IEC 60947-5-4) AC-12(阻性)230V 5A AC-15(感性)230V 3A AC-12(阻性)24V 5A AC-13(感性)24V 2A

机械寿命30×106次电气寿命AC-12,230V,4A 0.1×106次

导线载面面职1、0.75-1.5mm带压线端子多股软导线,

2、0.52-4mm (2×20-12awg)硬线

安装位置任何

防护等级IP50/IP20 工作温度-20 (60)

储存温度-40 (85)

允许相对温度范围符合IEC60721-3-3 15…85%环境等级3K3

复位功能过电压、欠电压、不平衡自动复位,相序、缺相手动复位

安装96 x96面板式(开孔尺寸91x91mm)电磁兼容

静电放电(ESD)IEC/EN61000-4-2 Level3-6kV/8kV

射频辐射IEC61000-4-3、EN61000-4-3 Level3-10V/m

瞬变冲击IEC61000-4-4、EN61000-4-4 Level3-2kV/5kHz

浪涌IEC1000-4-5、EN61000-4-4 Level4-2kVL-L

射频传导发射Level3-10V

低压导则73/23/EEC

机械振动IEC600-68-2-6 6g

供电回路、监视回路、输出回路间额定绝缘电压

VDE0110、IEC60947-1

1000V

所有隔离回路的额定冲击耐受电压Uimp

VDE0110、IEC664

测量回路:6KV输出回路:4KV 所有隔离回路间试验电压 2.5KV 50Hz 1min

污染等级VDE0110、IEC664、IEC-255-5 Ⅲ

过电压等级VDE0110、IEC664、IEC-255-5 Ⅲ

环境试验IEC68-2-30 24小时循环、55℃、相对湿度93%、96h

JL-410电压保护装置工作原理

被检测的三相电源连接于继电器L1 L2 L3端子上。无须提供一个单独的电源给继电器,它们通过端子L1 L2 L3自供电。

相序保护

相序监测:当电压保护装置通电时,如果相序正确并且所有三相带电,继电器吸合。

过压/欠压

A:“过压”字符闪烁 B:“过压”字符长亮 C/D:“欠压”字符闪烁 E:“欠压”字符长亮

过压和欠压检测:在正常工作条件下,电压保护装置通电,如果三个线电压中其中有一个线电压超出监测范围,输出继电器延时释放,显示过压或欠压故障信息。延时期间,故障信息闪烁;输出继电器释放后,故障信息长亮。当电压返回额定值,继电器根据滞后值10V重新吸合并且过压或欠压故障信息消失。设置按键可以进0.1s到25s的可延时调整。为了检测过压或欠压的持续时间必须大于测量周期(80ms)。

缺相保护

缺相检测:当缺相故障时,输出继电器断电。正常工作(无故障)时继电器吸合。

不平衡

A、B、C:“不平衡”字符闪烁 D:“不平衡”字符长亮

不平衡检测:在正常工作条件下,输出继电器吸合。当出现不平衡故障时,经过设定的延时动作时间后。输出继电器释放,屏幕显示不平衡故障。

JL-410电压保护装置外形尺寸:

JL-410电压保护装置接线图:

主操作界面 开孔尺寸

QS :隔离开关QF :断路器断路器分励脱扣线圈

9798L1

三相三线制分励脱扣器接线图KM

L1

KM

负载三相三线制交流接触器接线图

QF :断路器

KM :交流接触器

如(图1)所示,为保护器的主操作界面。主操作界面由LCD、背光以及按键组成。按键的功能定义如下:

(图1)

设置键

在查询模式下,持续按设置键1.5秒,系统将进入设置模式。

在设置模式下,将按照“过压值、过压动作时间、欠压值、欠压动作时间、不平衡度、不平衡动作时间、相序开关、故障查询”的顺序,依次切换当前设置。

▲键

在查询模式下改变当前显示的线电压。按照“AB – BC – AC”的顺序,每按▲一次,改变一次显示的线电压对应的数据,如(图2)所示。

(图2)

在设置模式下对各项功能进行开启关闭操作。如果当前功能为OFF,则按▲后变为ON,再次按▲后变为OFF依次循环,如(图3)所示。

(图3)

在设置模式下对当前数值进行增操作。每按▲一次,数值在限定范围内加1。持续按下超过1秒钟,数值会以10倍速度增加,如(图4)所示。

(图4)

▼键

在查询模式下改变当前显示的线电压。按照“AC – BC – AB”的顺序,每▼按一次,改变一次显示的线电

压对应的数据。

在设置模式下对各项功能进

行开启关闭操作。如果当前功能为ON,则按▼后变为OFF,再次按▼后变为ON,依次循环。

在设置模式下对当前数值进行减操作。每按▼一次,数值在限定的范围内减1。持续按下超过1秒钟,数值会以10倍速度减少。

复位键

在故障状态下,按一次复位,系统复位。

操作方法

查询

保护器上电后,默认显示AB线电压。如需查询BC,AC线电压,可以操作▲, ▼键进行查询。每按一次▲键,当前线电压正向切换为下一个线电压,顺序为“AB – BC – AC –AB……”。每按一下▼键,则逆向切换,顺序为“AB – AC –BC – AB ……”。

复位

在非设置状态,按复位键,保护器将复位。

设置

任何时候,按下设置键,保护器进入设置模式。首先进行相序保护功能的设置,如图5所示。

如图5所示,为过压值设置界面。过压值设置只有在过压功能开启之后才会出现。默认过压为关闭(OFF)。过压值的设置范围为390V – 490V–OFF。按▲一次增1,按▼一次减1。持续按下▲不放超过1秒,数值会以10倍速度增加。同样的,按下▼不放持续1秒,数值会以10倍速度减少。在设置好所需要的过压值后,按设置键保存参数,并且进入过压动作时间的设置。

(图5)

如图6所示,为过压动作时间设置界面。过压动作时间只有在过压功能开启之后才会出现。过压动作时间的设置范围为0.1s – 25s。默认为10.0s。按一次▲增加0.1s,按一次▼减少0.1s。持续按下▲则以10倍速度增加,持续按下▼则以10倍速度减少。在设置好过压动作时间后,按设置键保存参数,并且进入欠压功能设置。

(图6)

如图7所示,为欠压值设置界面。欠压值必须在欠压保护功能开启之后才能出现。欠压值的设置范围为300V – 370V。默认欠压为关闭(OFF)。如果改变,按▲键一次,数值增1,按▼键一次,数值减1;持续按下▲,数值以10倍速度增加。持续按下▼键,数值以10倍速度减小。欠压值调整好后,按设置键保存当前参数,并进入欠压动作时间设置。

(图7)

如图8所示,为欠压动作时间设置界面。欠压动作时间必须在欠压保护功能开启之后才能出现。欠压保护时间的设置范围为0.1s – 25s。操作方法同上,按设置键保存当前参数,并进入不平衡功能设置。

(图8)

如图9所示,为不平衡度设置界面。不平衡度必须在不平衡保护功能开启之后才会出现。不平衡度的设置范围为OFF-5% -30%。这里,修改不平衡度的方法如上,不在赘述。按设置键保存当前参数,进入不平衡动作时间设置。

(图9)

如图10所示,为不平衡动作时间设这界面。不平衡动作时间必须在不平衡保护功能开启之后才会出现。不平衡动作时间设置范围为1s – 25s。按▲一次,增加1s;按▼一次,减少1s;持续按▲,数值以10倍速度增加;持续按下▼,数值以10倍速度减少。按设置键保存当前参数,进入设置相序开关。

(图10)

如图11所示,为相序功能设置界面。默认,相序保护功能关闭,LCD显示OFF。如需开启,可以按▲键,或者▼键将其设置为ON。按设置键,保存当前相序参数,并且进入故障查询界面。

(图11)

如图12所示,为故障查询界面。

右边数字为最近第几次的故障记录,按设置键键入记录的数据内容,如图13,此时可以按▲键,或者▼键查看三相电压数据。

(图12)

(图13)

如图14所示,为准备退出界面。表示所以参数设置完毕,按设置设置键将退出设置模式,保护器按照新设置的参数运行。

图14

报警

15秒内没有任何操作,保护器自动关闭背光。故障发生后,蜂鸣器发声,继电器动作,背光1秒钟闪烁一次,LCD锁定故障显示。

自动退出

在设置模式下,30秒没有任何操作,保护器将退出设置模式。

电力电容器保护原理解释

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护(电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护(电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

农村配电网低电压产生的原因及治理措施

农村配电网低电压产生的原因及治理措施 发表时间:2017-05-04T11:52:46.590Z 来源:《基层建设》2017年3期作者:武兆敏孙成范赵君明 [导读] 必须对农村电网进行治理,本文阐述农村电网低电压出现原因及相应的解决方式。 国网山东省电力公司禹城市供电公司山东德州 251200 摘要:随着农村经济的发展和家电下乡政策的深入,各种大功率的家用电器出现在农民家庭之中,农村用电量迅速的增长,电网的用电压力也不断的增加,进而出现了"低电压"的问题,在一定程度上影响着新农村的建设,因此,必须对农村电网进行治理,本文阐述农村电网低电压出现原因及相应的解决方式。 关键词:农村电网;低电压;发生原因;综合处理措施 引言 随着经济的发展,我国农村电网的全覆盖,满足了农民生产和生活的需要。随着家电下乡政策的不断深入,各种大功率的家用电器出现在农民的家庭之中,农村用电与以往相比有了很大的改变,农民用电量迅速攀升,电网的用电压力也急剧增加,“卡脖子”、“过负荷”等显现突出,少数地区“低电压”的问题较为严峻,严重的影响了农村的发展。农村电网“低电压”严重影响农民的生活质量,制约农村经济的发展和社会主义新农村的建设。根据农村电网“低电压”进行分析,并提出具体的治理方案。 1、配网低电压产生的原因 1.1从农村配网线路角度 现行培养低电压问题产生的主要归结于配网线路问题,其自身供电半径过长极易造成电压出现不平稳的情况。因配电网线路产生的低电压问题具体表现在两方面:第一,农村配网线路随农村整体建设规模的扩大而逐渐延伸,若在线路建设中未及时改造配网线路,将出现配网电能损耗问题。第二,变压器在配电网中的设置不够合理,且供电线路的设置主要以单向放射形式为主,或用电负荷中心难以保证10kV线路作用的发挥,这些因素都将导致线路末端电压出现持续降低的现象。若低电压问题较为严重,将使电力系统整体难以正常运行 1.2从配电网负荷角度 社会主义新农村建设过程中逐渐引入更多的惠农政策,如典型的“家电下乡”等,其直接使农村电气设备在数量上逐渐增多,需要更多的用电需求量以保证电气设备的正常使用。同时,农村建设中逐渐改变以往完全以农业经济为主的形式,如养殖业或工业等各方面,这些都使配电网负荷压力进一步增加。因此,配电变压器在用电负荷作用下将表现出过载、重载电现象,直接导致低压线路电压过低 1.3从无功功率补偿角度 传统农村弄点格局多停留在照明系统方面,而当前农村发展中如冰箱、空调或家电等方面逐渐引入其中,这些电气设备往往以感性负荷为主,对无功功率的要求较高。大多农村地区配网变压器往往难以对这些设备进行无功功率补偿,即使部分区域不断引进如电容器等设备,但普及率较低,因此线路在进行大量无功功率输送过程中将使自身对电压逐渐降低。除此之外,现行对用电负荷的管理工作仍表现较为薄弱,如对装接容量的考虑,一旦其高于配变台区标准容量便可能出现低电压问题。 2、农村低电压治理研究 2.1变电站的完善 大多农村变电站中半径超出15km的10kV线路占总线路的50%以上,很容易出现低电压问题,对此现状可结合实际电网规划要求进行变电站电源点增设工作,使变电站的运行更为可靠。具体实践中为使主网供电能力得以提升,可通过110kV变电站的构建来实现,针对其中的10kV线路,若供电半径大于30km可构建下供应的公用配变,这种方式可使用电负荷压力过大问题得以解决。同时要求对过长的线路半径进行缩短,通过促进供电能力的提升保证电压质量。借助GPRS、配变数据上传、TTU、智能电表、移动式电压监测仪、LED显示等技术,建立健全“低电压”监测网络,完善监测手段。开展变电站、配变和低压用户电压联调管理。借助GPRS技术,实现低电压用户电压信息反馈,参与变电站、配变调压和无功投切判据,建立联调机制,完善调压手段。 2.2加强线路设备 改造根据“容量小,分布密,半径短和绝缘化”这一原则来对农村配电变压器进行改造,同时创建更多的配电变压器来缩小低压线路的供电半径。对不同情况的线路进行改造可以采取不同的方法,其一,通过增加配电变压器的布点或增大容量来改造那些一直存在负荷过载问题的台区以及部分低压线路,提升半径大于510米并且电压过低的低压线路的电压质量。值得注意的是,布点后的老变压器需根据最优供电半径进行优化调整。其二,通过增大导线的线径以及将一定负荷调整到附近台区的方法来改造低压线路中线径较小和负荷过载的配电台区 2.3做好无功功率补偿工作 大多农村地区无论在变电站或10kV线路等方面都难以起到补偿无功功率的作用,是造成低电压问题的主要原因。对此现状首先对于变电站可采取相应的优化补偿措施,具体操作中可进行无功补偿容量的优化配置,结合负荷特点选择集中、分散等补偿方式,这样可达到优化分布无功潮流的目标。同时在10kV线路补偿方面,可引入相应的无功补偿装置,如电容器等。除此之外,农村地区公用配变往往也是产生低电压问题的来源,可结合公用配变功率与负荷情况进行无功补偿装置的设置。 2.4注重调压能力的提升 调压能力的上升主要集中在线路与变电站方面。其中对于10kV线路,可将自动调压器设置其中,可有效解决低电压问题。而在变电站方面,若电网建设规划中涉及变电站构建内容,应保证变电站在变压器使用方面选择有载调压变压器。若不存在变电站规划内容,对于运行年限较长的变电站可通过技术措施进行主变的改造或更换,选择有载调压主变 2.5降低配电变压器三相负荷不平衡度 配电变压器三相负载的不平衡,导致中心点的电压位置发生变化,最终负载相对轻的一相反而电压偏高,而负载相对重的一相电压却偏低。所以为了降低配电变压器三相负荷的不平衡度,首先要建立无功电源设备的运行制度,着重对线路设备的负荷管理,以及农村对侧用电的需求管理。3.4加强柱上变压器负荷管理要加强对柱上变压器的负荷管理,不仅是做好季节性负荷的日测工作,还要分析那些通过负荷测录仪器测量出来的每一时刻的电流以及电压数据,计算电量,无功电源,有功电源和负载率等相关数据,并且及时的应用这些数据。尤其要重点分析那些超负荷的柱上变压器。从而确保不会出现老化的低压电网和柱上变压器从而影响到电网的运行质量,保证低压电网的

并联电容器组的过电压保护

并联电容器组的过电压保护 【摘要】对并联电容器组的过电压保护进行深入研究,对于实际电力的正常运行有着十分重要的作用。本文首先研究了过电压保护的重要作用,然后分析了并联电容器组所承受的不同过电压,然后在探讨过电压保护方法思路的基础上,提出了电容器组运行维护的注意事项。 【关键词】并联;电容器组;过电压;保护 一、前言 并联电容器组在电力系统中的应用十分广泛,作用也十分明显。注重对过电压保护的研究,能够更好地指导电力实践。并联电容器组在实际运行过程中,会承受到多种不同类型的过电压,研究过程中有必要着重进行分析。 二、过电压保护的作用 电容器内部故障发展过程,大多数先是个别元件发生击穿短路,如无内熔丝动作切除故障元件,则为故障元件所在串联段短路,当故障继续发展就会有数个串联段乃至全部击穿短路。设置各种电容器内部保护是期望故障电容器在全击穿之前撤出,以免发生外壳爆裂事故。就保护灵敏度而言,通常是内外熔丝保护高于不平衡保护,而不平衡保护高于过电压保护,从而构成诸种保护的配合顺序。 当电容器组采用内熔丝或外熔丝为主保护时,不平衡保护和过电压保护为后备保护;当电容器组采取无熔丝保护时,不平衡保护为主保护,过电压保护为后备保护。过电压保护作为后备保护,是在主保护失效时起作用。可见,无论是采取何种保护配置组合,过电压保护都是不可或缺的保护方式。根据高压并联电容器装置的使用场所和装置构成及其技术特性的区别。 三、并联电容器组承受的过电压 并联电容器组的过电压问题,主要考虑操作过电压,因为对电容器组来讲遭受雷击大气过电压的机率很小,雷电波在大电容的影响下,陡度较小,减小了对绝缘的危害。常见的操作过电压主要有以下几个方面。 1.电容器组分闸时弧燃引起的过电压 电容器组的操作过电压大多是由于在断路器分闸时电弧重燃所引起的。单相重燃时,在电容器组不接地中性点上,产生中性点对地过电压。此过电压与其它相电容上的电压叠加,形成更高的极对地过电压。 2.合闸时电容器极间过电压

电压保护装置

电压保护装置采用面板式安装,高雅、亮丽的外观,为低压电控装置提升档次。 相序保护器、过欠压保护器等)主要用于交流50/60Hz, 400V)、440V(460V)、660V等电压级别的各种故障检测,对三相输入电源的电压过高、电压过低、断相、错相(逆相序)、三相电压不平衡等提供继电保

复位方式:相序、缺相故障手动复位;不平衡、过欠压故障自动复位,也可按复位键手动复位。断 电后故障锁存功能。 JL-410电压保护装置功能选型 电压保护装置按功能的组合分以下四个系列,每个系列都有不同电压等级的产品。 ●表示具有该功能 ○表示不具有该功能 电压保护装置不同电压等级的产品选型 产品选型举例 1. 如用户需要全部保护功能(过电压保护、欠电压保护、缺相保护、三相电压不平衡保护、相序保护), 使用于380V 电压,那所选择的电压保护装置产品型号,应该为JL-410。 2. 如用户只需要相序保护,缺相保护两种功能,使用于煤矿660V 的电压,那所选的电压保护装置产品 型号应该为JL-411-60。 JL-410电压保护装置功能描述: 1、过压保护:当电网电压大于设定值时启动该项保护功能,动作门限值设定范围OFF-390-490V ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到小于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 2、欠压保护:当电网电压小于设定值时启动该项保护功能,动作门限值设定范围300-370V-OFF ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到大于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 3、三相电压不平衡保护:当电网电压三相不平衡度大于设定值时启动该项保护功能,不平衡度动作门 限值设定范围OFF-5-30%,动作方式为定时限,动作时间设置范围1-25s 。当电网电压三相不平衡度恢复 到小于设定门限值2%以上时,保护器自动复位,也可按复位键手动复位。用户可选择是否启用该项保护 功能。 三相电压不平衡度计算公式: A ——电压不平衡度 max U ——三相线电压中最大线电压值 % 100max min max ?-=U U U A

配网低电压治理技术最新版

第6章配网低电压治理技术 6.1 配网低电压产生原因 6.1.1 低电压特征分类 依据低电压发生和持续的时间特点,大致可分为3类:长期性、季节性和短时性。①长期性低电压指用户低电压情况持续3个月或日负荷高峰低电压持续6个月以上的低电压现象;②季节性低电压是指度夏度冬、春灌秋收、逢年过节、烤茶制烟等时段出现的具有周期规律的低电压现象;③短时性低电压主要是指由农村居民临时性挂接负荷或建筑用电负荷引起的不具有长期性和季节性特点的阶段性不规律低电压现象。 6.1.2 低电压发生时段分布 1)农村集中排灌期间。每年1~3月份、6~9月份和11~12月份,农业排灌负荷较为集中,用电量较大,部分带有排灌负荷的公用配电变压器短时间出现满载、过载现象,造成处于低压线路末端负荷的供电电压较低。 2)日用电高峰时段。由于农村经济发展迅速,农户生活水平逐步提高,家用电器保有量快速增加,农村配电台区用电负荷快速增长,农村日用电高峰时段相对集中,具体情况见表1 。表1日用电高峰时段 Tab.1Daily peak load time 季节月份时段备注 夏季7,8 中午:11:00~15:00 晚上:19:00~22:00 地方特色经济作物加 工季节,如南方春季 采茶期等 冬季12,1 晚上:19:00~22:00 6.1.3 低电压产生的管理层面原因 1)供配电设施运维管理粗放。中低压供电设备台账不健全或更新不及时,网架

和设备的基础性资料不完善。营销、配电、调度数据资源信息不能充分共享,变电站、线路、配电变压器(简称配变)和低压用户之间没有建立有效的联调管理机制,未依照季节性负荷情况和用电峰谷状况及时调整配变分接头位置和投切无功补偿设备,设备管理人员对设备运行状态和补偿效果不清楚、不了解、不掌握,对损坏或缺陷设备发现、处理、更换不及时。 2)部分地区营销管理不精细。个别地区农村用户 报装接电管理较为松散,存在较大集中负荷接于公用配变用电或农村居民用户生产负荷报小用大的现象,造成配变过负荷低电压情况;配电台区管理人员对台区单相用户未均衡分配接入A、B、C相,大量农村用电负荷集中在农忙时节,如春耕秋收和排灌期间,用电负荷分布不均,造成配变低压侧用电负荷三相严重不平衡,导致重载相中后段用户低电压。 3)中低压配电网电压监测不全面。按照电压监测点一般配置要求,农村电网每百台配变设置1个电压监测点配置,城市电网每百台配变设置2个电压监测点进行配置。农村居民用户点多面广,客户端电压监测不全面;个别电压监测点代表性不强,依据监测数据难以准确掌握农村电压质量真实情况;配电台区监测、用户用电信息采集的运行和状态数据质量参差不齐、可用率低,通过系统性关联分析定位低电压问题原因难度大。 4)低压需求侧管理工作不到位。对用户用电性质 掌握不全面,对台区负荷发展的预见性不够,高峰负荷时造成台区配变过负荷运行,未得到有效监测和及时处理;对用户用电知识宣传不够,部分用户的户内线未根据实际用电负荷增长情况同步进行增容改造,超年限超负荷使用,线路老化严重,电压过低致使家用电器无法正常使用;对类似农产品加工的季节性负荷缺乏有效的调峰措施;对大负荷用户错峰用电宣传和引导不力,负荷过于集中,未能及时转移负荷,造成用户低电压问题。 6.1.4 低电压产生的技术层面原因 1)农村配电网供电能力不足。农村用电负荷相对城市负荷密度小,部分农村特别是丘陵、山区等地居民居住比较分散,变电站布点不足,缺乏合理规划,配变布点和线径配置凭经验,缺少必要的电压降落校验;个别新上或改造的配电台区设计时超合理负荷距供电,配变容量配置不足,低压线路供电半径大。2)中低

电力电容器保护原理解释

电力电容器保护原理解 释 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

常见电力电容器保护类型: 电容器保护 1 保护熔丝 现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏。此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。 2 过电流保护 (电流取自线路TA) 过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸。电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。 为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s以上就可躲过涌流的影响。 3 不平衡电压保护 (电压取自放电TV二次侧所构成的开口三角型) 电容器发生故障后,将引起电容器组三相电容不平衡。电容器组的各种主保护方式都是从这个基本点出发来确定的。 根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种。这两种保护,都是利用故障电容器被切

除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器。这些保护方式各有优缺点,我们可以根据需要选择。 单星形接线的电容器组目前国内广泛采用开口三角电压保护。 对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸。 4 不平衡电流保护 这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的。常见的不平衡电流保护的方式有以下两种: 4.1 双星形中性点间不平衡电流保护 保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线。如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸。

过电压保护(装置)及维护

过电压保护(装置)及维护 一、过电压的定义及分类 1、过电压:超过电力系统最高工作电压的电压,称为过电压。 2、过电压的分类 ①外部过电压(雷电过电压):由电力系统外部的雷电引起的 过电压。 ②内部过电压(操作过电压、谐振过电压):由电力系统内部 原因引起的过电压。 二、过电压保护措施的选用原则 一个世纪以来,始终是遵循着如下原则。 1、选用保护措施、避雷器保护性能、绝缘水平等,归根到底 是经济问题。 保护措施可靠性越高,避雷器保护性能越优,保护系统投资和避雷器售价越大,可以降低绝缘造价或减少运行故障损失得到回报。反之,保护措施可靠性越低,避雷器保护性能越差,保护系统投资和避雷器售价越小,绝缘造价或运行故障损失越大。 总之,选用过电压保护措施,力求达到最佳经济效益。 2、任何防雷技术措施应经实践检验原则 至今,在实验室里不能逼真模拟自然雷。理论计算和模拟试验 只能作某些定性分析。防雷保护技术措施主要依据长期的大量

的运行经验积累,不断地修正和改进。国际上常出现过以假设 为依据的形形色色的防雷保护装置,经实践检验被淘汰掉了。 三、过电压保护措施的发展概况 1、人为制造弱绝缘,最早采用的,也是最简单的是放电间隙。 迄今为止,人们还在应用放电间隙。仅是结构不断改进。放电 间隙存在的问题是不能自动熄灭工频续流电弧。 2、1870~1890年,主要是放电间隙和熔丝构成变电设备防雷 保护装置。 3、1896~1908年,制成羊角放电间隙。为了增强间隙熄弧能 力,在间隙上加装磁吹线圈。为了限制工频续流,间隙串联线 性电阻。随后发展多间隙,构成多间隙又串又并联线性电阻的 防雷保护装置。 4、1907~1920年,发明了氧化铝和氧化铅电阻器来替代多间 隙串并联线性电阻,这是阀式避雷器的原型。 5、1920~1930年,又将氧化铝和氧化铅避雷器加装外串羊角 放电间隙,或内串间隙。比较广泛地采用羊角放电间隙与消弧 线圈配合使用。 6、1930~1940年,发明了碳化硅非线性电阻片。使阀式避雷 器起了质的变化。 7、1940~1950年,碳化硅阀式避雷器迅速发展和普及。至今, 我国仍在采用这种普阀避雷器。即我国第一代阀式避雷器。

10kV线路低电压问题及治理措施初探 廖寿松

10kV线路低电压问题及治理措施初探廖寿松 发表时间:2019-06-10T11:00:51.877Z 来源:《电力设备》2019年第3期作者:廖寿松 [导读] 摘要:为改善供电质量,提升客户满意度,有必要及时、有效地解决10kV线路低电压问题。 (广西广信电力设计有限公司广西南宁 530000) 摘要:为改善供电质量,提升客户满意度,有必要及时、有效地解决10kV线路低电压问题。以某10kV线路为例,按所提出的低电压问题分析思路,结合该线路的实际情况,分析得到造成该线路低电压的主要原因是线路重过载和导线截面偏小,其他原因有线路供电半径处于临界状态和线路末端专变用户较集中。根据分析结论提出了治理建议,并对线路重过载对末端电压的影响及安装调压器后的调压效果进行了仿真分析。研究成果为该线路低电压问题的治理提供了科学依据。 关键词:10kV线路;低电压;调压;治理措施 引言 随着城市化建设的不断加快,人们的用电需求逐渐提高,这就为我国的供电顺利进行提出了重大的挑战,现阶段低电压线路的分析与改造已经成为电网公司重点关注的问题之一。通过调查发现,我国电网公司在接受电压投诉方面,其中一大部分都是电压偏低问题,所以为了有效的提高客户的满意度,我国就需要采取适当的措施来对低电压问题进行有针对性的解决。由此可见,对10kV线路低电压问题以及治理措施进行探讨具有重要的现实意义。 110kV线路低电压问题分析 本文主要以我国某10kV线路为例,该线路的主干线一共有110个基杆,主干线的总长度为9.949km,供电半径为13km,其中1号杆-44号杆的距离长度为3.8km,44号杆-96号杆的距离为7.8km,96号杆-108号杆的距离为1.1km,该线路中拥有的变压器数量一共为96台,总容量为1200kVA。在最近的一段时间内,该10kV电路频频出现低电压问题,通过调查发现,该线路的低电压问题主要体现在以下几方面。 1.1基础设施不够完善 我国供电配网分布局域较广,一些地区没有进行电网的改造工作,在10kV线路运行的过程中,仍然采用落后、老旧的设备,这些设备在10kV配电线路运行中极易出现各种故障,这些故障就会导致一系列低电压问题的出现,所以我国部分地区急需对电气设备的基础设施进行更新。另外,我国缺乏检测与分析设备,在10kV配电线路的运行中,检测与分析设备是对电能指标进行测量的基础,但是由于设备的缺乏,就无法及时的了解调度数据,其中造成这种现状的主要原因是我国企业资金不足,没有购买先进的信息化检测设备,尤其是在一些偏远地区,检测设备极度匮乏,这就使得电能指标检测数据存在不准确性,企业难以针对检测数据有效的开展调度管理,从而造成10kV线路低电压问题的出现。 1.2经济发展速度与电力供应缺乏协调性 现阶段在10kV线路运行的过程中,电力供应与经济发展速度具有较大的差异,从目前的情况来看,我国对电力质量要求较高,并且我国用电数量也在呈逐年上升趋势,这就给我国电力企业的电力输送工作带来较大的压力,为了满足人们的需求,在电力供应的过程中急切的增加变压器,使得电力系统中各种问题的出现,其中也包括了低电压问题。 1.3电压调节能力不足 通常情况下,我国生活用电具有季节性的特征,不同的季节,日负荷的波动范围具有较大的差异,需要我国对负荷进行准确的计算,但是目前我国配电线路在运行的过程中,没有对节点负荷进行准确的统计,三相负荷普遍不具有协调性,使得10kV配电线路中呈现出低电压问题。并且部分地区在安装电表时,没有在接表之前对三相负荷问题进行统计和分析,配电线路低电压问题时有发生。 1.4变压器运行档位 对变压器的运行档位进行合理的配置是解决低电压问题常用的办法之一,合理设置配电变压器的运行档位可以在一定程度上起到调压的作用。但是现阶段我国受到人为因素、环境因素等多种因素的影响,10kV线路中普遍存在运行档位不明的情况,无法依据实际的电压状况,对档位设置进行适当的调整。 1.5无功补偿 据了解,该线路专变1、专变3用户正常运行时功率因数曾分别达到0.67、0.46。但4个专变用户均安装有无功补偿装置,在测量期间4个专变用户的整体功率因数均处在较高水平。计量自动化系统数据显示,10kV主供线路的年平均功率因数为0.91。因此,功率因数偏低不是造成10kV线路低电压的原因。 1.6变压器运行档位 合理设置配电变压器的档位是解决低电压问题最经济的办法,在一定范围内可以起到有效的调压作用。但目前该线路各配电变压器的运行档位信息不明,无法根据实际电压的情况,及时调整档位设置。 210kV线路低电压问题的治理措施 2.1确保规划配网节点的合理性 促进配网节点的合理规划,首先需要对先进的科学技术进行合理的应用,我国可以对有关的技术进行研发和引进,结合国内外先进的技术对配网进行优化,利用现有的技术对已有配网进行电源点负荷转移工作,从而使三相负荷处于平衡的状态,将供电半径进一步缩短,有效的延长电线的使用寿命,避免低电压问题的出现,确保供电朝着稳定性、科学性的发展。其次,企业需要加强配网施工人员的专业技能与综合素质,具体企业可以采取以下措施:第一,企业可以高薪聘请一些优秀院校毕业的人才,这些人才通常具有丰富的理论知识为基础;第二,企业可以对配网施工人员进行定期或不定期的培训,在培训结束后也要制定相应的考核机制,从而有效的发挥工作人员主观能动性,加强配网施工人员的专业化程度。 2.2加强电压质量监测工作 电网监测工作的加强,首先要建立一支高素质的监督检查队伍,对“低电压”进行定期的普查,具体相关的检查人员可以利用电能质量在线监测系统、用电信息采集系统、智能电表等对供电用户的电压质量进行实时的监测。在进行监测的过程中可以选择高峰时段采取人工手持电压表和入户测量结合的方式来开展电压的普测工作,加强对配网“低电压”情况的全面了解。其次,在进行电压质量的监测工作中,也需要对配网的用电负荷进行实时的检测,根据配网的用电需求与经济社会的发展开展相关性分析,依据电源支撑、变电站容载比、供电半

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

低电压治理

汤阴县电业局编制《低电压治理三年规划》 时间:8-11作者:王素芳 笔者8月10日从汤阴县电业局获悉,该局由生产技术部牵头,营销、调度、实业公司等部门配合,编制了《2010-2012年低电压治理规划》,计划投资4798万元,新建、改造35kV线路24km,更换35kV主变5台,容量42.6MVA,35KV变电站更换自动跟踪无功补偿装置,容量1680kvar,建设与改造10kV线路50.8km,新增、改造台区350个,整改低压线路344.48km,新增补偿电容装置8530kvar,以彻底解决农村低电压问题。 近年来,随着家村经济的发展和农民生活水平的不断提高,农村用电负荷不断攀升。农村台区用户在用电高峰时段电压偏低,已成为居民夏季用电的突出问题。汤阴县电业局高度重视,于7月初启动了“低电压”综合治理工作,开展了全面摸底排查,深入分析农村用电负荷特性,按照轻重缓急分年度编制了低电压综合治理规划和资金需求计划,明确各部门职责,新增、改造项目标准,按时序节点推进项目建设,争取利用三年时间,优化电网结构,有效改善农村配电网供电能力和供电质量,促进经济又好又快发展。王素芳 共青城农村“低电压”综合治理成效斐然 发布时间:2010-07-08 09:33:03 来源:九江新闻网 九江新闻网讯(张佑发罗嘉良)7月6日,共青城供电公司最高用电负荷屡创新高,最高峰达到2.8万千瓦时,同比增长16.7%。面对高温带来的负荷高峰,居民关于用电高峰电压低的投诉率却降低了80%,调度中心副主任唐贤锋说:“今年共青公司按照江西省电力公司的部署,开展了农村“低电压”综合治理工作,低压电网供电能力进一步提高,总体满足了居民用电需求。” 据了解,为在1年的时间内基本解决当前存在的农村低电压问题,该公司高度认识 综合治理农村低电压的重要性和紧迫性,一是建立以经理为组长,相关专业技术人员为 成员的农村低电压综合治理领导小组,细化责任,明确分工,做好低电压综合治理工作 的管理策划及协调。二是在全网范围内,组织变电站、各供电所人员携带万用表,在同 一用电高峰时段进行电压情况的监测,提供第一手准确电压数据。三是根据用电负荷及 电压情况及时调整变电站的档位,同时加强配电变压器的运行管理,对低电压区域内的 配变分为三种情况进行档位调整,馈线的首端配变调在一档,中段配变调到二档,后段 配变调到三档。四是对低压供电线路超过500米的7个台区,低压线路线径小的16个台区,时段性负荷过高导致电网供电的电压质量下降的配变进行了改造。目前,农村电网 电压质量监测网络和管理平台逐步健全,农村“低电压”改造工程进展顺利。 本网讯 8月14日,在“福建南大门”诏安,60多名电力施工人员放弃周末休息时间,顶着酷暑,全力实施县城旧城区的“低电压”线路改造。 “我们诏安‘低电压’问题主要集中在旧城区。”据介绍,今年,供电部门拟投资600万元,加快改造诏安地区“低电压”。至7月底,已完成投资200万元,已有1万多户旧城区居民告别“低电压”。 “低电压”问题攸关百姓切身利益,也事关“国家电网”品牌建设的方方面面。漳州郊区供电局有关负责人介绍说,由于线路设备老化、客户用电量迅速增长,近年来“低电压”

电容器过电压保护

中国电力设备管理网 电力电容器过电压保护反措 摘要:通过分析银南电网电容器过电压保护几次误动事故,提出在电容器过电压保护中使用高返回系数JY8系列静态型电压继电器,来防止系统出现瞬间过电压时电容器过电压保护误动。 1引言 电力系统中,电力电容器作为一种静止型无功功率补偿装置,在维护系统的可靠、稳定运行中,发挥着日益重要的作用。实践证明,为了提高电力电容器运行的可靠性,除了不断提高电容器本身的质量,采用合理的接线和布置之外,配备完善、合理的保护装置也是极其重要的。 电容器过电压保护,是确保电力电容器在不超过规程规定的最高允许电压下和规定的时间内动作的电容器保护。由于电容器输出的无功功率和内部有功功率损耗均与其两端电压的平方成正比,即电容器输出无功功率Qc=ωCU2;电容器有功功率损耗P1=ωCU2tgδ,电容器耐受过电压的能力比较低。按照IEC标准,“电容器单元应适合于当端子间的电压有效值升到不超过1.1倍额定电压(过渡过程除外)下连续运行。”我国国标也规定,电容器连续运行的工频过电压不超过1.1倍额定电压。由此可见,电容器过电压保护配置的合理与否,直接影响着系统并补电容器的健康、稳定、有效运行。本文通过宁夏银南供电局所辖变电所10kV并补电容器先后发生的电容器过电压保护误动事故进行分析,提出了通过运用高返回系数的静态型JY8系列过电压继电器,代替原电磁式DY-36A型过电压继电器的有效、可行的反措措施。 2问题的提出 1997年8月至9月中旬,我局所辖古城220kV变512电容器、河西110kV变518电容器、中卫110kV变513电容器开关相继发生跳闸。根据当时现场保护掉牌信号指示,以上各次跳闸均为电容器过电压保护出口所致。 电力电容器的工频过电压的产生,原因有二:其一,由于系统出现的工频过电压,电容器所在的母线电压升高,使电容器承受过电压;其二,由于一组电容器中个别电容器故障切除或短路,使串联电容器间容抗发生变化。因而电容器之间的电压分配比例发生变化,引起部分电容器端电压升高。但是,经过仔细检查、核实、试验,均未见事故发生时系统电压长时间增高,并且电力电容器组未受损害,性能良好。 为了进一步找出保护动作原因,我们分别进行了如下检查,发现: (1)电容器过电压保护回路完好,无寄生回路存在。 (2)保护装置交直流回路绝缘良好,符合规程要求。 (3)保护继电器性能均良好,符合规程要求。 由此可见,这几次电容器过电压保护动作跳闸事故的真正原因并不明确。尚需更加深入地试验调查,来查出跳闸真相。 3分析问题 在反复试验、分析的过程中,我们发现虽然这些电容器过电压保护回路及各保护元件本身不存在任何问题,但是当电容器出现瞬时过电压时,原来所配置的DY-36A型电磁式过电压继电器在过电压保护整定动作时限t=2.0s时间内并不能及时可靠返回,从而造成了这些电容器过电压保护的误动作。其基本过程如图1 所示。 通常,电压继电器可以接在放电线圈或放电用电压互感器的二次侧。在同一母线上接有几组电容器时,电压继电器也可以接在母线电压互感器二次侧,几组电容器共用一套过电压保护。根据系统运行方式,电容器过电压保护只考虑系统产生的对称过电压,可以只配置一个电压继电器。但为了防止电压回路断线,造成过电压保护拒动,常采用三相三继电器取三

消弧消谐及过电压保护装置

AL-XHZ系列消弧消谐及过电压保护装置 一、概述 传统消弧技术概述 长期以来,我国3~66KV的电网大多采用中性点不接地的运行方式。这种电网具有结构简单、投资小,供电可靠性高的优点。该电网发生稳定单相接地故障时,系统线电压不变,只是非故障相的对地电压升高到线电压,虽然该系统中的电气设备的绝缘均可承受长期线电压的强度可以带故障运行两小时。但是,如果系统发生的单向接地故障为间歇性弧光接地,则会在系统中产生高达3.5倍相电压峰值的过电压,如此高的过电压如果数小时作用于电网,会对电气设备的绝缘造成损伤,甚至会造成健全相对地绝缘击穿,进而发展成为相间短路事故。在间歇性弧光接地过程中,还会形成多频段振荡回路,不仅会产生高幅值的相对地过电压,而且还可能出现高幅值相间过电压,使相间绝缘闪络,造成相间短路事故。 随着我国对城市及农村电网的大规模技术改造,城市、农村的配电网必定向电缆化发展,系统对地电容电流在逐渐增大,弧光接地过电压问题也日益严重起来。运行经验证明,当这类电网发展到一定规模时,内部过电压,特别是电网发生单相间歇性孤光接地时产生的孤光接地过电压,及特殊条件下产生的铁磁谐振过电压已成为这类电网设备安全运行的一大威胁,其中以单相弧光接地过电压最为严重。为了解决上述问题,不少电网在电网中性点装设消弧线圈,当系统发生单相弧光接地时,利用消弧线圈产生的感性电流对故障点电容电流进行补偿,使流经故障电流减小,从而达到自然熄弧的目的。运行经验表明,虽然消弧线圈对抑制间歇性弧光接地过电压有一定作用,但在使用中也发现消弧线圈存在的一些问题。 1、由于电网运行方式的多样化及弧光接地点的随机性,消弧线圈要对电容电流进行有效补偿却有难度,且消弧线圈仅仅补偿了工频电容电流,而实际通过接地点的电流不仅有工频电容电流,而且包含大量的高频电流及阻性电流,严重时仅高频电流及阻性电流就可以维持电弧的持续燃烧。 2、当电网发生断线、非全向、同杆线路的电容耦合等非接地故障,使电网的不对称电压升高,可能导致消弧线圈的自动调节控制器误判电网发生接地而动作,这时将会在电网中产生很高的中性点位移电压,造成系统中一相或两相电压升高很多,以致损坏电网中的其它设备。 3、消弧线圈体积大,组件多,成本高,安装所占场地较大,运行维护复杂,而且随着电网的扩大,消弧线圈也要随之更换,不利于电网的远景规划。

配网低电压治理技术原则(试行)

配网“低电压”治理技术原则 (试行) 为加强配网“低电压”治理工作,提高治理针对性和有效性,为实施运维管控和相关基建、技改、大修等项目立项、审查提供依据,根据国家、行业和公司有关制度标准,特制定本原则。 第一章总体原则 1.1坚持多措并举、统筹治理,深入分析“低电压”产生原因,按照“先管理、后工程”、“一台区、一方案”的要求,综合管理、基建、技改、大修等多种手段,科学制定治理方案。 1.2加强与电网发展规划和地区发展规划衔接,根据电网规划落实进度、城区或村镇搬迁情况及“低电压”程度,区分轻重缓急优化项目立项,提高治理有效性,防止低效、无效投入。 1.3加强治理工程标准化管理,全面应用公司配网典型设计、标准物料、通用造价、标准工艺等标准化建设成果,推广先进适用技术,提高技术措施的先进性和规范性。 1.4落实资产全寿命周期管理要求,推动低电压治理中退役设备再使用工作,探索退役配电变压器跨省调剂使用的有效途径,避免设备大拆大换。 第二章电压采集及统计

2.1配网用户电压原则上应通过符合电压监测仪使用技术条件的电压采集装置自动采集,在其布点未实现低压用户全覆盖的情况下,可通过配变终端、智能电表等监测手段采集。 2.2“低电压”指用户计量装置处电压值低于国家标准所规定的电压下限值,即20千伏及以下三相供电用户的计量装置处电压值低于标称电压的7%,220伏单相供电用户的计量装置处电压值低于标称电压的10%,其中持续时间超过1小时的“低电压”用户应纳入重点治理范围。 2.3“低电压”主要包括长期和季节性“低电压”。长期“低电压”指用户全天候“低电压”持续三个月或日负荷高峰“低电压”持续六个月以上的“低电压”现象;季节性“低电压”是指度夏度冬、春灌秋收、逢年过节、烤茶制烟等时段出现具有周期规律的“低电压”现象。 2.4为加强配网用户电压全范围监测,应建立完善基于营配贯通的电压自动采集分析相关信息系统,扩大电压监测覆盖面,强化重点时段对中压线路首末端、配变台区首末端及重点用户的电压采集分析,为开展“低电压”运维管控及工程治理创造条件。 第三章治理策略 3.1“低电压”治理应根据变电站母线电压、中低压线路供电半径及负载水平、配变台区出口电压、配变容量及负载水平、配变低压三相负荷不平衡度、“低电压”用户数、低压用户最低电压值、电压越下限累计小时数等综合分析问题

电容器保护整定计算

电容器保护整定计算 一、集合式并联电容器:例如BAMH11/√3-1200-1×3W B:并联电容器;A为浸渍剂代号,表示苄基甲苯 M:为介质代号,表示全膜介质(如为F表示膜纸复合介质) H:集合式 11/√3:额定电压 1200:额定容量 3:代表三相 W:户外 二、集合式并联电容器成套装置 TBB□-□-A K T表示并成套装置 BB表示并联电容器装置 第一个□表示额定电压 第二个□表示额定容量 A表示单星形接线 K表示开口三角电压保护 三、可调容集合式成套装置 TBB□-□+□-A K □+□为可调额定容量 一、延时电流速断保护 作为电容组与断路器之间连线以及电容器组内部连线上的相间短路、两(三)相接地短路故障的保护。 整定原则:按躲过电容器长期允许的最大工作电流整定,一般整定为3-5倍的电容器组的额定电流,同时为了躲过电容器组投入时的涌流,考虑0.1-0.2S 延时。 Idz=Kk×Ie Ie为电容器组额定电流 我们一般取4倍的Ie,T=0.1S IΦ=I=Q/1.732/U U为线电压(电容器Y形接线) 例如BAMH11/√3-1200-1×3W I=1200/√3/11 灵敏度要求:保护安装处故障时Klm≥2 二、过电流保护 作为电容组与断路器之间连线以及电容器组内部连线上的相间短路、两(三)相接地短路故障的保护。 整定原则:按躲过电容器长期允许的最大工作电流整定,一般整定为1.5-2倍的电容器组的额定电流,动作时间一般为0.3-1S.我们一般取2In,0.4S. 灵敏度要求:电容器端部引出线故障时Klm≥1.2-1.5 灵敏度=0.866×Idmin(3)/Idz≥1.5 Idmin(3)为最小方式下,保护安装处的三相短路电流 咱们计算灵敏度时一般考虑电容器串联电抗器的阻抗

消弧及过电压保护装置控制器说明书

消弧及过电压保护装置控制器 说 明 书 安徽凯民电力技术有限公司

单位名称:安徽凯民电力技术有限公司 地址:安徽省合肥市高新区科学大道102号邮编:230088 TEL:(0551)5312386 FAX:(0551)5322512

一、概述 在我国3~35KV供电系统中,大部分为中性点不接地系统,这种系统在发生单相接地时,电网仍可带故障运行,这就大大降低了运行成本,提高了供电系统的可靠性,但这种供电方式在单相接地时容易产生弧光接地从而可能引发相间短路,给供电设备造成了极大的危害。以前的解决办法是在中性点加装消弧线圈补偿电容电流来抑制故障点弧光发生的机率。很显然,这种方法的目的是为了消除弧光,但由于消弧线圈的自身的诸多特点,很难对电容电流进行有效补偿,特别是高频分量部分对供电设备造成的危害无法克服。安徽鸿宇电气技术有限公司在研究各种消弧线圈的基础上,提出全新的概念,研制出了智能快速消弧过电压保护装置,该装置在系统出现弧光接地时,通过可以分相控制的真空接触器,使故障相接地,达到彻底消除弧光的目的。 消弧及过电压保护装置控制器,是针对智能快速消弧过电压保护装置研制的一种智能型控制器。该控制器通过P T互感器检测出故障相,然后发出控制信号命令故障相的接地真空接触器闭合,使弧光接地变成金属性接地。 一、功能及特点 1、本控制器结构紧凑,技术先进。控制器的核心采用Mic roc hip 公司生产的PIC单片机和一些外围器件构成信号采集、数据 处理系统。 2、根据信号采集、数据处理结果,发出相应的信号。PT断线、 金属性接地,只报警而不接地;当系统出现弧光接地时,微 机综合控制器作出判断同时发出动作信号,让接触器动作, 使系统对应相转变为金属性接地。

相关文档