文档库 最新最全的文档下载
当前位置:文档库 › 2019高考数学不等式:基本不等式

2019高考数学不等式:基本不等式

2019高考数学不等式:基本不等式
2019高考数学不等式:基本不等式

基本不等式

【考点梳理】

1.基本不等式ab ≤

a +b

2

(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2

+b 2

≥2ab (a ,b ∈R ); (2)b a +a b

≥2(a ,b 同号且不为零); (3)ab ≤?

??

??a +b 22(a ,b ∈R );

(4)? ??

??a +b 22≤a 2

+b 2

2(a ,b ∈R ). 3.算术平均数与几何平均数

设a >0,b >0,则a ,b 的算术平均数为

a +b

2

,几何平均数为ab ,基本不等式可叙述为:

两个正数的算术平均数不小于它们的几何平均数.

4.利用基本不等式求最值问题 已知x >0,y >0,则

(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2

4(简记:和定积最大).

【考点突破】

考点一、配凑法求最值

【例1】(1)若x <

54,则f (x )=4x -2+145

x -的最大值为________. (2)函数y =

x -1

x +3+x -1

的最大值为________.

[答案] (1) 1 (2) 1

5

[解析] (1)因为x <5

4

,所以5-4x >0,

=-2+3=1.

当且仅当5-4x =1

5-4x ,即x =1时,等号成立.

故f (x )=4x -2+1

4x -5的最大值为1.

(2)令t =x -1≥0,则x =t 2

+1, 所以y =

t

t 2

+1+3+t =

t

t 2

+t +4

.

当t =0,即x =1时,y =0; 当t >0,即x >1时,y =

1

t +4t

+1

, 因为t +4

t

≥24=4(当且仅当t =2时取等号),

所以y =

1t +4t

+1

≤1

5, 即y 的最大值为1

5(当t =2,即x =5时y 取得最大值). 【类题通法】

1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.

2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x +

1

x -2

(x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C

[解析] 当x >2时,x -2>0,f (x )=(x -2)+

1

x -2

+2≥2(x -2)×

1

x -2

+2=4,当

且仅当x -2=

1

x -2

(x >2),即x =3时取等号,即当f (x )取得最小值时,即a =3,选C. 2.函数y =x 2+2

x -1

(x >1)的最小值为________.

[答案] 23+2

[解析] y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3

x -1

=(x -1)2

+2(x -1)+3

x -1

=(x -1)+

3

x -1

+2≥23+2. 当且仅当x -1=3

x -1,即x =3+1时,等号成立.

考点二、常数代换或消元法求最值

【例2】(1)已知x ,y 均为正实数,且

1x +2+1y +2=16

,则x +y 的最小值为( ) A .24 B .32 C .20 D .28 (2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. [答案] (1) C (2) 6

[解析] (1)∵x ,y 均为正实数,且1x +2+1y +2=16

, 则x +y =(x +2+y +2)-4 =6?

???

?1x +2+1y +2(x +2+y +2)-4

=6?

??

??

2+

x +2y +2+y +2x +2-4 ≥6×?

??

??

2+2

x +2y +2·y +2x +2-4=20, 当且仅当x =y =10时取等号. ∴x +y 的最小值为20. (2)由已知得x =9-3y

1+y .

法一 (消元法)

因为x >0,y >0,所以0<y <3,

所以x +3y =9-3y

1+y +3y

12

1+y

+3(y +1)-6≥212

1+y

·3(y +1)-6=6, 当且仅当12

1+y =3(y +1),

即y =1,x =3时,(x +3y )min =6. 法二 ∵x >0,y >0,

9-(x +3y )=xy =13x ·(3y )≤13·? ????x +3y 22

当且仅当x =3y 时等号成立.

设x +3y =t >0,则t 2

+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6. 故当x =3,y =1时,(x +3y )min =6. 【类题通法】

条件最值的求解通常有三种方法:

一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;

二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值;

三是对条件使用基本不等式,建立所求目标函数的不等式求解. 【对点训练】

1.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________. [答案] 5

[解析] 法一 由x +3y =5xy 可得15y +3

5x =1,

∴3x +4y =(3x +4y )?

??

??15y +35x

=95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =1

2时,等号成立), ∴3x +4y 的最小值是5.

法二 由x +3y =5xy ,得x =3y

5y -1,

∵x >0,y >0,∴y >1

5

∴3x +4y =9y 5y -1+4y =13? ????y -15+95+4

5-4y 5? ????y -15+4y =135+95·15y -15+4? ????y -15≥13

5+2

3625

=5,

当且仅当y =1

2

时等号成立,∴(3x +4y )min =5.

2.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________. [答案] 5+2 6

[解析] 因为直线l 经过点(2,3),所以2a +3b -ab =0,所以b =2a

a -3

>0,所以a -3>0,所以a +b =a +

2a a -3=a -3+6a -3

+5≥5+2(a -3)·

6

a -3

=5+26,当且仅当a -3=6

a -3

,即a =3+6,b =2+6时等号成立. 考点三、基本不等式的实际应用

【例3】某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费为5万元,当工厂和仓库之间的距离为________千米时,运费与仓储费之和最小,最小为________万元.

[答案] 2 20

[解析] 设工厂和仓库之间的距离为x 千米,运费为y 1万元,仓储费为y 2万元,则y 1=

k 1x (k 1≠0),y 2=k 2

x

(k 2≠0),

∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元, ∴k 1=5,k 2=20,∴运费与仓储费之和为? ??

??5x +20x 万元,

∵5x +20

x

≥2

5x ×20x =20,当且仅当5x =20

x

,即x =2时,运费与仓储费之和最小,为

20万元. 【类题通法】

1.设变量时一般要把求最大值或最小值的变量定义为函数.

2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.

3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)求解. 【对点训练】

一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为______m ,宽为________m 时菜园面积最大.

[答案] 15

15

2

[解析] 设矩形的长为x m ,宽为y m ,则x +2y =30.

所以S =xy =12x ·(2y )≤? ??

??x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

2019高考数学考点突破——选考系列参数方程学案

参数方程 【考点梳理】 1.曲线的参数方程 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数 ? ?? ?? x =f t ,y =g t 并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲 线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化 通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例 如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么? ?? ?? x =f t ,y =g t 就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程 直线 y -y 0=tan α(x -x 0) ? ?? ?? x =x 0+t cos α, y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2 ? ?? ?? x =r cos θ,y =r sin θ(θ为参数) 椭圆 x 2a 2+y 2 b 2 =1(a >b >0) ? ?? ?? x =a cos φ,y =b sin φ(φ为参数) 考点一、参数方程与普通方程的互化 【例1】已知曲线C 1:?????x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ????x =8cos θ,y =3sin θ(θ为参数). (1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C 1上的点P 对应的参数为t =π 2 ,Q 为C 2上的动点,求PQ 的中点M 到直线C 3:

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

2020年高考数学复习题:基本不等式及其应用

基本不等式及其应用 [基础训练] 1.下列结论中正确的个数是( ) ①若a >0,则a 2 +1 a 的最小值是2a ; ②函数f (x )=sin 2x 3+cos 2x 的最大值是2; ③函数f (x )=x +1 x 的值域是[2,+∞); ④对任意的实数a ,b 均有a 2+b 2≥-2ab ,其中等号成立的条件是a =-b . A .0 B .1 C .2 D .3 : 答案:B 解析:①错误:设f (a )=a 2 +1 a ,其中a 是自变量,2a 也是变化的,不能说2a 是f (a )的最小值; ②错误:f (x )=sin 2x 3+cos 2 x ≤sin 2x +3+cos 2x 2 =2, 当且仅当sin 2x =3+cos 2x 时等号成立,此方程无解, ∴等号取不到,2不是f (x )的最大值; ③错误:当x >0时,x +1 x ≥2 x ·1x =2, 当且仅当x =1 x ,即x =1时等号成立; 当x <0时,-x >0,x +1 x =-? ?? ??-x +1-x ≤-2 -x ·1 -x =-2, ¥ 当且仅当-x =-1 x ,即x =-1时等号成立. ∴f (x )=x +1 x 的值域是(-∞,-2]∪[2,+∞); ④正确:利用作差法进行判断.

∵a 2+b 2+2ab =(a +b )2≥0,∴a 2+b 2≥-2ab , 其中等号成立的条件是a +b =0,即a =-b . 2.[2019河北张家口模拟]已知a +2b =2,且a >1,b >0,则 2 a -1+1 b 的最小值为( ) A .4 B .5 C .6 D .8 答案:D 解析:因为a >1,b >0,且a +2b =2, \ 所以a -1>0,(a -1)+2b =1, 所以2a -1+1b =? ????2 a -1+1 b ·[(a -1)+2b ] =4+4b a -1 +a -1b ≥4+2 4b a -1·a -1 b =8, 当且仅当4b a -1=a -1 b 时等号成立, 所以2a -1 +1b 的最小值是8,故选D. 3.若2x +2y =1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0] C .[-2,+∞) D .(-∞,-2] ! 答案:D 解析:∵2x +2y ≥22x ·2y =22x +y (当且仅当2x =2y 时等号成立), ∴2 x +y ≤12,∴2x +y ≤14, 得x +y ≤-2.故选D. 4.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为( ) B .2 2 D .2 答案:D 解析:∵x >0,y >0,x +2y ≥22xy , ∴4xy -(x +2y )≤4xy -22xy , ∴4≤4xy -22xy ,

高考理科数学公式总结

高考理科常用数学公式总结 1. 德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B == . 2. U U A B A A B B A B C B C A =?=???? U A C B ?=Φ 3. ()()card A B cardA cardB card A B =+- 含有n 个元素的集合的子集个数为2n ,真子集个数为21n -. 4. 二次函数的解析式的三种形式: ①一般式:2 ()(0)f x ax bx c a =++≠; ② 顶点式:2 ()()(0)f x a x h k a =-+≠;③零点式:12()()()(0)f x a x x x x a =--≠. 5. 函数单调性:设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()()0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如 果0)(<'x f ,则)(x f 为减函数. 6. 函数()y f x =的图象的对称性: 奇函数的图象关于原点对称;偶函数的图象关于y 轴对称. ① 函数()y f x =的图象关于直线x a =对称 ()()f a x f a x ?+=-(2)()f a x f x ?-=. ②函数()y f x =的图象关于直线 2 a b x += 对称()()f a x f b x ?+=-()()f a b x f x ?+-=. ③函数()y f x =的图象关于点(,)a b 对称,则()(2)2f x f a x b +-=. 7. 两个函数图象间的对称性: ① 函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. ② 函数()y f x =与函数()y f x =--的图象关于原点对称. ③ 函数()y f x a =-与函数()y f b x =-的图象关于直线2 a b x += 对称. 8. 分数指数幂 m n a = 0,,a m n N * >∈,且1n >). 1 m n m n a a -= (0,,a m n N * >∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>. 10.log log log ,log log log a a a a a a M M N M N M N N +=-=,log log n a a M n M =, 对数的换底公式 log log log m a m N N a = .推论 log log m n a a n b b m = . 11log log log a a a N N N ==-.

2019高考数学考点突破——空间向量与立体几何空间向量及其运算学案

空间向量及其运算 【考点梳理】 1.空间向量的有关概念 名称 定义 空间向量 在空间中,具有大小和方向的量 相等向量 方向相同且模相等的向量 相反向量 方向相反且模相等的向量 共线向量 (或平行向量) 表示空间向量的有向线段所在的直线互相平行或重合的向量 共面向量 平行于同一个平面的向量 (1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b . (3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是[0,π],若〈a ,b 〉=π 2 ,则称a 与b 互相垂直,记作a ⊥b . ②非零向量a ,b 的数量积a·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律: ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及其应用

设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). 向量表示 坐标表示 数量积 a·b a 1 b 1+a 2b 2+a 3b 3 共线 a =λb (b ≠0,λ∈R ) a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a·b =0(a ≠0,b ≠0) a 1 b 1+a 2b 2+a 3b 3=0 模 |a | a 21+a 22+a 2 3 夹角 〈a ,b 〉(a ≠0,b ≠0) cos 〈a ,b 〉= a 1 b 1+a 2b 2+a 3b 3 a 21+a 22+a 23· b 21+b 22+b 2 3 考点一、空间向量的线性运算 【例1】如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB → =b ,AD → =c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)MP →+NC 1→. [解析] (1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→ =a +c +12AB →=a +c +1 2 b . (2)因为M 是AA 1的中点,所以MP →=MA →+AP → =12 A 1A →+AP → =-12a +? ? ???a +c +12b =12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

2018高考数学常用公式精华总结

高中数学常用公式精华总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 4.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 5.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 7.真值表

2019高考数学考点突破——导数及其应用与定积分:导数与函数的单调性 Word版含解析

导数与函数的单调性 【考点梳理】 函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则 (1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 【考点突破】 考点一、判断或证明函数的单调性 【例1】已知函数已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性. [解析] f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0恒成立, 所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈??? ?0,1a 时,f ′(x )>0; x ∈??? ?1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 【类题通法】 用导数判断或证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x ); (2)二定.确认f ′(x )在(a ,b )内的符号; (3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数. 【对点训练】 已知函数f (x )=x 3+ax 2+b (a ,b ∈R),试讨论f (x )的单调性. [解析] f ′(x )=3x 2 +2ax ,令f ′(x )=0, 解得x 1=0,x 2=-2a 3 . 当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x ) 在(-∞,+∞)上单调递增; 当a >0时,x ∈? ????-∞,-2a 3∪(0,+∞)时,f ′(x )>0,

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2019高考数学不等式:基本不等式

基本不等式 【考点梳理】 1.基本不等式ab ≤ a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号且不为零); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)? ?? ??a +b 22≤a 2 +b 2 2(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a +b 2 ,几何平均数为ab ,基本不等式可叙述为: 两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 2 4(简记:和定积最大). 【考点突破】 考点一、配凑法求最值 【例1】(1)若x < 54,则f (x )=4x -2+145 x -的最大值为________. (2)函数y = x -1 x +3+x -1 的最大值为________. [答案] (1) 1 (2) 1 5 [解析] (1)因为x <5 4 ,所以5-4x >0,

=-2+3=1. 当且仅当5-4x =1 5-4x ,即x =1时,等号成立. 故f (x )=4x -2+1 4x -5的最大值为1. (2)令t =x -1≥0,则x =t 2 +1, 所以y = t t 2 +1+3+t = t t 2 +t +4 . 当t =0,即x =1时,y =0; 当t >0,即x >1时,y = 1 t +4t +1 , 因为t +4 t ≥24=4(当且仅当t =2时取等号), 所以y = 1t +4t +1 ≤1 5, 即y 的最大值为1 5(当t =2,即x =5时y 取得最大值). 【类题通法】 1.应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. 2.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 【对点训练】 1.若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a 等于( ) A .1+2 B .1+3 C .3 D .4 [答案] C [解析] 当x >2时,x -2>0,f (x )=(x -2)+ 1 x -2 +2≥2(x -2)× 1 x -2 +2=4,当

2019高考数学考点突破——函数的应用函数的图象学案

函数的图象 【考点梳理】 1.利用描点法作函数的图象 方法步骤:(1)确定函数的定义域; (2)化简函数的解析式; (3)讨论函数的性质(奇偶性、单调性、周期性、最值等); (4)描点连线. 2.利用图象变换法作函数的图象 (1)平移变换 (2)对称变换 ①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象――――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称 y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象――――――――→关于直线y =x 对称 y =log a x (a >0且a ≠1)的图象. (3)伸缩变换 ①y =f (x )的图象 y =f (ax )的图象; ②y =f (x )的图象 ―――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变 0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换 ①y =f (x )的图象―――――――――――→x 轴下方部分翻折到上方 x 轴及上方部分不变y =|f (x )|的图象;

②y =f (x )的图象―――――――――――――→y 轴右侧部分翻折到左侧 原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象. 【考点突破】 考点一、作函数的图象 【例1】作出下列函数的图象: (1)y =|lg(x -1)|;(2)y =2x +1 -1; (3)y =x 2-|x |-2. [解析] (1)首先作出y =lg x 的图象C 1,然后将C 1向右平移1个单位,得到y =lg(x -1)的图象C 2,再把C 2在x 轴下方的图象作关于x 轴对称的图象,即为所求图象C 3:y =|lg(x -1)|.如图①所示(实线部分). (2)y =2 x +1 -1的图象可由y =2x 的图象向左平移1个单位,得y =2 x +1 的图象,再向下 平移一个单位得到,如图②所示. (3)y =x 2 -|x |-2=? ???? x 2 -x -2x ≥0,x 2 +x -2x <0, 其图象如图③所示. 【类题通法】 画函数图象的一般方法 (1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出; (2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出. 【对点训练】 分别画出下列函数的图象: (1)y =|log 2(x +1)|;(2)y =|x -1|,x ∈R ;(3)y =2x -1 x -1 . [解析] (1)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图①. (2)可先作出y =x -1的图象,将x 轴下方的图象沿x 轴翻折到x 轴上方,x 轴上方的图象保持不变可得y =|x -1|的图象.如图②中实线部分所示. (3)∵y =2+ 1x -1,故函数图象可由y =1 x 图象向右平移1个单位,再向上平移2个单位

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

2019高考数学考点突破——平面向量:平面向量的数量积 Word版含解析

平面向量的数量积 【考点梳理】 1.平面向量的数量积 (1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0. (2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ; (2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c . 3.平面向量数量积的性质及其坐标表示 设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉. 考点一、平面向量数量积的运算 【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC → 的值为( ) A .-58 B .18 C .14 D .118 (2)已知点P 在圆x 2 +y 2 =1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP → 的最大值为________. [答案](1)B (2) 6 [解析](1)如图所示,AF →=AD →+DF →. 又D ,E 分别为AB ,BC 的中点,

且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC → , 所以AF →=12AB →+34AC → . 又BC →=AC →-AB → , 则AF →·BC →=? ????12AB →+34AC →·(AC →-AB →) =12AB →·AC →-12AB →2+34AC →2-34AC →·AB → =34AC →2-12AB →2-14 AC →·AB →. 又|AB →|=|AC → |=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=1 8.故选B. (2)设P (cos α,sin α), ∴AP → =(cos α+2,sin α), ∴AO →·AP → =(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号. 【类题通法】 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义. 2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补. 【对点训练】 1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE → =() A .-32B .32 C .-332 D .332 [答案]A [解析]由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD → ,BE →〉=3×3×? ?? ??-12=-32,故选A.

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

相关文档
相关文档 最新文档