文档库 最新最全的文档下载
当前位置:文档库 › 混凝土微观结构与强度的关系.

混凝土微观结构与强度的关系.

混凝土微观结构与强度的关系.
混凝土微观结构与强度的关系.

混凝土微观结构与强度的关系

混凝土的强度是一个古老的话题虽然随着人们对建筑物安全性和使用性要求的提高,混凝土的耐久性撇参性等性质广受关注,但仍不能削弱强度在混凝土众多性质中的重要地位它是影响结构性能的最基本指标,是结构设计质量检验中首需考虑的因素面涌理解混凝土强度产生的机理和其影响因素对正确设计混凝土和保证结构质量都有很重要的意义

材料的宏观性质受细观组成物性质的影响,材料的性能(尤其是力学性能)取决于内部结构如果没有细微观层次的研究,或者不了解细微观层次的规律,则混凝土技术就不能脱离经验性的束缚

在研究混凝土性能的过程中考虑尽量多的影响因素作用建立二有物理意义的表达式,或从最基本的组成单位的性质出发,都有利于分析的全面性和正确性,可以更真实的反映材料本质所以全文五个章节包括以下几个方面的内容:

第一章首先分析了材料细微观结构与宏观性质的关系;其次回顾了混凝土的强度理论和破坏机理,以Griffith一ro如oH理论及裂缝随外力作用的扩展机理说明了混凝土的强度和其内部孔隙及粘结力有关第二章具体分析了影响混凝土强度的细观因素—孔结构;总结了孔结构同混凝土强度间的模型及定量关系;对比分析了孔隙与混凝土强度的关系式,并提出新的混凝土强度的预测公式,该公式能更好的反映孔结构与强度之间的关系第三章从对经验公式的分析转到进一步探讨混凝土破坏的原理上,通过将断裂力学刷马环原理分形维数结合起来而得出的新公式能更准确的反映混凝土破坏的实际原理,更好的描述混凝土作为不均质材料的性质第四章详细分析了混凝土中存在的各种键能,确定了混凝土微观层次上的强度构成:具体计算了氢键在C一S一H层间引起的作用力大小;分析了水泥水化产物的物理性质和结构特征与混凝土强度的关系;提出范德华力对混凝土强度起决定性作用的假设第五章以范德华力为代表,分析了使混凝土裂缝产生的条件,结合固体物理学和连续介质细观力学,以C一S一H的结构特性及组成为依据,计算了在不同水灰比的情况下水泥石的抗拉强度第六章为整篇文章的结论与展望,总结本文的成果,并对进一步的研究内容和方向提出建议。

关键词:混凝土;强度;细观结构;微观结构;破坏概率;键能;固体物理学;

细观力学

混凝土强度对应时间表-混凝土时间和强度-混凝土天数强度表

三天在平均气温20度/使用早强水泥/养护良好,可达50%~70%,七天可达80%~90%. 钢筋混凝土底模板拆除时间参考表 混凝土结构浇筑后,达到一定强度,方可拆模。主要是通过同条件养护的混凝土试块的强度来决定什么时候可以拆莫,模板拆卸日期,应按结构特点和混凝土所达到的强度来确定。 现浇混凝土结构的拆模期限: 1 ?不承重的侧面模板,应在混凝土强度能保证其表面及棱角不因拆模板而受损坏,方可拆除,一般十二小时后; 2 ?承重的模板应在混凝土达到下列强度以后,始能拆除(按设计强度等级的百分率计):板及拱: 跨度为2m及小于2m 50 % 跨度为大于2m至8m 75 % 梁(跨度为8m及小于8m )75 % 承重结构(跨度大于8m )100 % 悬臂梁和悬臂板100 % 3 ?钢筋混凝土结构如在混凝土未达到上述所规定的强度时进行拆模及承受部分荷载,应经过计算,复核结构在实际荷载作用下的强度。 4 ?已拆除模板及其支架的结构,应在混凝土达到设计强度后,才允许承受全部计算荷载。施工 中不得超载使用,严禁堆放过量建筑材料。当承受施工荷载大于计算荷载时,必须经过核算加设临时支撑。 钢筋混凝土底模板拆除时间参考表 现浇砼底模拆模所需砼强度 (摘自《混凝土结构工程施工质量验收规范》)结构跨度达到设计强度标准值的百分率 梁L< 8m 75% L > 8m 100% 板L< 2m 50% 2m v L < 8m 75% L > 8m 100% 悬臂梁、板L< 2m 75% L > 2m 100% 达到拆除砼底模板所需强度的参考时间(摘自《施工手册》)使用425#普通水泥所需天数 砼达到设计强度标准值的百分率硬化时昼夜平均温度(摄氏度) 5度10度15度20度25度30度 50% 1076543 75% 221512987 100% 5040302820 18 使用425#矿渣水泥所需天数砼达到设计强度标准值的百分率 硬化时昼夜平均温度(摄氏度) 5度10度15度20度25度30度 50%16119 87 6 75%322216 1413 11 100%605040 2824 20

什么是混凝土强度标准差

标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(meansquared error,均方误差就就是各数据偏离真实值得距离平方得平均数,也即误差平方与得平均数, 什么就就是混凝土强度标准差?怎么计算才好? 在工程中,想要知道混凝土抗压强度得时候,一定需要计算混凝土强度标准差,也许有些朋友并不知道什么叫做混凝土强度标准差,也许有些朋友知道混凝土强度标准差,但就就是却不知道应该怎样计算才好,因此在接下来得文章中就讲为朋友们分享一下混凝土强度标准差得概念以及计算方法就就是什么。 什么就就是混凝土强度标准差?

事实上,混凝土强度标准差得全称应该就就是混凝土抗压强度标准差,而混凝土强度得计算并不能做到完全没有误差,由于检测方法总就就是有误差得,所以检测值并不就就是其真实值。而标准差却就就是反映一组数据得离散程度最常用且最有用得一种量化形式,就就是计算结果就就是否精密得重要指标。 因此在计算混凝土强度得时候,就需要计算混凝土强度标准差,而想要计算混凝土强度标准差就需要计算公式,那么混凝土强度标准差得计算公式又就就是什么呢?大家一起来从下文中了解混凝土强度标准差得计算公式就就是什么。

混凝土强度标准差得计算公式如下: 混凝土强度标准差得计算公式:Sfcu=[(∑fcu?i2-n?mfcu2)/(n-1)]1/2 也许朋友们瞧到这个公式得时候会有疑惑,不知道这个公式所表达得意思,别急,接下来就为大家介绍公式中对应得意思,以及先后得计算顺序。 在上述公式中得2与1/2都就就是上角表,就就是用来表示平方与以及根号得,首先要对fcu?i平方求与,之后减去n与fcu乘积平均值得平方,之后再用她们得差再除去(n-1),这样计算之后得出得除数再开方;

影响混凝土强度的主要因素

影响混凝土强度的主要因素 1.影响混凝土强度的因素很多,从内因来说主要有水泥强度、水灰比和骨料质量。 水泥强度和水灰比: 混凝土的强度主要来自水泥石以及与骨料之间的粘结强度。水泥强度越高,则水泥石自身强度及与骨料的粘结强度就越高,混凝土强度也越高。试验证明,混凝土与水泥强度成正比关系。水泥完全水化的理论需水量约为水泥重的23%左右,但实际拌制混凝土时,为获得良好的和易性,水灰比大约在0.40--0.65之间,多余水分蒸发后,在混凝土内部留下孔隙,且水灰比越大,留下的孔隙越大,使有效承压面积减少,混凝土强度也就越小。另一方面,多余水分在混凝土内的迁移过程中遇到粗骨料时,由于受到粗骨料的阻碍,水分往往在其底部积聚,形成水泡,极大地削弱砂浆与骨料的粘结强度,使混凝土强度下降。因此,在水泥强度和其他条件相同的情况下,水灰比越小,混凝土强度越高,水灰比越大,混凝土强度越低。但水灰比太小,混凝土过于干稠,使得不能保证振捣均匀密实,强度反而降低。试验证明,在相同的情况下,混凝土的强度( Mpa)与水灰比呈有规律的曲线关系,而与灰水比则成线性关系。 2 影响强度的其它因素

为了使混凝土能达到预定的强度,还必须在施工中搅拌均匀、捣固密实,养护良好并使之达到规定的龄期。 (一)施工条件的影响:施工条件是确保混凝土结构均匀密实、硬化正常、达到设计要求强度的基本条件。在施工过程中必须把拌合物搅拌均匀,浇注后必须捣固密实,且经良好的养护才能使混凝土硬化后达到预定的强度。采用机械搅拌比人工搅拌的拌合物更均匀,同时采用机械捣固的混凝土更密实,因此机械捣固可适用于更低水灰比的拌合物;能获得更高的强度。改进施工工艺性能也能提高混凝土强度,如采用分次投料搅拌工艺、高速搅拌机搅拌、高频或多频振捣器振捣、二次振捣工艺都会有效的提高混凝土的强度。 (二)养护条件的影响:为了获得质量良好的混凝土,混凝土成型后必须在一定的养护条件下(包括养护温度)进行养护,目的是保证水泥水化的正常进行,以达到预定的强度和其他性能。周围环境湿度是保证水泥正常水化、混凝土顺利成型的一个重要条件。在适当的湿度下,水泥能正常水化,使混凝土强度充分发展。如果湿度不足,混凝土表面会发生失水干燥现象,迫使内部水分向表面迁移,造成混凝土结构疏松、干裂,不但降低强度,而且还将影响混凝土的耐久性能。环境温度对水泥水化作用的影响是显著的。养护温度高,可以加快水泥水化速度,混凝土早期强度高;反之,混凝土在低温下强度发展相应迟缓,尤其温度在冰点以下

v钢筋混凝土结构物的防腐技术

v钢筋混凝土结构物的防腐技术

钢筋混凝土结构物的防腐技术 添加时间:2009-09-10 16:30阅读次数:2次内容摘要: 摘要:提出了钢筋混凝土防腐技术和预防措施,并对混凝土中的Cl-含量确定了量化指标,通过试验验证了7种混凝土外加剂均能减缓氯盐对钢筋的腐蚀速度,强调了应建立有关融雪、破冰剂的技术质量标准和试验规程。关键词:钢筋腐蚀;机理;融雪剂;防腐技摘要:提出了钢筋混凝土防腐技术和预防措施,并对混凝土中的Cl-含量确定了量化指标,通过试验验证了7种混凝土外加剂均能减缓氯盐对钢筋的腐蚀速度,强调了应建立有关融雪、破冰剂的技术质量标准和试验规程。 关键词:钢筋腐蚀;机理;融雪剂;防腐技术 1 钢筋在氯盐环境中的防腐技术与预防措施 1.1 防腐技术 研究防腐技术的目的,在于使结构物从投入使用,到内部的钢筋开始锈蚀的时间尽可能的接近设计寿命。要想完全避免Cl-的腐蚀,最理想的方法就是从根本上保证混凝土与氯盐环境隔绝,事实上这是不可能的。重要的是如何有效地控制氯盐的总量,使之限定在规定的范围之内。依据钢筋在氯盐环境中的电化学行为的研究结果和腐蚀机理,认为凡是能够有效的阻止混凝土PH值下降、保证钢筋界面上的钝化膜不活化、维持界面双电层的电位恒定、避免钢筋表面去极化的发生,就能够有效地控制腐蚀的发生,也即防腐技术。本文就防腐技术归纳如下: (1)混凝土中Cl-总量限定值 所谓“限定值”是指混凝土中所允许的最大值。研究表明,Cl-的总量限定值应小于0.18%(普通混凝土水泥重量百分比),折合为0.55kg/m3,该值相当于美国(ACI)的限定值,比日本土木学会的规范

《混凝土-微观结构 性能和材料》笔记

笔记之前: 1.这本书是译著。原著名:《CONCRETE Microstructure,Properties,and Materials》由库玛·梅塔(Mehta)和保罗.蒙特罗(Paulo )合著。 2.本笔记所选摘的都是普通教材中可能忽略的地方,不体现混凝土科学的主要框架,只以本书的体色为主:细致,深入,全面。 3.作为思考混凝土某一方面研究的借鉴,目的是拓宽思路。 笔记: 第一篇硬化混凝土的微结构和性能 第一章绪论 第二章混凝土的微结构(提出了混凝土中过渡区的重要性) 第三章强度(见附图1影响混凝土强度各个因素的相互作用) 第四章尺寸稳定性 “需要注意,混凝土构件通常处于被约束的状态,约束有时来自路基的摩擦 和端部的其他构件,但更多还是来自钢筋和混凝土内、外部的应变差。” “混凝土在约束状态下,干缩应变诱发的弹性拉应力和粘弹性行为带来的应 力松弛之间的交互作用,是大多数结构变形和开裂的核心。” “不是所有变量都以同一种方式控制混凝土的强度和弹性模量(通常,粗骨 料的弹性模量越高、用量越大,混凝土的弹性模量就越大。低强或中强混凝 土的强度不受骨料孔隙率正常变化的影响。)” (附图2 影响混凝土弹性模量的不同参数) 第五章耐久性 (附图3 混凝土劣化的物理原因) “在一种冻融环境中耐冻的混凝土在另一种组合条件下却可能被摧毁。” “经显微镜观测证实:当冰在气孔(而不是毛细孔道)中形成时,水泥浆体 会收缩” “对一种骨料,临界尺寸(在一定的孔径分布、渗透性、饱和度与结冰速率 条件下,大颗粒骨料可能会受冻害,但小颗粒的同种骨料则不会)并非单一 值,因为他还取决于结冰速率、饱和度和骨料的渗透性。” (附图4 化学反应引起混凝土劣化的模型) (附图5 常见环境条件下混凝土损伤的整体模型) “氯化物对硫酸盐膨胀的影响清楚地表明:我们在模拟材料行为时经常犯错 误,即为了简单起见只考虑单一因素的影响,而没有充分考虑其他可能会显 著改变这种影响的因素的存在。” 第二篇混凝土原材料、配合比和早龄期性能 第六章水硬性水泥 区分水泥熟料的化学组成(氧化钙、二氧化硅、三氧化二铝、三氧化二铁、 水等)与矿物组成(硅酸三钙、硅酸二钙、氯酸三钙、铁铝酸四钙等); “任何化学反应的主要特征包括物质变化、能量变化和反应速率三个方面” “水化水泥浆体的电子显微研究表明,水泥早期,水化主要以完全溶解机理 为主;水化后期,由于溶液中离子的迁移受阻,剩余水泥颗粒的水化则主要 按固相反应机理进行” (附图6 硅酸盐水泥浆体液相中铝酸盐对硫酸盐的比例对凝结特性的影响) (附图7 水化产物与凝结过程的关系)

混凝土强度等级对照表

混凝土强度等级对照表 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu 表示。 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30M Pa≤fcu<35MPa 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、

养护温度和湿度等有关。 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因此,砂石质量必须符合混凝土各标号用砂石质量标准的要求。

混凝土微观结构与强度的关系.

混凝土微观结构与强度的关系 混凝土的强度是一个古老的话题虽然随着人们对建筑物安全性和使用性要求的提高,混凝土的耐久性撇参性等性质广受关注,但仍不能削弱强度在混凝土众多性质中的重要地位它是影响结构性能的最基本指标,是结构设计质量检验中首需考虑的因素面涌理解混凝土强度产生的机理和其影响因素对正确设计混凝土和保证结构质量都有很重要的意义 材料的宏观性质受细观组成物性质的影响,材料的性能(尤其是力学性能)取决于内部结构如果没有细微观层次的研究,或者不了解细微观层次的规律,则混凝土技术就不能脱离经验性的束缚 在研究混凝土性能的过程中考虑尽量多的影响因素作用建立二有物理意义的表达式,或从最基本的组成单位的性质出发,都有利于分析的全面性和正确性,可以更真实的反映材料本质所以全文五个章节包括以下几个方面的内容: 第一章首先分析了材料细微观结构与宏观性质的关系;其次回顾了混凝土的强度理论和破坏机理,以Griffith一ro如oH理论及裂缝随外力作用的扩展机理说明了混凝土的强度和其内部孔隙及粘结力有关第二章具体分析了影响混凝土强度的细观因素—孔结构;总结了孔结构同混凝土强度间的模型及定量关系;对比分析了孔隙与混凝土强度的关系式,并提出新的混凝土强度的预测公式,该公式能更好的反映孔结构与强度之间的关系第三章从对经验公式的分析转到进一步探讨混凝土破坏的原理上,通过将断裂力学刷马环原理分形维数结合起来而得出的新公式能更准确的反映混凝土破坏的实际原理,更好的描述混凝土作为不均质材料的性质第四章详细分析了混凝土中存在的各种键能,确定了混凝土微观层次上的强度构成:具体计算了氢键在C一S一H层间引起的作用力大小;分析了水泥水化产物的物理性质和结构特征与混凝土强度的关系;提出范德华力对混凝土强度起决定性作用的假设第五章以范德华力为代表,分析了使混凝土裂缝产生的条件,结合固体物理学和连续介质细观力学,以C一S一H的结构特性及组成为依据,计算了在不同水灰比的情况下水泥石的抗拉强度第六章为整篇文章的结论与展望,总结本文的成果,并对进一步的研究内容和方向提出建议。 关键词:混凝土;强度;细观结构;微观结构;破坏概率;键能;固体物理学; 细观力学

混凝土强度等级对照表

混凝土强度等级对照表 标准 混凝土的抗压强度是通过试验得出的,我国最新标准C60强度以下的采用边长为150mm的立方体试件作为混凝土抗压强度的标准尺寸试件。按照《普通混凝土力学性能试验方法标准》GB/T50081-2002,制作边长为150mm的立方体在标准养护(温度20±2℃、相对湿度在95%以上)条件下,养护至28d龄期,用标准试验方法测得的极限抗压强度,称为混凝土标准立方体抗压强度,以fcu表示。[1]按照GB50010-2010《混凝土结构设计规范》规定,在立方体极限抗压强度总体分布中,具有95%强度保证率的立方体试件抗压强度,称为混凝土立方体抗压强度标准值(以MPa计),用fcu表示。[2] 依照标准实验方法测得的具有95%保证率的抗压强度作为混凝土强度等级。 按照GB50010-2010《混凝土结构设计规范》规定,普通混凝土划分为十四个等级,即:C15,C20,C25,C30,C35,C40,C45,C50,C55,C60,C65,C70,C75,C80。例如,强度等级为C30的混凝土是指30MPa≤fcu<35MPa[2] 影响混凝土强度等级的因素主要与水泥等级和水灰比、骨料、龄期、养护温度和湿度等有关。

影响因素 混凝土质量的主要指标之一是抗压强度,从混凝土强度表达式不难看出,混凝土抗压强度与混凝土用水泥的强度成正比,按公式计算,当水灰比相等时,高标号 水泥比低标号水泥配制出的混凝土抗压强度高许多。一般来说,水灰比与混凝土强度成反比,水灰比不变时,用增加水泥用量来提高混凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。 所以说,影响混凝土抗压强度的主要因素是水泥强度和水灰比,要控制好混凝土质量,最重要的是控制好水泥质量和混凝土的水灰比两个主要环节。此外,影响混凝土强度还有其它不可忽视的因素。 粗骨料对混凝土强度也有一定影响,所以,工程开工时,首先由技术负责人现场确定粗骨料,当石质强度相等时,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,当水灰比相等或配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石高。 因此我们一般对混凝土的粗骨料粒径控制与不同的工程部位相适应;细骨料品种对混凝土强度影响程度比粗骨料小,但砂的质量对混凝土质量也有一定的影响,施工中,严格控制砂的含泥量在3%以内,因

混凝土强度检验评定标准GB50107-2010.

中华人民共和国国家标准 混凝土强度检验评定标准 Standard for test and evaluation of concrete compression strength GB50107-2010 2010-05-31发布2010-12-01实施———————————————————————————— 中华人民共和国建设部 国家质量监督检验检疫总局

前言 本标准是根据原建设部《关于印发〈二OO二~二OO三年度工程建设国家标准制订、修订计划〉的通知》(建标[2003]102号)的要求,标准编制组经广泛调查研究,认真总结实践经验、参考有关国际标准和国外先进标准,并在广泛征求意见的基础上,修订本标准。 本标准规定的主要内容有:1总则;2术语、符号;3基本规定;4混凝土的取样与试验;5混凝土强度的合格评定。 本标准修订的主要内容是:1增加了术语、符号;2补充了试件取样频率的规定;3增加了C60及以上高强混凝土非标准尺寸试件确定折算系数的方法;4修改了评定方法中标准差已知方案中的标准差计算公式;5修改了评定方法中标准差未知方案的评定条文;6修改了评定方法中非统计方法的评定条文。 本标准由住房和城乡建设部负责管理,由中国建筑科学研究院负责具体技术内容的解释。执行过程中如有意见和建议,请寄送中国建筑科学研究院《混凝土强度检验评定标准》管理组(地址:北京市北三环东路30号,邮政编码:100013;电子信箱:standards@https://www.wendangku.net/doc/246413745.html,)。 本标准主编单位:中国建筑科学研究院 本标准参编单位:北京建工集团有限责任公司 湖南大学 北京市建筑工程安全质量监督总站 上海建工材料工程有限公司 西安建筑科技大学 云南建工混凝土有限公司 舟山市建筑工程质量监督站 北京东方建宇混凝土技术研究院 贵州中建建筑科学研究院 沈阳北方建设股份有限公司 广东省建筑科学研究院

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

混凝土强度拆模时间要求

建筑工程现浇混凝土拆模时间强度要求 1、.三天在平均气温20度/使用早强水泥/养护良好,可达50%~70%,七天可达80%~90%. 钢筋、混凝土底模板拆除时间参考表,混凝土结构浇筑后,达到一定强度,方可拆模。主要是通过同条件养护的混凝土试块的强度来决定什么时候可以拆莫,模板拆卸日期,应按结构特点和混凝土所达到的强度来确定。 现浇混凝土结构的拆模期限: 2、不承重的侧面模板,应在混凝土强度能保证其表面及棱角不因拆模板而受损坏,方可拆除,一般十二小时后; 3、承重的模板应在混凝土达到下列强度以后,始能拆除(按设计强度等级的百分率计): 板及拱: 跨度为2m及小于2m 50% 跨度为大于2m至8m 75% 梁(跨度为8m及小于8m) 75% 承重结构(跨度大于8m) 100% 悬臂梁和悬臂板 100% 4、钢筋混凝土结构如在混凝土未达到上述所规定的强度时进行拆模及承受部分荷载,应经过计算,复核结构在实际荷载作用下的强度。 5、已拆除模板及其支架的结构,应在混凝土达到设计强度后,才允许承受全部计算荷载。施工中不得超载使用,严禁堆放过量建筑材

料。当承受施工荷载大于计算荷载时,必须经过核算加设临时支撑。钢筋混凝土底模板拆除时间参考表 现浇砼底模拆模所需砼强度 (摘自《混凝土结构工程施工质量验收规范》) 结构跨度达到设计强度标准值的百分率 梁 L≤8m 75% L>8m 100% 板 L≤2m 50% 2m<L≤8m 75% L>8m 100% 悬臂梁、板 L≤2m 75% L>2m 100% 达到拆除砼底模板所需强度的参考时间: 使用425#普通水泥所需天数 砼达到设计强度标准值的百分率硬化时昼夜平均温度(摄氏度) 5度 10度 15度 20度 25度 30度50% 10 7 6 5 4 3 75% 22 15 12 9 8 7 100% 50 40 30 28 20

混凝土结构物外观质量控制措施

混凝土结构物外观质量控制措施 摘要:混凝土的外观质量直接关系到结构物的美观度,混凝土结构物外观质量应从各 个环节进行控制,技术工人的素质及责任心,模板的加工及安装的质量,混凝土的拌 制和运输,混凝土的浇筑及养生,均会影响混凝土结构物的外观质量。 关键词混凝土外观质量控制 目前,我国高速公路建设如火如荼,建设规模和投资规模逐渐加大,公路工程的建设质量要求也进一步提高。国家投巨资建设高速公路,不但要满足交通运输的要求,同时也要给人一种视觉上的美感,特别是通道、桥梁工程的质量,不但要求内在质量高,同时也要求外观质量美,看过以后给人一种舒畅的感觉。混凝土的外观质量直接关系到结构物的美观度,下面就混凝土结构物外观质量控制措施谈一谈自己的认识。 一、提高技术工人素质,加强全员质量意识 人是工作的主体,没有高素质的技术工人,要想把混凝土外观质量控制好是不可能的。从模板的加工、安装,到混凝土的拌和、浇筑,每一个工作环节都离不开技术工人,工人技术水平的高低,直接影响工序的质量,工序质量的好坏,最终将影响混凝土的外观质量。 混凝土外观质量控制,必须从每个细节做起,这就要求每个参与工作的人员都要有质量意识。施工人员上岗前,要进行质量意识教育,加强施工人员的责任心,提高质量意识。 二、模板制作、安装质量控制措施 1、模板加工质量控制措施 模板加工质量的好坏,直接影响到混凝土的外观质量。模板加工质量主要以模板的刚度、强度、平整度、面板的光滑度、拼缝的密封性及几何尺寸等方面进行检查控制。在钢模板加工时,要对模板加工厂家进行了多次考察,将模板加工任务交给技术力量强、工厂规模大的厂家进行加工,并提出模板设计、加工的具体要求及验收标准。模板进场后,先拼装成型,再用磨光机打磨,去除模板表面的浮锈及污迹,然后用细砂纸打磨,使模板表面光滑、平整。对确因模板加工不精细错台严重的进行彻底整修,使之拼接紧密、无错台。当模板采用竹胶板时,一定要选择优质竹胶板,要求竹胶板的密度大、表面平整光滑、厚度基本一致、边缘密封较好。加工竹胶板模板时要注意以下几点:肋木间距应适当,防止

混凝土强度对应时间表

三天在平均气温20度/使用早强水泥/养护良好,可达50%~70%,七天可达80%~90%. 钢筋混凝土底模板拆除时间参考表 混凝土结构浇筑后,达到一定强度,方可拆模。主要是通过同条件养护的混凝土试块的强度来决定什么时候可以拆莫,模板拆卸日期,应按结构特点和混凝土所达到的强度来确定。 现浇混凝土结构的拆模期限: 1.不承重的侧面模板,应在混凝土强度能保证其表面及棱角不因拆模板而受损坏,方可拆除,一般十二小时后; 2.承重的模板应在混凝土达到下列强度以后,始能拆除(按设计强度等级的百分率计): 板及拱: 跨度为2m及小于2m50% 跨度为大于2m至8m75% 梁(跨度为8m及小于8m)75% 承重结构(跨度大于8m)100% 悬臂梁和悬臂板100% 3.钢筋混凝土结构如在混凝土未达到上述所规定的强度时进行拆模及承受部分荷载,应经过计算,复核结构在实际荷载作用下的强度。 4.已拆除模板及其支架的结构,应在混凝土达到设计强度后,才允许承受全部计算荷载。施工中不得超载使用,严禁堆放过量建筑材料。当承受施工荷载大于计算荷载时,必须经过核算加设临时支撑。 钢筋混凝土底模板拆除时间参考表 现浇砼底模拆模所需砼强度 (摘自《混凝土结构工程施工质量验收规范》) 结构跨度达到设计强度标准值的百分率 梁L≤8m75% L>8m100% 板L≤2m50% 2m<L≤8m75% L>8m100% 悬臂梁、板L≤2m75% L>2m100% 达到拆除砼底模板所需强度的参考时间(摘自《施工手册》) 使用425#普通水泥所需天数 砼达到设计强度标准值的百分率硬化时昼夜平均温度(摄氏度) ????????????5度10度15度20度25度30度 50%????10??????7????????6????????5??????4????????3 75%????22????15??????12????????9??????8????????7 100%50????40????30??????28??????20??????18 使用425#矿渣水泥所需天数 砼达到设计强度标准值的百分率硬化时昼夜平均温度(摄氏度) ??????????????5度10度15度20度25度30度 50%????16????11??????9????????8????????7????????6 75%????32????22????16??????14??????13??????11

浅析影响混凝土强度的几个主要因素

浅析影响混凝土强度的几个主要因素 本钢建设公司混凝土分公司梅晓东 [摘要]:混凝土强度的控制对保证工程质量有着重要的作用。影响混凝土强度的因素颇多,本文主要从用水量、砂率、原材料等方面分析其对强度的影响,以便科学、合理的控制混凝土工程质量。 [关键词]:混凝土强度用水量砂率原材料 混凝土作为目前使用最广泛的结构材料之一,它的质量直接关系到工程的质量、使用寿命以及人民的生命、财产的安全。我国正处于基础设施建设的高峰期,如果在生产过程中对混凝土质量不够重视,将会导致沉重的代价。混凝土生产供应是一个连续过程,供应到现场的混凝土又是一种半成品,不能够马上由后续检验工作完全证实是否合格,而就要被立即浇筑使用的产品。生产过程中众多方面的影响因素均会使生产出的混凝土质量产生变异。为了切实、有效地改善试验配合比、提高混凝土强度质量,笔者对一些影响因素进行分析、研究,以供参考。 1、用水量对混凝土强度的影响 在完全密实的情况下,普通混凝土的强度主要取决于其内部起胶结作用的水泥石质量,而水泥石的质量又取决于所采用的水泥特性和水灰比。 当水泥用量一定时,用水量小则水灰比小。水灰比过小会使混凝土干涩,成型质量难以保证,混凝土成品中会出现孔洞(蜂窝)较多,麻面等现象。这不但影响美观,还会降低混凝土的密实度和强度,使工程的耐久性变差。 在生产中,假设混凝土试验室配合比为: 水泥:砂:石子:水=1:1.51:2.83:0.46 现场测定砂的含水率为3%,则每机一次下料量为: 水泥:100kg 砂:100×1.51×(1+3%)=155.5kg 石子:283kg 水:100×0.46-100×1.51×3%=41.5kg 如果此水泥的实际强度为47MPa,粗骨料采用碎石(表面特征新系数A=0.46,B=0.52),按此配合比配制的混凝土其28天可达到的强度R为: R=A·fce·(C/W-B)=0.46×47×〔100/(100×0.46)-0.52〕=35.8MPa 情形一:若因误差而多加1kg的水,则水灰比(W/C)' 为: (W/C)'=(100×0.46+1)/100=0.47 这样配制的混凝土28天可达到的强度R'为: R'=0.46×47×〔100/(100×0.47)-0.52〕=34.8MPa 由于多加1kg水而引起的强度损失为: R-R'=35.8-34.8=1MPa 由此可见,用水量的变化对混凝土强度的影响是很大的,因此出场的混凝土必须制止随意加水。 情形二:若在施工中遇到下雨,雨后测得砂含水率为7%,石子含水率为3%,此时每机一次下料应为: 水泥:100kg 石子:100×2.83×(1+3%)=291.49kg 砂:100×1.51×(1+7%)=161.57kg 水:100×0.46-100×1.51×7%-100×2.83×3%=26.94kg 按此配合比显然是科学的,保证了水灰比为0.46,混凝土28天强度可达到设计要求(仍为

混凝土结构原理知识点

1,混凝土结构是以混凝土材料为主要承重骨架的土木工程构筑物。混凝土结构包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和其他形式的加劲混凝土结构。 2/混凝土和钢筋共同工作的条件是:(1)钢筋与混凝土之间有良好的粘结力,使两者结合为整体。(2)钢筋与混凝土两者之间线胀系数几乎相同, 3、钢筋混凝土结构其主要优点:(1)材料利用合理(2)耐久性好(3)耐火性好(4)可模性好(5)整体性好(6)易于就地取材 4..混凝土按化学成分分为碳素钢和普通低合金钢。 5 按生产工艺和性能不同分为:热轧钢筋,中强度预应力钢筋,消除应力钢筋,钢绞线,和预应力螺纹钢筋。 6冷加工钢筋是将某些热轧光面钢筋经冷却冷拔或冷轧冷扭进行再加工而形成的直径较细的光面或变形钢筋。有冷拉钢筋,冷拔钢筋,冷轧带肋钢筋,和冷轧扭钢筋。热轧钢筋分为热轧光面钢筋HPB300、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400 9.钢筋的冷弯性能:检验钢筋韧性,内部质量和加工可适性的有效方法,是将直径d的钢筋绕直径为D的弯芯进行弯折,在到达冷弯角度时,钢筋不发生裂纹,断裂、起层现象。 10.钢筋的疲劳是指钢筋在承受重复周期性的动荷载作用下,经过一定次数后,从塑性破坏变成脆性破坏的现象。 钢筋的疲劳强度是在某一规定的应力幅内,经受一定次数循环荷载后发生疲劳破坏的最大应力值。 混凝土结构对钢筋性能的要求 (1)钢筋的强度(2)钢筋的塑性(3)钢筋的可焊性(4)钢筋与混凝土的粘结力混凝土是用水泥,水,砂,石料以及外加剂等原材料经搅拌后入模浇筑,经养护硬化形成的人工石材。 水泥凝胶体是混凝土产生塑性变形的根源,并起着调节和扩散混凝土应力的作用。 11.a.混凝土的强度等级:混凝土的立方体抗压强度(简称立方体强度)是衡量混凝土强度的基本指标,用Fcu表示。我国规范采用立方体抗压强度作为评定混凝土强度等级的标准,规定按标准方法制作、养护的边长为150 mm的立方体试件,在28 d或规定龄期用标准试验方法测得的具有95%保证率的抗压强度值(以N/mm2计) 混凝土结构强度等级不应低于C20,采用400MP不小于C25,承受重复荷载的不应低于C30,预应力不宜低于C40,且不应低于C30 混凝土立方体抗压强度不仅与养护是的温度湿度和龄期有关,还与立方体试件的尺寸和试验方法密切相关。 混凝土的变形分两类:混凝土的受力变形,包括一次短期间加荷的变形,荷载长期作用下的变形,多次重复荷载下的变形。2是混凝土由于收缩或由于温度变化产生的变形。 混凝土强度越高延性越低。 螺旋筋能很好地提高混凝土的强度和延性;密排箍筋能较好地提高混凝土延性,但提高强度不明显。 横向应变与纵向应变的比值称为横向变形系数Vc 可取0.2 混凝土的变形模量:弹性模量Ec ,切线模量Ec〞;割线模量Ecˊ 总变形ε包含弹性变形和塑性变形。V是混凝土受压时的弹性系数,为混凝土弹性变形与总应变的比值。 16.疲劳破坏:混凝土在荷载重复作用下引起的破坏。疲劳强度FcF是混凝土能承受多次重复作用而不发生疲劳破坏的最大应力限值。17.混凝土的徐变:混凝土在荷载的长期持续作用下,混凝土的变形随时间而缓慢增长的现象。 徐变值与应力的大小成正比,称为线性徐变。临界是0.5;0.5到0.8,徐变的增长比应力快,称为非线性徐变。 混凝土的收缩水一种随时间增长而增长的变形。 18.徐变有利影响:有利于结构或构件的内力重分布,减少应力集中现象及减少温度应力等;在某种情况下,徐变有利于防止结构物裂缝形成。20.影响混凝土徐变的因素很多,总的来说可分为三类: (1)内在因素内在因素主要是指混凝土的组成与配合比。水泥用量大,水泥胶体多,水胶比越高,徐变越大。要减小徐就应尽量减少水泥用量,减少水胶比,增加骨料所占体积及刚度。 (2)环境影响环境影响主要是指混凝土的养护条件以及使用条件温度和湿度影响。养护的温度越高,湿度越大,水泥水化作用越充分,徐变 就越小,采用蒸汽养护可使徐变减少20%--35%;试件受荷后,环境温度越低、湿度越大,以及体表比(构件体积与表面积的比 值)越大,徐变就越小。 (3)应力条件应力条件的影响包括加荷时施加的初应力水平和混凝土的龄期两个方面。在同样的应力水平下,加荷龄期越早,混凝土硬化越不 充分,徐变就越大;在同样的加荷龄期条件下,施加的初应力水平越大徐变越大。 21.徐变值与应力的大小成正比,这种徐变称为线性徐变。徐变的增长较应力增长快,这种徐变称为非线性徐变; 23.混凝土的收缩是一种随时间增长而增长的变形。 24.钢筋和混凝土之间的粘结力由三部分组成:(1)化学胶结力(2)摩阻力(3)机械咬合力 25. 影响钢筋与混凝土粘结强度的因素主要有: (1)钢筋表面形状试验表明,变形钢筋的粘结力比光面钢筋高出2~3倍,因此变形钢筋所需的锚固长度比光面钢筋要短,而光面钢筋的锚固端头则需要作弯钩以提高粘结强度。 (2)混凝土强度变形钢筋和光面钢筋的粘结强度均随混凝土强度的提高而提高,但不与立方体抗压强度fcu成正比。粘结强度与混凝土的抗拉强度Ft大致成正比例关系。

混凝土强度时间表

三天在平均气温 20度/使用早强水泥/养护良好,可达50%~70%,七天可达 80%~90%. 钢筋混凝土底模板拆除时间参考表 混凝土结构浇筑后,达到一定强度,方可拆模。主要是通过同条件养护的混凝土试块的强度来决定什么时候可以拆莫,模板拆卸日期,应按结构特点和混凝土所达到的强度来确定。 现浇混凝土结构的拆模期限: 1 ?不承重的侧面模板,应在混凝土强度能保证其表面及棱角不因拆模板而受损坏,方可拆除,一般十二小时后; 2 ?承重的模板应在混凝土达到下列强度以后,始能拆除(按设计强度等级的百分率计):板及拱: 跨度为2m及小于2m 50 % 跨度为大于2m至8m 75 % 梁(跨度为8m及小于8m )75 % 承重结构(跨度大于8m )100 % 悬臂梁和悬臂板100 % 3 ?钢筋混凝土结构如在混凝土未达到上述所规定的强度时进行拆模及承受部分荷载,应经过计算,复核结构在实际荷载作用下的强度。 4 ?已拆除模板及其支架的结构,应在混凝土达到设计强度后,才允许承受全部计算荷载。施工 中不得超载使用,严禁堆放过量建筑材料。当承受施工荷载大于计算荷载时,必须经过核算加设 临时支撑。 钢筋混凝土底模板拆除时间参考表 现浇砼底模拆模所需砼强度 (摘自《混凝土结构工程施工质量验收规范》)结构跨度达到设计强度标准值的百分率 梁L<8m 75% L >8m 100% 板L<2m 50% 2m v L <8m 75% L >8m 100% 悬臂梁、板L<2m 75% L >2m 100% 达到拆除砼底模板所需强度的参考时间(摘自《施工手册》)使用425#普通水泥所需天数 砼达到设计强度标准值的百分率硬化时昼夜平均温度(摄氏度) 5 度10度15度20度25度30度 50% 10 7 6 5 4 3 75% 22 15 12 9 8 7 100% 50 40 30 28 20 18 使用425#矿渣水泥所需天数砼达到设 计强度标准值的百分率 硬化时昼夜平均温度(摄氏度)

混凝土强度检验评定标准GB/T—

UDC 中华人民共和国国家标准 P GB/T 501 07-2010 混凝土强度检验评定标准Standard for evaluation of concrete compressive strength 2010—05—31 发布2010—12—01 实施 中华人民共和国住房和城乡建设部 中华人民共和国国家质量监督检验

中华人民共和国住房和城乡建设部 公告第594号 关于发布国家标准 《混凝土强度检验评定标准》的公告现批准《混凝土强度检验评定标准》为国家标准,编号为GB/T 50107—2010,自2010年12月1日起实施。原《混凝土强度检验评定标准》GBJ 107—87同时废止。 本标准由我部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国住房和城乡建设部 2010年5月31日 前言 本标准是根据原建设部《关于印发〈二○○二~二○○三年度工程建设国家标准制订、修订计划〉的通知》(建标[2003] 102号)的要求,标准编制组经广泛调查研究,认真总结实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见的基础上,修订本标准。 本标准主要内容包括:1 总则;2术语和符号;3基本规定;4混凝土的取样与试验;5混凝土强度的检验评定。 本标准修订的主要内容是:1增加了术语和符号;2补充了试件取样频率的规定;3增加了C60及以上高强混凝土非标准尺寸试件确定折算系数的方法;4修改了评定方法中标准差已知方案的标准差计算公式;5修改了评定方法中标准差未知方案的评定条文;6修改了评定方法中非统计方法的评定条文。 本标准由住房和城乡建设部负责管理,由中国建筑科学研究院负责具体技术内容的解释。执行过程中如有意见和建议,请寄送中国建筑科

混凝土试块抗压强度的影响因素

混凝土试块抗压强度的影响因素 一、试件取样对混凝土试块抗压强度的影响 1、试件数量不足。出现该问题的原因大多为在施工之前没有将抽样方案确定下来,对于留置数量和评定统计方法没有量化、细化,导致统计上出现了误差。 2、抽样的样品没有代表性,不能将混凝土的质量真实地反映出来。这大多是由于取样人员在取样时,没有严格按照相关规范的要求实施取样。在实施中,仅是根据混凝土搅拌质量的优劣一次制作出了多组试件包含了下一个批次的试件,如此做法,不能真实地反映个批次混凝土的实际质量。 3、《普通混凝土物理力学性能试验方法标准》中的相关条例具体规定了混凝土试件的成型方法、振捣方法和养护要求,如果在施工现场对这些规范和要求有所缺失,必然导致成型后的试件存在诸多问题,这些问题也势必影响了试块抗压强度检测的准确性。 二、检测过程对混凝土试块抗压强度的影响 1、在对试块实施抗压强度测试之前,没有能够按照试件的尺寸公差实施检测。大量工程实践和相关标准表明,标准的试件检测有如下要求: (1)承压面的平整度公差应£0.0005d(其中d为试件直径); (2)试件相邻面应该垂直,即夹角为90°,公差应0.5°; (3)对于试件各边长、直径和高的实际尺寸公差应1mm。 2、在进行试块抗压强度测试的操作中,试块放置位置的精确程

度不够,导致试块不是轴心受压。 3、没有按照加荷速度标准实施正确的操作,导致由于加荷速度过于快了生成冲击荷载。大量理论研究和工程实践经验表明,试块在受力被破坏之前,荷载增加的速度如果大于材料裂纹扩展的速度,那么测试得到的强度值与真实值相比偏高。 4、在测试时,如果试件表面有油污对测试结果有影响。理论研究和实验表明,如果试件的受压面上存有油污,那么将减小承压板与试件表面之间的摩擦力,试件将出现垂直裂纹而破坏,如此一来测试得到的混凝土强度值偏低。 5、试件浸泡养护后没有晾干对测试结果也有影响。理论研究和实验表明,试件在水中浸泡养护后,试件含水量比较大,如果不将其晾干,那么测试得到的混凝土强度值偏低。 三、改善措施分析 1、试件取样上控制 (1)严格做好试配、试验、设计配合比、浇筑施工、养护、取样和测强等等每一环节来科学地确定混凝土强度等级,因为在操作上任何一个环节出现疏忽或失误,都有导致降低混凝土强度的可能。 (2)对于混凝土施工组织设计和质量措施方案的编制要有专人负责,精心编制,确保混凝土质量能够始终位于受控的状态。 (3)在具体工程中配备的从业人员,应是具有一定文化水平和工作责任心的专职抽样人员,由其负责现场的混凝土取样和制作工作。

相关文档