文档库 最新最全的文档下载
当前位置:文档库 › 常用机械机构介绍

常用机械机构介绍

常用机械机构介绍
常用机械机构介绍

第4章常用机构

4.1 平面连杆机构

4.1.1 平面连杆机构的组成

我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。

1、构件的自由度

如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。我们把构件作独立运动的可能性称为构件的“自由度”。所以,一个在平面自由运动的构件有三个自由度。可用如图4-1所示的三个独立的运动参数x、y、θ表示。

2、运动副和约束

平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。这种使两构件直接接触并能产生一定运动的联接,称为运动副。两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。

两构件组成的运动副,不外乎是通过点、线、面接触来实现的。根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。

(1)低副两构件以面接触形成的运动副称为低副。按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。

①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。

②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。

由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。因转动副和移动副都是面接触,接触面压强低,称为低副。我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。

(2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。

3、构件分类

机构中的构件可分为三类。

(1)机架它是机构中视作固定不动的构件,起支撑其他活动构件的作用。

(2)原动件它是机构中接受外部给定运动规律的活动构件。

(3)从动件它是机构中的随原动件运动的活动构件。

4.1.2平面机构的运动简图

为方便对机构进行分析,可以撇开机构匮与运动无关的因素(如构件的形状、组成构件的零件数目、运动副的具体结构等),用简单线条和符号表示构件和运动副,并按一定比例定出各运动副的位置,以简图表示出机构各构件间相对运动关系,这种简图为机构运动简图。它是表示机构运动特征的一种工程用图)

1、常用运动副的符号(如图4-4)

2、构件的表示法

不管构件形状如何,都用简单线条表示,带短线的线条表示机架,如图4-5(b)、(c)、

(e)所示。

和一个移动副的构件;如图4-6(c)、(d)所示表示能组成三个转动副的构件。

3、绘制机构运动简图的方法

在绘制机构运动简图时,首先必须分析该机构的实际构造和运动情况,分清机构中的主动件和从动件;然后从主动件开始,顺着运动传递路线,仔细分析各构件之间的相对运动情况;从而确定组成该机构的构件数、运动副数及性质。并按一定的比例,用特定的符号,正确绘制出机构运动简图。

下面以如图4-7所示颚式破碎机为例,说明绘制机构运动简图的步骤。

(1)分析机构,确定构件的相对运动

如图4-7(a)所示颚式破碎机中,运动由皮带轮5输入,通过偏心轴2带动活动颚3及摇杆4运动,构件1为机架,起支撑作用。结构上,皮带轮5和偏心轴2可以看做一个构件,其作用是将外部输入的旋转运动转变成偏心2绕A点旋转运动。活动颚板2工作时可绕偏心轴2的几何中心B点相对转动,摇杆4在C、D两点分别与活动颚板3的机架通过铰链连接。

(2)确定所有运动副的类型和数目

从上述运动分析及图中可以看出,偏心轴为主动构件,活动颚板、摇杆为从动件,机架为固定构件。各构件间均用转动副(共4个铰链)连接。

(3)测量各运动副的相对位置尺寸

逐一测量出四个运动副中心A与B、B与C、C与D、D与A之间的和长度L AB、L BC、L CD、L DA。

(4)选定比例尺,用规定符号绘制运动简图

根据测量出的各运动副的位置尺寸,选择恰当的视图方向,选定合适的绘图比例,给出各运动副的位置,并用规定的符号和线条绘出各构件。

(5)标明机架、构件序号、原动件、绘图比例等得到机构运动简图[如图4-7(b)]。

4.1.3平面机构的自由度

1、平面机构自由度的计算

平面机构自由度就是该机构所具有的独立运动数目。平面机构自由度与组成机构的构件数目、运动副的数目及运动副的性质有关。

在平面机构中,每个平面低副(转动副、移动副)引入两个约束,使构件失去两个自由度,保留一个自由度;而每个平面高副(齿轮副、凸轮副等)引入一个约束,使构件失去一个自由度,保留两个自由度。

如果一个平面机构中含含有N个活动构件(机架为参考坐标系,相对固定而不计),未用运动副联接之前,这些活动构件的自由度总数为3N。当各构件用运动副连接起来之后,由于运动副引入的约束使构件的自由度减少。若机构中P L个低副和P H个高副。则所有运动副引入的约束数为2P L+P H。因此,自由度的计算可用活动构件的自由度总数减去运动副引入的约束总数。

基机构的自由度用F表示,则有:

F=3N-(2P

L +P

H

)=3N-2P

L

-P

H

(4-1)

例4-1试计算图4-8所示四个平面机构的自由度

解图4-8(a)的自由度:图中除机架以外的活动构件数为2,转动副数为3,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×2-2×3-0=0

该机构自由度为0,不能运动。

图4-8(b)自由度:图中除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×3-2×4-0=1

该机构自由度为1,具有确定的相对运动。

图4-8(c)自由度:图中除机架以外的活动构件数为3,转动副数为5,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×3-2×5-0=-1

该机构自由度为-1,不能运动。

图4-8(d)自由度:图中除机架以外的活动构件数为4,转动副数为5,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×4-2×5-0=2

该机构自由度为2,原动件数为1,没有确定的相对运动(乱动)

例4-2试计算如图4-7(b)所示叶、颚式破碎机的机构自由度。

解图4-7(b)中,除机架以外的活动构件数为3,转动副数为4,没有高副,由式(4-1)得:

F=3N-2P

L -P

H

=3×3-2×4-0=1

该机构自由度为1,原动件数为1,具有确定的相对运动。

2、机构具有确定相对运动的条件

由以上分析和计算可知,如果机构的自由度等于或小于零,所有构件就不能运动,因此,就构不成机构(称为刚性桁架)。当机构自由度大于零时,如果机构自由等于原动件数,机构具有确定的相对运动;如果机构自由数大于原动件数,机构运动不确定。因此,机构具有确定的相对运动的充分必要条件:机构的自由度必须大于零,且原动件的数目必须等于机构自由度数,即:机构的原动件数=机构的自由度>0。

3、机构自由度计算中几种特殊情况的处理 (1)复合铰链

如图4-9(a )所示,A 处的符号容易被误认为是一个转动副,若观察它的侧视图,如图4-9(b )所示,则可以看出构件1、2、3在A 处构成了两个同轴的转动副。这种由三个或以上构件在同一处组成转动副,即为复合铰链。

在计算机构自由度时,复合铰链处的转动副数目应为该处汇交的构件数减1。

例4-3试计算如图4-10所示机构的自由度。解图4-10中除机架外有5个活动构件(4个杆件和1个滑块),A 、B 、C 、D 、E 共4个简单铰链,应计2个铰链,故共有铰链6个,1个移动副,即P L =7,高副数P H =0。运用式(4-1)计算机构自由度得:

F =3N -2P L -P H =3×5-2×7-0=1

该机构有1个自由度,原动件数为1,该机构具有确定的相对运动。 (2)局部自由度

机构中某些构件所具有的局部运动,并不影响整个机构运动的自由度。

如图4-11(a )所示,构件3是滚子,它能绕C 点作独立的运动,不论该滚子是否转动,转快或转慢,都不影响整个机构的运动。这种不影响整个机构运动的、局部的独立运动,称为局部自由度。

在计算机构自由度时,应将滚子3与杆2看成是固定在一起的一个构件,如图4-11(b )

所示,不计滚子与杆2间的转动副。而滚子的作用仅仅是将B 处的滑动磨擦变为滚动磨擦,减少功率损耗,降低磨损。

(3)虚约束

在机构中与其他约束重复而不起限制运动作用的约束称为虚约束。在计算机构自由度时,应当去除不计。

如图4-12所示为机车车轮联动机构。在此机构中AB 、CD 、EF 三个构件相互平行且长度相等:L AB =L CD =L EF ,L BC =L AD ,L CE =L DF ,按前述机构自由度的计算方法,此机构中N =4,P L =6、P H =0。机构自由度为:

F=3N -2P L -P H =3×4-2×6-0=0

这表明该机构不能运动,显然与实际情况不符。进一步分析可知,机构中的运动轨迹有重叠现象。因为如果去掉构件4(转动副E 、F 也不再存在)当原动件1转动时,构件3上E 点的轨迹是不变的。因此,构件4及转动副E 、F 是否存在对于整个机构的运动并无影响。也就是说,机构中加入构件4及转动副E 、F 后,虽然使机构增加了一个约束,但此约束并不起限制机构运动的作用,所以是虚约束。因此,在计算机构自由度时应除去构件4和转动副E 、F 。此时机构中N =3,PL =4、PH =0,则机构实际自由度为:

F=3N -2P L -P H =3×3-2×4-0=1

由此可知,当机构中存在虚约束时,其消防办法是将含有约束的构件及其组成的运动副去掉。

平面机构的虚约束常出现于下列情况中:

(1)被联接件上点的轨迹与机构上联接点的轨迹重合时,这种联接将出现虚约束,如图4-12所示。

(2)机构运动时,如果两构件上两点间距离始终保持不变,将此两点用构件和运动副联接,则会带进虚约束,如图4-13所示的A 、B 两点。

(3)如果两个构件组成的移动副如图4-14(a )所示相互平行,或两个构件组成多个轴线重合的转动副时,如图4-14(b )所示,只需考虑其中一处,其余各处带进的约束均为虚约束。

(4)机构中对运动不起限制作用的对称部分,如图4-18所示齿轮系,中心轮1,通过三

个齿轮2、2'、2"、驱动内齿轮、齿轮2'和齿轮2"中有两个齿轮对传递运动不起独立作用,从而引入了虚约束。

虚约束对机构运动虽然不起作用,但可以增加构件的刚性,增强传力能力,因而在机构中经常出现。

例4-4在如图4-16所示机构中,凸为主动件,试判断机构是否具有确定的运动。 解 该机构中,表面上看起业有7个活动构件,实际上,3、4、5三个构件不存在相对运动,组成一个三解形构件,应看成一个构件,滚子2处为局部自由度,该处铰链要去掉,故对该机构计算机构自由度时,正确有活动件数为4个,转动副为4上,移支副为1个(存在1个虚约束),高副1个,所以其机构自由度计算为:

F=3N -2P L -P H =3×4-2×5-0=1

该机构自由度和原动件数都为1,故机构具有良确定的相对运动。 4.1.4铰链四杆机构及其演化

1、铰链四杆机构的基本形式

铰链四杆机构是将四个构件用四个转动副连接组成的机构。如图4-17所示,构件4为固定构件,称为机加;构件1和构件3通过铰链与机架相连,称为连架杆,其中,能围绕与机架相连的铰链做整周连续转动的连架称为曲柄,只能围绕与机架相连的铰链在一定范围内摆动的连架称为摇杆;构件2与机架不直接相连,称为连杆。

铰链四杆机构有以下几种基本形式: (1)曲柄摇杆机构

在铰链四杆机构中,若两个连架杆中有一个为曲柄,另一个为摇杆,就称为曲柄摇杆机构。一般曲柄为原动件,连杆摇杆为动件。如图4-7所示颚式破碎机,如图4-9(a )所示雷达天线摇摆机构,如图4-18(b )所示家用缝纫机踏板机构(摇杆为主动件)。

(2)双曲柄机构

在铰链四杆机构中,若两个连架杆都为曲柄,则称为双曲柄机构。如图4-19(a )所示震动筛的双曲柄机构可以将曲柄AB 的匀角速转动变成曲柄CD 的变角速转动。

在双曲柄机构中,用得最多的是平行双曲柄机构,这种机构的对边两构件长度相等。如图4-19(b )所示工程车的平行双曲柄机构可保证载人升降台平稳升降。如图4-12所示火车轮驱机构,如图4-20所示反平行四边形机构等。

(3)双摇杆机构

铰链四杆机构中,若两连架杆均为摇杆,则称为双摇杆机构。

如图4-21(b)所示的鹤式起重机构,当AB杆摆动时,CD杆也作摆支,连杆CB未端的E 点作近似水平直接运动,使之在吊起重物时,减少不必要的升降,降低了能耗。图4-21(a)

为其机构运动简图。

2、铰链四杆机构的演化

工程实际应用中中,平面四杆机构多种多样,但在碚分是在铰链四杆机构的基础上演化而来的。了解四杆机构的演化方法,是分析和设计平面连杆机构的基础。

如图4-22(a)所示的曲柄摇杆机构中,1为曲柄,3为摇杆,C点为轨迹以D为圆心、杆长CD为半径的圆弧tt。今在机架4上制作一同样轨迹的圆弧槽tt,并将摇杆3做成弧圆形滑块置于槽中滑动,如图4-22(b)所示。这时,弧形滑块在圆弧中的运动完全等同于绕转动副D

转动的作用,圆弧槽tt的圆心即相当于摇杆3的摆动中心D,其半径相当于摇杆3的长度CD。

又若再将圆弧槽tt的半径增加至无穷大,其圆心D移至无穷远处,则圆弧槽变成了直槽,置于其中的滑块3作往复运动,从而将转动副D演化为移动副,曲柄摇杆机构演化为含一个移动副的四杆机构,称为内柄滑块机构,如图4-22(c)所示。图中e为曲柄回转中心A于经过C点直槽中心线的距离,称为偏心距。当e≠0时称为偏置曲柄滑块机构;当e=0时称为对心曲柄滑块机构。内燃机、蒸汽机、往复式抽水机、空气压缩机及冲床等的主机构都采用了曲柄滑块机构。

如图4-23所示,内燃机活塞运动机构即为对心曲柄滑块机构。

如图4-24所示,曲柄滑块机构的基础上,取不同的构件作机架,则分别可得到曲柄滑块机构、曲柄导杆机构、曲柄摇机构和定块机构。

曲柄滑块机构主要应有于压力机、内燃机、送料机构中;如图4-25(a)所示曲柄导杆机构常用于牛头刨床;如图4-25(b)所示摇块机构用于自动卸料机构;如图4-25(c)所示定块

机构用于手摇唧筒等。

在曲柄滑块机构中,若将其中转动副C或B演化为移动副,则得到含两个移动副的四杆机构。如图4-26所示为转动副C演化为移动副的过程,所得机构如图4-26(b)所示称为曲柄移动导机构,其中移动导杆3的位移S与主动件曲柄1的转角φ的正弦成正比,即S=asinφ,故此机构又称正弦机构。

4.1.5平面四杆机构的基本特性

1. 铰链四杆机构有曲柄的条件

如图4-27所示,杆AB为曲柄,设l1、l2、l3、l4分别为AB、BC、CD、AD各杆长度。且设l1<l4,A为整周回转副。

在△BCD中

l1+l4<l2+l3(4-2)

在△B'C'D中

l3≤(l4-l1)+l2,即:l1+l3≤l2+l4(4-3)

l2≤(l4-l1)+l3,即:l1+l3≤l2+l4(4-4)

将式(4-2)~式(4-4)中任意两式相加可得:

l1≤l2,l1≤l3,l1≤l4。

所以,l1为最短杆,且l1与任意一杆长度之和都小于其他两杆长度之和。

结论:铰链四杆机构有曲柄的条件是:

(1)最短杆与最长杆的长度之和应小于或等于其具有的几种基本形式:

(2)最短杆或其邻杆应为机架。

根据铰链四杆机构有曲柄的条件,我们可以判别出其具有的几种基本形式:

当铰链四杆机构满足构件长度和条件时,若:

(1)最短杆为连架杆时为曲柄摇杆机构。

(2)最短杆为机架时为双曲柄机构。

(3)最短杆为连杆时为双曲柄机构。

当铰链四杆机构不满足构件长度和条件时,为双摇杆机构。

2、急回特性

如图4-28所示,当曲柄AB为主动件作等速回转时,摇杆CD为从动件变速摆动,曲柄AB 每回转一周,出现两次与连杆BC共线的位置,这时摇杆CD分别处在两个极限位置C2D,这时曲

柄所在位置之间的夹角θ称为极位夹角

....。

当曲柄以角速度ω从AB1到AB2顺时针转过α1=180゜+θ时,摇杆2从C1D位置摆到C2D。所花时间为t1,平均速度为ν1。当曲柄以ω从AB2到AB1转过α2=180゜-θ时,摇杆从C2D置摆回到

C 1D所花时间为t

2

,平均速度ν

2

。由于α

1

>α

1

,所以t

1

>t

2

,ν

1

<ν

2

这说明,当曲柄等速回转时,摇杆来回摆动的速度不同,其返回的速度较大,机构的这种

性质,称为急回特性。行程速比系数常用K来表示。

所以,除曲柄摇杆机构外,如图4-29所示偏置曲柄滑块机构、如图4-25(a)所示导杆机构也都有急回特性。机构有无急回特性,取决于该机构极位夹角θ是否大于零,θ越大,急回特性越显著。

压力角与传动角:

(1)压力角和传动角的概念

如图4-30所示曲柄摇杆机构中,原动件AB 通过连杆BC 推动从动件CD 。如果连杆BC 是二力构件,则从动件CD 上所受到的传动力F 的作用方向应沿BC 方向,作用点在C 点。传动力F 的方向与其作用点C 的速度νC 方向之间的所夹的锐角α,称为压力角。力F 沿νC 方向上的分力F ′=Fsin α是推动从动件的有效分力,它只能增大摩擦力。从增大传动效率的角度来年,F 越大,传动效率超高。亦即压力角α越小,机构的传力性能越好。力F 与F ″之间所夹的锐角γ称为传动角。传动角与压力角互为余角,即α+γ=90゜。很显然,传动角盐碱,机构传力性能越好,所以,传动角也可以作为判别机构传力性能的重要参数。

(2)求最小传动角

机构运动时,传动角γ(或压力角α)是变化的,为了保证机构的传力性能,其传动角不可太小,一般要求,对传递功率大的机构,要求γmin ≥50゜。

铰链四杆机构的最小传动角难以直接求得,一是当δ=δmin =γmin ;二是当δ为钝角时,γ=180゜-δ,由机构几何关系可知,在曲柄AB 转到AB ″位置与AD 共线时,δ角最大,并可能为钝角。此时,δ=δmax ,γmin =180゜-δmax 。然后再比较两个γmin 取其中最小的γmin ,使之大于或等于许用传动角。

3.死点位置

如图4-31所示,如果铰链四杆机构的原动件为构件CD ,构件AB 为从动件,则在图中虚线所示机构的两个极限位置上,由于连杆BC 与从动件AB 共线,γ=0゜,传动力的有效分力为零,连杆BC 不能推动从动件AB 做功,整个机构处于停顿状态,我们将这种机构传动角γ=0゜的位置称为死点位置....

在死点位置上,从动件的转动方向不能确定,既可有正转也可能反转,还可能静止。例如,在使用家用缝纫机时,踩动踏板通过连杆使曲轴转动,常常会出现踩不动成倒车的现象,这都是因为踏板机构处于死点位置的缘故。

对用于传动的机构,应设法消除死点位置时的停顿和运动方向不确定现象。工程上,常利用飞轮的惯性越过机构的死点位置,如缝纫机中的大皮带轮等;也可以利用机构的错位排列度过死点位置;当一个机构处于死点位置时,利用另一个机构的动力越过死点位置,如多缸内燃机、火车车轮联运机构等。

有时,工程上也利用死点位置来实现一定的工作要求。

如图4-32所示的飞机起落机构,当起落架放下时,BC与CD杆共线,机构处于死点位置,地面对机轮的作用力不会使CD杆转动,从而保证飞机起落可靠。又如图4-33所示的夹紧机构,当夹紧工件后,BC与CD杆共线,机构处于死点位置,即使工作反力再大也不能使机构反转,

要松开工件,只有向上推动手柄才能实现,因此保证了夹紧可靠。

4.2 凸轮机构

凸轮是一种具有曲线轮廓或凹槽与从动件接触,当凸轮运动(旋转或移动)时,推动从动件按任意给定的运动规律运动的机构。在和和机器中,特别是自动化机器中,为实现各种复杂的运动要求,常采用凸轮机构,其设计比较简便。只要将凸轮的轮廓曲线按照从动件的运动规律设计出来,从动件就能准确地实现预定的运动规律。

如图4-34(a)所示的绕线机构中,在轴1匀速运动时,通过2.3一对轮蜗杆啮合将转动传递给凸轮,凸轮推动排线杆5左右摆动,使线能沿轴1表面均匀缠绕。

如图4-35(a)所示的内燃机配气机构中,当凸轮连续转动时,阀门杆就断续地作往复移

机械设计常用资料大全

机械设计常用资料大全》(Mechanical design common documents daqo)1.0 这么多的机械设计用资料,对你进行机械设计或者学习,有非常大的帮助,省去了你查找资料的时间。本资源对机械设计的资料进行了分类,极大地方便了你下载需要参考的资料,同时也会对你学习机械专业知识,有一个整体性的了解,可以帮助你应该加强哪部分内容的学习! 供在校大学生或机械类工程技术人员使用。 一、手册类 机械设计课程设计手册(第三版) 机械设计手册(第五版)第1卷 机械设计手册(第五版)第2卷 机械设计手册(第五版)第3卷 机械设计手册(第五版)第4卷 机械设计手册(第五版)第5卷 机械设计手册.(新版).第1卷 机械设计手册.(新版).第2卷 机械设计手册.(新版).第3卷 机械设计手册.(新版).第4卷 机械设计手册.(新版).第5卷 机械设计手册.(新版).第6卷 [精密加工技术实用手册].精密加工技术实用手册 包装机械选用手册上-印刷实务 包装机械选用手册下-印刷实务 机电一体化专业必备知识与技能手册 机械工程师手册.第二版 机械加工工艺师手册 机械设计、制造常用数据及标准规范实用手册 机械制图手册(清晰版) 机械制造工艺设计简明手册 联轴器、离合器与制动器设计选用手册 实用机床设计手册 运输机械设计选用手册.上册 运输机械设计选用手册.下册 中国机械设计大典数据库 最新金属材料牌号、性能、用途及中外牌号对照速用速查实用手册 最新实用五金手册(修订本) 最新轴承手册 二、机构类 高等机构设计 机构参考手册 机构创新设计方法学 机构设计丛书.凸轮机构设计 机构设计实用构思图册-verygood

现代机械设计方法复习题

现代机械设计方法试题-----复习使用 一、图解题 1.图解优化问题:min F (X)=(x 1-6)2+(x 2-2)2 s .t . 0.5x 1+x 2≤4 3x 1+x 2≤9 x 1+x 2≥1 x 1≥0, x 2≥0 求最优点和最优值。 最优点就是切点坐标:X1=2.7,x2=0.9 最优值:12.1【带入公式结果】 2.若应力与强度服从正态分布,当应力均值μs 与强度均值μr 相等时,试作图表示两者的干涉情况,并在图上示意失效概率F 。 参考解: 3.已知某零件的强度r 和应力s 均服从正态分布,且μr >μs ,σr <σs ,试用图形表示强度r 和应力s 的分布曲线,以及该零件的分布曲线和可靠度R 的围。 参考解: f (s) f (r) Y >0安全状态;Y <0安全状态;Y =0极限状态 f (Y)

强度r 与应力s 的差可用一个多元随机函数Y =r -s =f (x 1,x 2,…,x n )表示,这又称为功能函数。 设随机函数Y 的概率密度函数为f (Y ),可以通过强度r 与应力s 的概率密度函数为f (r )和f (s )计算出干涉变量Y =r-s 的概率密度函数f (Y ),因此零件的可靠度可由下式求得: Y Y f Y p R ? ∞ =>=0 d )( )0( 从公式可以看出,因为可靠度是以Y 轴的右边对f (Y )积分,因此可靠度R 即为图中Y 轴右边的阴影区域。而失效概率F =1-R ,为图中Y 轴左边的区域。 4.用图表示典型产品的失效率与时间关系曲线,其失效率可以分为几个阶段,请分别对这几个阶段进行分析。 失效率曲线:典型的失效率曲线。失效率(或故障率)曲线反映产品总体寿命期失效率的情况。图示13.1-8为失效率曲线的典型情况,有时形象地称为浴盆曲线。失效率随时间变化可分为三段时期: (1)早期失效期,失效率曲线为递减型。产品投于使用的早期,失效率较高而下降很快。主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、跑合、起动不当等人为因素所造成的。当这些所谓先天不良的失效后且运转也逐渐正常,则失效率就趋于稳定,到t 0时失效率曲线已开始变平。t 0以前称为早期失效期。针对早期失效期的失效原因,应该尽量设法避免,争取失效率低且t 0短。 (2)偶然失效期,失效率曲线为恒定型,即t 0到t i 间的失效率近似为常数。失效主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的偶然因素所造成。由于失效原因多属偶然,故称为偶然失效期。偶然失效期是能有效工作的时期,这段时间称为有效寿命。为降低偶然失效期的失效率而增长有效寿命,应注意提高产品的质量,精心使用维护。加大零件截面尺寸可使抗非预期过载的能力增大,从而使失效率显著下降,然而过分地加大,将使产品笨重,不经济,往往也不允许。 (3)耗损失效期,失效率是递增型。在t 1以后失效率上升较快,这是由于产品已经老化、疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对耗损失效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升,如图13.1-8中虚线所示,以延长寿命不多。当然,修复若需花很大费用而延长寿命不多,则不如 报废更为经济。

机械设计行业GB中常用标准

GB中常用标准 螺栓和螺柱 六角头螺栓 GB/T27-1988六角头铰制孔用螺栓A级 GB/T27-1988六角头铰制孔用螺栓B级 GB/T31.1-1988六角头螺杆带孔螺栓-A级和B级GB/T31.2-1988A型六角头螺杆带孔螺栓-细杆-B级GB/T31.2-1988B型六角头螺杆带孔螺栓-细杆-B级GB/T5780-2000六角头螺栓C级 GB/T5781-2000六角头螺栓-全螺纹-C级 GB/T5782-2000六角头螺栓 GB/T5783-2000六角头螺栓-全螺纹 GB/T5784-1986六角头螺栓-细杆-B级 GB/T5785-2000 六角头螺栓-细牙 GB/T5786-2000 型六角头螺栓-细牙-全螺纹 GB/T5787-1986 六角头法兰面螺栓 其它螺栓 GB/T8-1988 方头螺栓C级 GB/T 10-1988 沉头方颈螺栓 GB/T 11-1988 沉头带榫螺栓 GB/T 37-1988 T形槽用螺栓 GB/T 798-1988 活节螺栓 GB/T 799-1988 地脚螺栓 GB/T 800-1988 沉头双榫螺栓 GB/T 794-1993 加强半圆头方颈螺栓A型 GB/T 794-1993 加强半圆头方颈螺栓B型 双头螺柱 GB/T897-1988 双头螺柱B型 GB/T 898-1988 双头螺柱B型 GB/T 899-1988 双头螺柱B型 GB/T 900-1988 双头螺柱B型 GB/T 901-1988 等长双头螺柱-B级 GB/T 953-1988 等长双头螺柱-C级

螺母 六角螺母 1型六角螺母C级(GB41-86) GB56-1988六角厚螺母 GB808-1988小六角特扁细牙螺母 GB/T6170-2000(1型六角螺母) GB/T6171-2000(1型六角螺母-细牙) GB/T6172.1-2000六角薄螺母 GB/T6173-2000六角薄螺母-细牙 GB/T6174-2000六角薄螺母-无倒角 GB/T6175-2000(2型六角螺母) GB/T6176-2000(2型六角螺母-细牙) GB/T6177.1-2000六角法兰面螺母 GB/T6177.2-2000六角法兰面螺母细牙 六角锁紧螺母 GB/T6184-2000(1型全金属六角锁紧螺母) GB/T6185.1-2000(2型全金属六角锁紧螺母) GB/T6185.2-2000(2型全金属六角锁紧螺母-细牙) GB/T6186-2000(2型全金属六角锁紧螺母-9级) 六角开槽螺母 GB6179-1986(1型六角开槽螺母-C级) GB6180-1986(2型六角开槽螺母-A级和B级) GB6181-1986六角开槽薄螺母-A和B级 GB9457-1988(1型六角开槽螺母) GB9458-1988(2型六角开槽螺母-细牙-A级和B级) GB9459-1988六角开槽薄螺母 GB6178-1986(1型六角开槽螺母-A和B级) 圆螺母 GB810-1988小圆螺母 GB817-1988带槽圆螺母 GB812-1988圆螺母 滚花高螺母

《机械设计基础》第六版重点复习资料

《机械设计基础》知识要点 绪论;基本概念:机构,机器,构件,零件,机械 第1章:1)运动副的概念及分类 2)机构自由度的概念 3)机构具有确定运动的条件 4)机构自由度的计算 第2章:1)铰链四杆机构三种基本形式及判断方法。 2)四杆机构极限位置的作图方法 3)掌握了解:极限位置、死点位置、压力角、传动角、急回特性、极位夹角。 4)按给定行程速比系数设计四杆机构。 第3章:1)凸轮机构的基本系数。 2)等速运动的位移,速度,加速度公式及线图。 3)凸轮机构的压力角概念及作图。 第4章:1)齿轮的分类(按齿向、按轴线位置)。 2)渐开线的性质。 3)基本概念:节点、节圆、模数、压力角、分度圆,根切、最少齿数、节圆和分度圆的区别。 4)直齿轮、斜齿轮基本尺寸的计算;直齿轮齿廓各点压力角的计算;m = p /π的推导过程。 5)直齿轮、斜齿轮、圆锥齿轮的正确啮合条件。 第5章:1)基本概念:中心轮、行星轮、转臂、转化轮系。 2)定轴轮系、周转轮系、混合轮系的传动比计算。 第9章:1)掌握:失效、计算载荷、对称循环变应力、脉动循环变应力、许用应力、安全系数、疲劳极限。 了解:常用材料的牌号和名称。 第10章: 1)螺纹参数d、d1、d2、P、S、ψ、α、β及相互关系。 2)掌握:螺旋副受力模型及力矩公式、自锁、摩擦角、当量摩擦角、螺纹下行自锁条件、常用螺纹类型、螺纹联接类型、普通螺纹、细牙螺纹。 3)螺纹联接的强度计算。 第11章: 1)基本概念:轮齿的主要失效形式、齿轮常用热处理方法。 2)直齿圆柱齿轮接触强度、弯曲强度的计算。 3)直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮的作用力(大小和方向)计算及受力分析。 第12章: 1)蜗杆传动基本参数:m a1、m t2、γ、β、q、P a、d1、d2、V S及蜗杆传动的正确啮合条件。 2)蜗杆传动受力分析。 第13章: 1)掌握:带传动的类型、传动原理及带传动基本参数:d1、d2、L d、a、α1、α2、F1、F2、F0 2)带传动的受力分析及应力分析:F1、F2、F0、σ1、σ2、σC、σb及影响因素。 3)弹性滑动与打滑的区别。 4)了解:带传动的设计计算。 第14章: 1)轴的分类(按载荷性质分)。 2)掌握轴的强度计算:按扭转强度计算,按弯扭合成强度计算。 第15章: 1)摩擦的三种状态:干摩擦、边界摩擦、液体摩擦。 第16章: 1)常用滚动轴承的型号。 2)向心角接触轴承的内部轴向力计算,总轴向力的计算。 滚动轴承当量动载荷的计算。滚动轴承的寿命计算。 第17章: 1)联轴器与离合器的区别 第一章平面机构的自由度和速度分析 1、自由度:构件相对于参考系的独立运动称为自由度。 2、运动副:两构件直接接触并能产生一定相对运动的连接称为运动副。构件组成运动副后,其运动受到约束,自由度减少。

机械设计基础试题及答案

A卷 一、简答与名词解释(每题5分,共70分) 1. 简述机构与机器的异同与其相互关系 答. 共同点:①人为的实物组合体;②各组成部分之间具有确定的相对运动;不同点:机器的主要功能是做有用功、变换能量或传递能量、物料、信息等;机构的主要功能是传递运动和力、或变换运动形式。相互关系:机器一般由一个或若干个机构组合而成。 2. 简述“机械运动”的基本含义 答. 所谓“机械运动”是指宏观的、有确定规律的刚体运动。 3. 机构中的运动副具有哪些必要条件? 答. 三个条件:①两个构件;②直接接触;③相对运动。 4. 机构自由度的定义是什么?一个平面自由构件的自由度为多少?答. 使机构具有确定运动所需输入的独立运动参数的数目称机构自由度。平面自由构件的自由度为3。 5. 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况? 答. 机构具有确定运动条件:自由度=原动件数目。原动件数目<自由度,构件运动不确定;原动件数目>自由度,机构无法运动甚至构

件破坏。 6. 铰链四杆机构有哪几种基本型式? 答. 三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。7. 何谓连杆机构的压力角、传动角?它们的大小对连杆机构的工作有何影响?以曲柄为原动件的偏置曲柄滑块机构的最小传动角minγ发生在什么位置? 答. 压力角α:机构输出构件(从动件)上作用力方向与力作用点速度方向所夹之锐角;传动角γ:压力角的余角。α+γ≡900。压力角(传动角)越小(越大),机构传力性能越好。偏置曲柄滑块机构的最小传动角γmin发生在曲柄与滑块移动导路垂直的位置 8. 什么是凸轮实际轮廓的变尖现象和从动件(推杆)运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 答. 对于盘形凸轮,当外凸部分的理论轮廓曲率半径ρ与滚子半径 r T 相等时:ρ=r T ,凸轮实际轮廓变尖(实际轮廓曲率半径ρ’=0)。 在机构运动过程中,该处轮廓易磨损变形,导致从动件运动规律失真。增大凸轮轮廓半径或限制滚子半径均有利于避免实际轮廓变尖现象的发生。 9. 渐开线齿廓啮合有哪些主要特点? 答. ①传动比恒定;②实际中心距略有改变时,传动比仍保持不变(中

(完整word版)机械设计考试题库(带答案)

机械设计模拟题 一、填空题(每小题2分,共20分) 1、机械零件的设计方法有理论设计经验设计模型试验设计。 2、机器的基本组成要素是机械零件。 3、机械零件常用的材料有金属材料高分子材料陶瓷材料复合材料。 4、按工作原理的不同联接可分为形锁合连接摩擦锁合链接材料锁合连接。 5、联接按其可拆性可分为可拆连接和不可拆连接。 6、可拆联接是指不需破坏链接中的任一零件就可拆开的连接。 7、根据牙型螺纹可分为普通螺纹、管螺纹、梯形螺纹、矩形螺纹、锯齿形螺纹。 8、螺纹大径是指与螺纹牙顶相切的假想圆柱的直径,在标准中被定为公称直径。 9、螺纹小径是指螺纹最小直径,即与螺纹牙底相切的假想的圆柱直径。 10、螺纹的螺距是指螺纹相邻两牙的中径线上对应两点间的轴向距离。 11、导程是指同一条螺纹线上的相邻两牙在中径线上对应两点间的轴线距离。 12、螺纹联接的基本类型有螺栓连接双头螺栓连接螺钉连接紧定螺钉连接。 13、控制预紧力的方法通常是借助测力矩扳手或定力矩扳手,利用控制拧紧力矩的方法来控制预紧力的大小。 14、螺纹预紧力过大会导致整个链接的结构尺寸增大,也会使连接件在装配或偶然过载时被拉断。 15、螺纹防松的方法,按其工作原理可分为摩擦防松、机械防松、破坏螺旋运动关系防松。 16、对于重要的螺纹联接,一般采用机械防松。 17、受横向载荷的螺栓组联接中,单个螺栓的预紧力F?为。 18、键联接的主要类型有平键连接半圆键连接楔键连接切向键连接。 19、键的高度和宽度是由轴的直径决定的。 20、销按用途的不同可分为定位销连接销安全销。 21、无键联接是指轴与毂的连接不用键或花键连接。 22、联轴器所连两轴的相对位移有轴向位移径向位移角位移综合位移。 23、按离合器的不同工作原理,离合器可分为牙嵌式和摩擦式。 24、按承受载荷的不同,轴可分为转轴心轴传动轴。

现代机械设计方法复习题

现代机械设计方法试题-----复习使用 2 2 minF (X)=(x I-6)2+(X2-2)2 s- t?0. 5x i+x2W4 3x i+x2W9 X1+X2A1 X1> 0X2 >0 者的干涉情况,并在图上示意失效概率 参考解: 3. 已知某零件的强度r和应力S均服从正态分布,且口r> 口s, b r<(T s,试用图形表示强度r和应力s的分布曲线,以及该零件的分布曲线和可靠度R的范围。 参考解: Y>0安全状态;Y<0安全状态;Y=0极限状态 最优点就是切点坐标:X1=2.7,x2=0.9 最优值:12.1【带入公式结果】 2.若应力与强度服从正态分布,当应力均值与强度均值汀相等时,试作图表示两 、图解题 1.图解优化问题:

数。 设随机函数Y 的概率密度函数为f (Y),可以通过强度r 与应力s 的概率密度函数为f(r) 和f(s)计算出干涉变量 Y=r-s 的概率密度函数f(Y),因此零件的可靠度可由下式求得: R = p (Y .0) = ° f (Y)dY 从公式可以看出,因为可靠度是以 Y 轴的右边对f(Y)积分,因此可靠度 R 即为图中 Y 轴右边的阴影区域。而失效概率 F=1-R ,为图中Y 轴左边的区域。 4 ?用图表示典型产品的失效率与时间关系曲线,其失效率可以分为几个阶段,请分别 对这几个 阶段进行分析。 失效率曲线:典型的失效率曲线。失效率(或故障率)曲线反映产品 总体寿命期失效率的情况。图示 13.1-8为失效率曲线的典型情况,有时形 象地称为浴盆曲线。失效率随时间变化可分为三段时期: (1) 早期失效期,失效率曲线为递减型。产品投于 使用的早期,失效率较高 而下降很快。主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、 跑合、起动不当等人为因素所造成的。当这些所谓先天不良的失效后且运 转也逐渐正常,则失效率就趋于稳定,到 t 0 时失效率曲线已开始变平。t 0 以前称为早期失效期。针对早期失效期的失效原因,应该尽量设法避免, 争取失效率低且 t o 短。 (2) 偶然失效期,失效率曲线为恒定型,即 t o 到t i 间的失效率近似为常 数。失效主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的 偶然因素所造成。由于失效原因多属偶然,故称为偶然失效期。偶然失效 期是能有效工作的时期,这段时间称为有效寿命。为降低偶然失效期的失 效率而增长有效寿命,应注意提高产品的质量,精心使用维护。加大零件 截面尺寸可使抗非预期过载的能力增大,从而使失效率显著下降,然而过 分地加大,将使产品笨重,不经济,往往也不允许。 (3) 耗损失效期,失效率是递增型。在 t i 以后失效率上升较 快,这是由于产品已经老化、 疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对耗损失 效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升, 如图13.1-8中虚线所示,以延长寿命不多。当然,修复若需花很大费用而延长寿命不多, 则不如报废更为经济。 阜期 失效期偶然失效期 耗损 to

机械设计中常用结构汇总

第4章常用机构 4.1 平面连杆机构 4.1.1 平面连杆机构的组成 我们将机构中所有构件都在一平面或相互平行的平面内运动的机构称为平面机构。 1、构件的自由度 如图4-1所示,一个在平面内自由运动的构件,有沿X轴移动,沿y轴移动或绕A点转动三种运动可能性。我们把构件作独立运动的可能性称为构件的“自由度”。所以,一个在平面自由运动的构件有三个自由度。可用如图4-1所示的三个独立的运动参数x、y、θ表示。 2、运动副和约束 平面机构中每个构件都不是自由构件,而是以一定的方式与其他构件组成动联接。这种使两构件直接接触并能产生一定运动的联接,称为运动副。两构件组成运动副后,就限制了两构件间的部分相对运动,运动副对于构件间相对运动的这种限制称为约束。机构就是由若干构件和若干运动副组合而成的,因此运动副也是组成机构的主要要素。

两构件组成的运动副,不外乎是通过点、线、面接触来实现的。根据组成运动副的两构件之间的接触形式,运动副可分为低副和高副。 (1)低副两构件以面接触形成的运动副称为低副。按它们之间的相对运动是转动还是移动,低副又可分为转动副和移动副。 ①转动副组成运动副的两构件之间只能绕某一轴线作相对转动的运动副。通常转动副的具体结构形式是用铰链连接,即由圆柱销和销孔所构成的转动副,如图4-2(a)所示。 ②移动副组成运动副的两构件只能作相对直线移动的运动副,如图4-2(b)所示。 由上述可知,平面机构中的低副引入了两个约束,仅保留了构件的一个自由度。因转动副和移动副都是面接触,接触面压强低,称为低副。我们将由若干构件用低副连接组成的机构称为平面连杆机构,也称低副机构。由于低副是面接触,压强低,磨损量小,而且接触面是圆柱面和平面,制造简便,且易获得较高的制造精度。此外,这类机构容易实现转动、移动等基本的运动形式及转换,因而是在一般机械和仪器中应用广泛。平面连杆机构也有其缺点:低副中的间隙不易消除,引起运动误差,且不易精确地实现复杂的运动规律。 (2)高副两构件以点或线接触形成的运动副称为高副,如图4-3所示。这类运动副因为接触部位是点或线接触,接触部位压强高,故称为高副。

现代机械设计方法(答案)

一、绪论 1.设计活动的特征有哪些? 时空性、物质性、需求性、创造性、过程性 2.试比较传统设计和现代设计的区别? 传统设计师静态的、经验的、手工的方法,在设计过程中被动地分析产品的性能;而传统设计师动态的、科学的、计算机化的方法,在设计过程中可以做到主动地设计产品参数。 3.简述现代设计方法的主要内容和基本特点。 主要内容:设计理论是对产品设计原理和机理的科学总结。设计方法是使产品满足设计要求以及判断产品是否满足设计原则的依据。 现代设计方法主要内容:设计方法学、计算机设计、有限元法、优化设计、可靠性设计 基本特点:程式性、创造性、系统性、最优性、综合性、数字性 二、设计方法学 1.设计过程包括哪几个阶段? 计划阶段、设计阶段、样机试制阶段、批量生产阶段、销售阶段 2.常用的创造性技法有哪些? 智力激励法、提问追溯法、联想类推法、组合创新法、反向探求法及系统搜索法6类 3.运用功能分析法进行系统原理方案设计的主要步骤有哪些? 三、相似理论及相似设计方法 1.相似三定理的内容和用途各是什么? 相似定理是用来判断两个现象相似的充分必要条件及其所应遵循的法则 内容: 第一定律:对于彼此相似的现象,其相似指标为1,相似判据为一个不变量; 第二定律:某个现象的物理量总数为n,量纲独立的物理量总数为k,则该现象相似准则的个数为n-k,且描述该现象各个物理量之间的关系可表示为相似准则π1,π2,,,,,,πn-k之间的关系,即 π,π,,,,,,π 第三定律:凡同一完整的方程组所描述的同类现象,当单值条件相似,且由单值条件的物理量所组成的相似准则在数值上相等,则这些现象就相识。 用途: 第一定理:介绍相似现象的属性; 第二定理:确定相似准则的个数以及相似结果的推广,也称π; 第三定理:也称模型化法则,也是相似现象的充要条件。 2.相似准则的导出方法及基本依据是什么? 导出方法:方程分析法、量纲分析法 基本依据:表示各物理量之间关系的方程式,其各项量纲必须是相同的 3.相似准则有哪些特点和性质? 如果两个现象相似,则这两者的无量纲形式的方程组和单值条件应该相同,具有相同的无量纲形式解。 出现在这两者的无量纲形式的方程组及单值条件中的所有无量纲组合数对应相等。 4.白炽灯的功率为其主要技术参数。现在要求在10~100W之间按几何级数分级设计六种型号。试确定其 功率系列(将计算值按0.5圆整) 解: 四、有限单元法 1.试简述有限单元法的主要思路、具体步骤及其依据。 核心思想:将复杂结构分解成形状简单、便于方程描述的规则单元,列出方程组求解 基本思路: “分”:用有限个规则单元代替原来的各种各样的连续系统,并用近似方程对每个单元的行为加以描述。 “和”:根据一定的规则,把关于单元的方程组合起来构成方程组,并引入外载及约束条件进行求解。 三个步骤:结构的离散化、单元分析、整体分析 2.单元刚度矩阵的物理意义是什么,具有哪些主要特征?

机械基础专业概述

根据《江苏省中等职业教育机械加工技术专业指导性人才培养方案》,机械加工技术专业分为机械制图、机械基础、金属加工与实训三个培养方向。 本专业的培养目标是培养与我国社会主义现代化建设要求相适应的德、智、体、美全面发展,具有良好的文化修养和职业道德,掌握机械加工技术专业必备的知识与技能,具备职业生涯发展基础和终身学习能力,能胜任生产、服务、管理一线工作的高素质劳动者和中等技术技能型人才。 课程的性质、作用 机械基础是研究常用机械零件的受力分析、结构分析、设计计算,并同时进行材料选择的一门综合性技术基础课,是中等职业学校机械类专业和近机类专业必修的基础课。机械基础课程与后面的各门专业课联系紧密,学好本课程对后面各门专业课的学习有重要的促进作用。无论从事机械制造或维修,还是使用、研究机械或机器,都要运用这些基本知识。 通过本课程的学习,可以让学生了解机器的组成;了解构件的受力分析、基本变形形式和强度计算方法;了解常用机械工程材料的种类、牌号、性能和应用,明确热处理的目的;熟悉通用机械零件的工作特性和常用机构、机械传动的工作原理及运动特点;了解液压和气压传动工作原理、特点、结构及应用;初步具有使用和维护一般机械的能力;学会使用标准、规范手册和图表等有关技术资料的方法。从而为学习职业岗位技术,形成职业能力打下基础 机械的重要性 日常生活离不开机械——洗衣机、缝纫机、冰箱、电梯、电脑等。 现代生产中起重要作用——汽车、生产自动线、机床等 机械发展程度是一个国家工业水平的重要标志。 工程技术人员必须掌握一定机械基础知识。 课程的主要内容 工程力学基础 常用机构和通用零件的工作原理、结构特点、基本设计理论和计算方法。 课程的学习目标 1、知识目标 总体目标:为机械类产品的设计、制造、检测和维护等提供必要的理论基础知识。 (1)掌握常用机构及通用零部件的工作原理、类型、特点及应用等基本知识

《机械基础》课程复习试题_项目二_常用机构

2016年省中等职业学校学业水平考试 《机械基础》课程复习试题 项目二常用机构 知识点:平面机构的组成 一、判断题(本大题共8小题,总计8分) 1. 普通车床的丝杠与螺纹组成螺旋副。() 2. 低副机构的两构件间的接触面大,压强小,不易磨损。() 3. 齿轮机构的咬合表面是高副接触。() 4. 点线接触的高副,由于接触面小,承受的压强大。() 5. 自行车的车轮与地面接触属于高副连接。() 6. 车床的床鞍与导轨组成移动副。() 7. 根据组成运动副的两构件的接触形式不同,平面运动副可分为低副和移动副。() 8. 铁链连接是转动副的一种具体方式。 ( ) 二、单选题(本大题共6小题,总计6分) 1. 机构运动简图与_______无关。 A、构建数目 B、运动副数目和类型 C、运动副以及构件的结构形状 D、运动副的相对位置 2. 图中,________的运动副A是高副。 A、图a B、图b C、图c D、图d 3. 运动副的作用是________两构件,使其有一定的相对运动。 A、固 B、连接 C、分离 4. 两构建构成运动副的主要特征是。 A、两构建以点、线、面相接处 B、两构件能做相对运动 C、两构件相连接 D、两构件既连接又作一定的相对运动 5. 判断图中的物体1、2之间有________运动副。 A、1个(图a) B、2个(图a.b) C、3个(图a.b.c) D、4个(图a.b.c.d) 6. 图中所示机构有________低副。 A、1个 B、2个 C、3个 D、4个 知识点:平面四杆机构 一、判断题(本大题共36小题,总计36分)

1. 铰链四杆机构是由一些刚性构件用低副相互连接而成的机构。() 2. 曲柄摇杆机构与双曲柄机构的区别在于前者的最短杆是曲柄,后者的最短杆是机架。() 3. 对于铰链四杆机构,当最短杆与最长杆长度之和小于或等于其余两杆长度之和时,若取最短杆为 机架,则该机构为双摇杆机构。() 4. 曲柄的极位夹角θ越大,机构的急回特性也越显著。() 5. 曲柄滑块机构是由曲柄摇杆机构演化而来的。() 6. 在曲柄摇杆机构中,极位夹角θ越大,机构的行程速比系数K值越大。() 7. 曲柄摇杆机构中,只有当曲柄与机架共线时,传动角才可能出现最小角。() 8. 铰链四杆机构是平面低副组成的四杆机构。() 9. 连杆机构任一位置的传动角与压力角之和恒等于90°。() 10. 曲柄腰杆机构的急回特性是用行程速比系数K表示,K越小,则急回特性越明显。() 11. 在曲柄长度不相等的双曲柄机构中,主动曲柄做等速回转运动,从动曲柄做变速回转运动。 12. 铰链四杆机构中的最短杆就是曲柄。() 13. 铰链四杆机构通过机架的转换,就一定可以得到曲柄摇杆机构、双曲柄机构和双摇杆机构。 14. 牛头刨床中刀具的退刀速度大于其切削速度,就是应用了急回特性的原理。() 15. 在铰链四杆机构中,曲柄和连杆都是连架杆。() 16. 行程速比系数K=1时,表示该机构具有急回运动特性。() 17. 铰链四杆机构如有曲柄存在,则曲柄一定是最短杆。() 18. 极位夹角θ>0°的四杆机构,一定有急回特性。() 19. 在曲柄摇杆机构中,曲柄和连杆共线的位置就是“死点”位置。() 20. 曲柄摇杆机构的摇杆两极限位置间的夹角成为极位夹角。() 21. 传动角就是连杆与从动件的夹角。() 22. 在铰链四杆机构中,如存在曲柄,则曲柄一定为最短杆。() 23. 通常把曲柄摇杆机构中的曲柄和连杆叫做连架杆。() 24. 铰链四杆机构中,当最长杆与最短杆之和大于其余两杆之和时,无论以哪一杆为机架都得到双摇 杆机构。() 25. 将曲柄滑块机构中的滑块改为固定件,则原机构将演化为摆动导杆机构。() 26. 反向双曲柄机构可应用于车门启闭机构。() 27. 铰链四杆机构的改变只能通过选择不同的构件做机构的固定件来实现。() 28. 在实际生产中,机构的“死点”位置对工作都是不利的,处处都要考虑克服。() 29. 曲柄摇杆机构的摇杆,在两极限位置之间夹角θ叫做摇杆的摆角。() 30. 家用缝纫机的踏板机构采用了双摇杆机构。() 31. 在铰链四杆机构中,若连架杆能围绕其中心做整周转动,则称为曲柄。() 32. 曲柄滑块机构常用于燃机中。() 33. 曲柄摇杆机构只能将回转运动转换成往复摆动。() 34. 平面连杆机构是低副机构,其接触处压强较小,因此适用于受力较大的场合。() 35. 把铰链四杆机构的最短杆作为固定机架,就一定可得到双曲柄机构。() 36. 双曲柄机构也能产生急回运动。() 二、单选题(本大题共50小题,总计50分) 1. 下列利用急回运动特性提高工作效率的是。 A、机车车轮联动机构 B、惯性筛机构 C、飞机起落架 2. 图所示摆动导杆机构中,L AB=150mm,L AC=300mm,该机构的极位夹角。 A、θ=30° B、θ=60° C、θ=120° D、θ=90° 3. 冲压机采用的是机构。 A、移动导杆 B、曲柄滑块 C、摆动导杆 4. 为了使机构能够顺利通过死点位置继续正常运转,可以采用的办法有。 A、机构错位排列 B、加大惯性 C、增大极位夹角

机械设计基础

第一章 机械零件常用材料和结构工艺性 Q235:Q :“屈”,235:屈服点值 50号钢:平均碳的质量分数为万分之50的钢 第二章:机械零件工作能力计算的理论基础 (必考或者二选一)+计算 1, 在零件的强度计算中,为什么要提出内力和应力的概念? 因为要确定零件的强度条件 内力:外力引起的零件内部相互作用力的改变量。 应力为截面上单位面积的内力。 2, 零件的受力和变形的基本形式有哪几种?试各列出1~2个实例加以说明。 轴向拉伸和压缩;剪切和挤压;扭矩;弯曲 △ 第四章 螺旋机构 P68四选一 1、试比较普通螺纹与梯形螺纹有哪些主要区别?为什么普通螺纹用于连接而梯形螺纹用于传动? 普通螺纹的牙型斜角β较大,β越大,越容易发生自锁,所以普通螺纹用于连接。β越小,传动效率越高,固梯形螺纹用于传动。 2、在螺旋机构中,将转动转变为移动及把移动转变为转动有什么条件限制?请用实例来说明螺母与螺杆的相对运动关系。 转动变移动升角要小,保证可以自锁;而升角大的情况下,移动可转为转动 3、具有自锁性的机构与不能动的机构有何本质区别? 自锁行的机构自由度不为0,而不能动的机构自由度为0 4、若要提高螺旋的机械效率,有哪些途径可以考虑? 降低摩擦,一定范围内加大升角,降低牙型斜角;采用多线螺旋结构 EA L F L N =?

第五章平面连杆 1、为什么连杆机构又称为低副机构?它有那些特点? 因为连杆机构是由若干构件通过低副连接而成的 特点是能实现多种运动形式的转换 2、铰链四连杆机构有哪几种重要形式?它们之间只要区别在哪里? 1,曲柄摇杆机构 2,双曲柄机构 3,双摇杆机构 区别:是否存在曲柄,曲柄的数目,以及最短杆的位置不同。 3、何谓“整转副”、“摆转副”?铰链四杆机构中整转副存在的条件是什么? 整转副:如果组成转动副的两构件能作整周相对转动,则该转动副称为整转副 摆转副:如果组成转动副的两构件不能作整周相对转动…… 条件:1,最长杆长度+最短杆长度≤其他两杆长度之和(杆长条件) 2,组成整转副的两杆中必有一个杆为四杆中的最短杆。 4、何谓“曲柄”?铰链四杆机构中曲柄存在条件是什么? 曲柄是相对机架能作360°整周回转的连架杆 条件:1,最长杆长度+最短杆长度≤其他两杆长度之和(杆长条件) 2,最短杆必须为连架杆或机架 5、何谓行程速比系数和极位夹角?他们之间有何关系? 极位夹角:在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆位于两个极限位置,在这两个极位所形成的夹角称为极位夹角。 行程速比系数K:设极为夹角为θ,当从一个极为出发,经过180°+θ到另一个极位的速度V1,在接着转180°+θ到回到原来极位的速度V2,那么K=V2/V1=(180°+θ)/(180°-θ) 极位夹角越大,K越大,表明急回性质越明显 6、何谓连杆机构的压力角和传动角?其大小对连杆机构的工作有何影响?在四杆机构中最小的传动角出现在何位置?为什么? 压力角:从动件所受的力F与受力点速度Vc所夹的锐角α。α越小,机构传动性能愈好。传动角:连杆与从动件所夹的锐角γ。γ=90?-α。γ越大,机构的传动性能越好,设计时一般使γmin≥40?。 对于曲柄摇杆,最小传动角出现在摇杆与机架两次共线其中之一的位置,即AB,AD共线。 △另:满足杆长条件下:曲柄摇杆机构:最短杆为连架杆 双曲柄机构:最短杆为机架 双摇杆机构:最短杆既不是连架杆又不是机架,是连杆时

机械设计三种方法的特点和联系

关于三个设计的特点及实例分析 【摘要】机械设计是机械工程的重要组成部分,设计水平的高低直接关系到产品的质量性能、研制周期和经济效益等。设计方法包括常规设计、现代设计、创新设计,他们之间有区别,也有共同性。只有了解了三种设计方法的特点,并相互配合运用,才能将机械设计出的产品性能达到最高。本文通过生活中一些具体的实例分析,阐述了三种设计给人们的生活带来了巨大便利。 【关键词】常规设计;现代设计;创新设计; 1、机械设计的三种方法的特点 在知识经济发展的时代,创新是国民经济可持续发展的基石,对于一个和国家,一个民族而言,拥有持续的创新能力就意味着发展经济具有巨大的潜能。对于机械专业设计人员而言,应当看到全球制造业面临前所未有的挑战,缩短产品开发周期、提高产品质量、降低生产成本、增加产品的核心竞争力已成为制造业的共识。如何加强机械创新设计,挖掘创造性思维,显得尤为重要。 1.1 常规设计 常规设计也称为传统设计,分为初步设计,技术设计,施工设计三个步骤,常规设计是指以成熟技术结构为基础,运用常规方法来进行的产品设计,它在工业生产中大量存在,并且是一种经常性的工作。常规设计的方法是依据力学和数学建立的理论公式和经验公式为先导,以实践经验为基础,运用图表和手册等技术资料,进行设计计算,绘图,编制设计说明的过程。如机械原理中的连杆机构综合方法、凸轮廓线设计方法、齿轮几何尺寸计算方法、平衡设计方法、飞轮设计方法、减速机的设计等。 凸轮廓线的设计连杆机构的设计齿轮的设计

1.2现代设计 现代设计是将传统设计中的经验,类比法设计提高到逻辑的,理性的,系统的新设计方法,是在静态分析的基础上,进行动态多变量的最优化。现代设计方法强调以计算机为工具,以工程软件为基础,其基本的设计内容是建立在常规设计的基础上,但是在强调现代设计方法时,不可忽略常规设计方法的重要性,运用现代设计理念进行的机械设计,现代设计方法从不同的角度深化了机械设计,提高了产品的质量,也降低了产品的成本。现代设计方法主要分为可靠性设计,优化设计,有限设计,计算机辅助设计,虚拟设计等。 现代工程设计常用的分析软件有ADINA ,NASTRAN ,I-DEAS ,UG ,ANSYS-等。 ansys进行应力分析 ADINA软件的应用 UG设计的手机外壳 1.3创新设计 创新性设计是指充分发挥设计者的创造力,利用人类已有的相关科学技术知识,进行创新构思,设计出具有新颖性的,创造性及实用性机械产品的一种实践活动。创新设计强调发挥创造性,提出新方案,提供新颖而且独特的设计。其特点是运用创造性思维,强调产品的创新性和新颖性。创新设计方法分为智力激励法,提问追溯法,联想类推法,返向探索法,系统分析法,组合创新发六种。 创新设计没有局限性,创新成果是知识、智慧、勤奋和灵感的结合,生活中一些看似很简单的机械都是机械创新设计的结果。 左图为为了防止宠物狗走出花园迷路而设计的栏杆 左图为坐卧两用长凳

机械基础-常用机构-习题

$ 铰链四杆机构的基本特性和凸轮机构 一、判断题 ()1、曲柄摇杆机构的急回特性是用行程速度比系数K来表征,K值越小,急回作用越明显。 ()2、当K>1,θ>0时,机构具有急回特性。 ()3、曲柄摇杆机构以曲柄为原动件时就一定存在急回运动特性。 ()4、偏心曲柄滑块机构以曲柄为原动件时一定存在急回运动特性。 ()5、对心曲柄滑块机构无急回特性。 ()6、摆动导杆机构以曲柄为原动件时不一定存在急回运动特性。 》 ()7、在曲柄和连杆同时存在的平面四杆机构中,只要曲柄和连杆处于共线位置,就是曲柄的“死点”位置。 ()8、曲柄摇杆机构一定存在死点位置。 ()9、缝纫机踏板机构有时会出现踩不动或倒机的现象,这是因为死点位置造成的。 ()10、缝纫机踏板机构是利用飞轮惯性使其通过死点位置的。 ()11、曲柄摇杆机构以摇杆为原动件时存在两个死点位置。 ()12、内燃机中的曲柄滑块机构不存在死点位置。 ()13、滚子从动件凸轮机构中,从动件与凸轮之间的滚动摩擦阻力小,适于高速传动场合。 ()14、从动件的运动规律取决于凸轮轮廓的形状。 # ()15、在柱体凸轮机构中,从动件可以通过直径不大的圆柱凸轮或端面凸轮获得较大的行程。 ()16、尖顶从动件易于磨损,而平底从动件磨损则较小,这是因为前者与凸轮组成高副,而后者与凸轮组成低副的原因。 ()17、凸轮机构能将原动件的旋转运动转化为从动件的往复直线运动。()18、尖顶从动件盘形凸轮机构,基圆与实际工作轮廓线相切。 ()19、凸轮机构的压力角是指凸轮轮廓线某点的法线方向与从动杆速度方向之间的夹角,一般情况下,在工作过程中它是恒定不变的。 ()20、凸轮机构中,升程一定时,基圆半径增大,压力角也随之增大。()21、移动从动件盘形凸轮机构,当从动件不动时,对应的凸轮轮廓线为一直线。 ()22、压力角影响机构的传力特性,压力角越大,传力特性越好。 、 二、选择题 ()1、当行程速度比系数为时,曲柄摇杆机构才有急回特性。 A. K>1 B. K<1 C. K=0 D. K<0 ()2、下列关于急回特性的描述,错误的是。 A. 机构有无急回特性取决于行程速度比系数 B. 急回特性可使空回行程的时间缩短,有利于提高生产率 C. 极位夹角值越大,机构的急回特性越显著 D. 只有曲柄摇杆机构具有急回特性 , ()3、下列机构中存在急回特性的是。 A. 对心曲柄滑块机构且以曲柄为原动件 B. 偏心曲柄滑块机构且以滑块为原动件

机械设计需要哪些知识

机械设计需要哪些知识 一,机械设计所要了解的周边知识以及所要具备的观察视角。 1,熟练翻阅机械设计手册。对于标准件以及常用件的一些技术特征要了熟于心。比如要清 楚各类轴承,带传动,链传动,齿轮传动,丝杠传动,蜗轮蜗杆等的使用场合,使用方式,以及相关的技术 特征。对于具体应用时的选型计算则可对照设计手册的图表和公式进行具体确定。 2 ,知道N 家常用件供应商并熟练翻阅其产品样本。现在机械设计趋向于模块化,对于机械设备制造工 厂的整体技术要求更侧重于对于一些配件和部件的组装应用。比如台湾 HIWIN,日本THK,德国FAG, FESTO。。。。。对于此,要做到当你在设计某个零件或部件 或要完成某个动作或功能的时候必须得知道目前是否有专业的厂商在生产或提供能实现某个部位的功能要求 的成熟的零配件。 3 ,熟悉原材料情况。比如你要知道目前市场上有卖的冷轧或热轧铁板以及各类型材的规格尺寸,有经验 的工程师往往都会知道你安排给采购的单子往往到最后是会变得面目全非的。。因为在钢材市场,普遍存在 变薄,变窄,变短这些情况,采购买回来的东西往往是和你坐办公室根据设计手册里选出来的相关数据存在 比较大的折扣。 4,深度了解各类常用机床的结构原理和性能特点。所谓万变不离其宗,机床亦是如此。设 计一台机器的过程可类比是小孩堆积木一般,一个部件一个组件进行堆积,然后把这些具备不同功能的部 件或组建遵循某种规律联系起来。在这个过程中就需要你熟练掌握一些常用机构或装置的功能和特性。而我们所常见的车,铣,钻,刨,磨,镗。。。等机床上应用的结构或原理都是经过了数十上百年的考验, 对于其稳 定性和可应用性我们无需过多地怀疑。比如车床的刀架结构,卡盘结构,尾座的锁紧机构,主轴轴承布置,磨床主轴密封结构,刨床的连杆机构等等。。。 其实说这么多,想表述的就两字,对于这些稳定的常用的结构我们要学会在设计新机床时“借鉴”或者说是 “参照”。从另一方面来说了解各类常用机床的结构原理和性能特点是出一张零件图纸的前提基础。举个 例子来说就是当你完成一张图纸时最起码你自己要知道这张图纸上的这个零件的大体加工过程。这个所谓的大体了解楼主个人认为是好比要加工一条常见的轴类零件, 当你了解车床, 铣床, 磨床的一些特性后就不会 在图纸上出现没有了螺纹退刀槽,砂轮越程槽等情况,同时也不会对轴类零件的长度方向尺寸随意标注个公差要求。 IT6 ,IT7 的5,具备一定的机床装配能力。很多人会问,这完全是装配工的活了,我做为一个设计人员 过多地了解这方面知识干什么?当然,会这么问的往往都是些刚入行的新手。当你永远不去了解这方面的 知识时就永远理解不了针对一条长轴进行过渡或过盈装配时因为你那图纸上的左轴承位和右轴承位相距太大 而轴承却只能从左到右或从右到左装配时,那两轴承位之间那么长一段装配距离所带来的痛苦。当然,你也肯定不会想起当这条轴最后要进行轴端螺纹锁紧时,因为你图纸上缺少了限制这条轴锁紧时转动用的夹持平面而导致无法顺利锁紧。当然,你就更想不到或是理解不了哪个位置哪些孔或哪些销位是需要装配时定配的。

机械设计常用材料特性

1、45——优质碳素结构钢,是最常用中碳调质钢。 主要特征: 最常用中碳调质钢,综合力学性能良好,淬透性低,水淬时易生裂纹。小型件宜采用调质处理,大型件宜采用正火处理。 应用举例: 主要用于制造强度高的运动件,如透平机叶轮、压缩机活塞。轴、齿轮、齿条、蜗杆等。焊接件注意焊前预热,焊后消除应力退火。 2、Q235A(A3钢)——最常用的碳素结构钢。 主要特征: 具有高的塑性、韧性和焊接性能、冷冲压性能,以及一定的强度、好的冷弯性能。 应用举例: 广泛用于一般要求的零件和焊接结构。如受力不大的拉杆、连杆、销、轴、螺钉、螺母、套圈、支架、机座、建筑结构、桥梁等。 3、40Cr——使用最广泛的钢种之一,属合金结构钢。 主要特征: 经调质处理后,具有良好的综合力学性能、低温冲击韧度及低的缺口敏感性,淬透性良好,油冷时可得到较高的疲劳强度,水冷时复杂形状的零件易产生裂纹,冷弯塑性中等,回火或调质后切削加工性好,但焊接性不好,易产生裂纹,焊前应预热到100~150℃,一般在调质状态下使用,还可以进行碳氮共渗和高频表面淬火处理。 应用举例:调质处理后用于制造中速、中载的零件,如机床齿轮、轴、蜗杆、花键轴、顶针套等,调质并高频表面淬火后用于制造表面高硬度、耐磨的零件,如齿轮、轴、主轴、曲轴、心轴、套筒、销子、连杆、螺钉螺母、进气阀等,经淬火及中温回火后用于制造重载、中速冲击的零件,如油泵转子、滑块、齿轮、主轴、套环等,经淬火及低温回火后用于制造重载、低冲击、耐磨的零件,如蜗杆、主轴、轴、套环等,碳氮共渗处即后制造尺寸较大、低温冲击韧度较高的传动零件,如轴、齿轮等。 4、HT150——灰铸铁 应用举例:齿轮箱体,机床床身,箱体,液压缸,泵体,阀体,飞轮,气缸盖,带轮,轴承盖等 5、35——各种标准件、紧固件的常用材料 主要特征: 强度适当,塑性较好,冷塑性高,焊接性尚可。冷态下可局部镦粗和拉丝。淬透性低,正火或调质后使用 应用举例: 适于制造小截面零件,可承受较大载荷的零件:如曲轴、杠杆、连杆、钩环等,各种标准件、紧固件 6、65Mn——常用的弹簧钢 应用举例:小尺寸各种扁、圆弹簧、座垫弹簧、弹簧发条,也可制做弹簧环、气门簧、离合器簧片、刹车弹簧、冷卷螺旋弹簧,卡簧等。 7、0Cr18Ni9——最常用的不锈钢(美国钢号304,日本钢号SUS304) 特性和应用: 作为不锈耐热钢使用最广泛,如食品用设备,一般化工设备,原于能工业用设备

相关文档