文档库 最新最全的文档下载
当前位置:文档库 › 历年高考数学按章节汇编14--第十四章导数

历年高考数学按章节汇编14--第十四章导数

历年高考数学按章节汇编14--第十四章导数
历年高考数学按章节汇编14--第十四章导数

第十四章导数

1.(2006年安徽卷)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )

A .430x y --=

B .450x y +-=

C .430x y -+=

D .430x y ++=

解:与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A

2. ( 2006年重庆卷)过坐标原点且与x 2

|y 2

4x |2y +

2

5

=0相切的直线的方程为 (A) (A )y =-3x 或y =31x (B) y =-3x 或y =-31

x

(C )y =-3x 或y =-31x (B) y =3x 或y =3

1

x

3.(2006年天津卷)函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )

A .1个

B .2个

C .3个

D . 4个

4.(2006年全国卷

I )设函数

(

))(

)c o 30f

x x ?

?

π=+<<。

若()()/f x f

x +是奇

?=___6π

______。

4.

(

)

))'sin

'f x ?

??

=-++=+

()()(

)

)

)

'2cos cos

sin

sin

33

2cos 3h x f x f x ππ

??π?=+??

=+-+??

?

?

?=++?

?

要使()h x 为奇函数,需且仅需

()

3

2

k k Z π

π

?π+

=+

∈,即:

()

6

k k Z π

?π=+

∈。

又0?π<<,所以k 只能取0,从而

?=

5.(2006年江苏卷)对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标

为n a ,则数列1n a n ??

?

?+??

的前n 项和的公式是 ▲ 解:()()/11

222,:222(2)n n n x y n y n x --==-++=-+-切线方程为,令x=0,求出切线

与y 轴交点的纵坐标为()012n

y n =+,所以

21n n a n =+,则数列1n a n ??

??+??

的前n 项和()12122212

n n n S +-=

=--

点评:本题主要考查利用导数求切线方程,再与数列知识结合起来,解决相关问题。 6.(2006年江西卷)对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( C )

A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1)

解:依题意,当x ≥1时,f '(x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f '(x )≤0,f (x )在(-∞,1)上是减函数,故f (x )当x =1时取得最小值,即有 f (0)≥f (1),f (2)≥f (1),故选C 7.(2006年辽宁卷)与方程221(0)x x y e e x =-+≥的曲线关于直线y x =对称的曲线的方程为

(A)ln(1y = (B) ln(1y =

(C) ln(1y =- (D) ln(1y =-

【解析】2221(0)(1)x x x y e e x e y =-+≥?-=,0,1x x e ≥∴≥ ,即:

1l n )x e x y =?=+,所以1()ln(1f x -=,故选择答案A 。 【点评】本题考查了方程和函数的关系以及反函数的求解。同时还考查了转化能力。 8. ( 2006年湖南卷)设函数()1

x a

f x x -=

-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实数a 的取值范围是 ( C )

A.(-∞,1)

B.(0,1)

C.(1,+∞)

D. [1,+∞) 9. ( 2006年湖南卷)曲线1y x

=和2

y x =在它们交点处的两条切线与x 轴所围成的三角形面积是

3

4

. 10.(2006年山东卷)设函数f (x )=a x -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间。

10.(1)减;(2)-1≤a ≤0,(-1,+∞) 减; a>0, 1(1,)a -减,1(,)a +∞增.

11.(2006年北京卷)已知函数32

()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0),如图所示.求:

(Ⅰ)0x 的值; (Ⅱ),,a b c 的值.

11. (Ⅰ)0x =1; (Ⅱ)2,9,12a b c ==-=.

12.(2006年辽宁卷)已知函数f(x)=d cx bx ax +++2

33

1,其中a , b , c 是

以d 为公差的等差数列,,且a >0,d >0.设的极小值点,在为)(0x f x [1-0,2a

b

]上,处取得最大植

在1')(x x f ,在处取得最小值2x ,

依次记为())(,(,()),(,()),(,22'21'100x f x f x x f x x f x A , B , C (I)求的值o x

(II)若⊿ABC 有一边平行于x 轴,且面积为32+,求a ,d 的值 【解析】(I)解: 2b a c =+

22()2()(1)()f x ax bx c ax a c x c x ax c '∴=++=+++=++

令()0f x '=,得1c

x x a

=-=-或

0,0

0a d a b c >>∴<<<

1,1c c

a a ∴>-<- 当1c

x a

-<<-时, ()0f x '<;

当1x >-时, ()0f x '>

所以f(x)在x=-1处取得最小值即1o x =- (II) 2()2(0)f x ax bx c a '=++>

()f x '∴的图像的开口向上,对称轴方程为b

x a

=-

由1b a

>知2|(1)()||0()|b b b

a a a ---<-- ()f x '∴在2[1,0]b

a

-上的最大值为(0)f c '=

即1x =0

又由21,[1,0]b b b

a a a

>-∈-

知 ∴当b x a =-时, ()f x '取得最小值为22(),b d b

f x a a a

'-=-=-即

01

()(1)3

f x f a =-=-

2

1(1,),(0,)(,)3b d A a B c C a a

∴----

由三角形ABC 有一条边平行于x 轴知AC 平行于x 轴,所以2

221,a =3(1)3d a d a

-=-

又由三角形ABC 的面积为32+得1(1)()223

b a

c a -+?+=+

利用b=a+d,c=a+2d,得2

22(2)3d d a

+

=

联立(1)(2)可得3,d a ==解法2: 2

()2(0)f x ax bx c a '=++>

2(1)0,(0)b

f f c a

''-==

又c>0知()f x 在2[1,0]b

a

-上的最大值为(0)f c '= 即: 1x =0

又由21,[1,0]b b b

a a a

>-∈-

知 ∴当b x a =-时, ()f x '取得最小值为22(),b d b

f x a a a

'-=-=-即

01

()(1)3

f x f a =-=-

2

1(1,),(0,)(,)3b d A a B c C a a

∴----

由三角形ABC 有一条边平行于x 轴知AC 平行于x 轴,所以2

221,a =3(1)3d a d a

-=-

又由三角形ABC 的面积为32+得1(1)()223

b a

c a -+?+=+

利用b=a+d,c=a+2d,得2

22(2)3d d a

+

=

联立(1)(2)可得3,d a ==【点评】本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值,等差数基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力 13.(2006年江西卷)已知函数f (x )=x 3+ax 2+bx +c 在x =-

2

3

与x =1时都取得极值 (1) 求a 、b 的值与函数f (x )的单调区间 (2) 若对x ∈〔-1,2〕,不等式f (x )

13.解:(1)f (x )=x 3+ax 2+bx +c ,f '(x )=3x 2+2ax +b

由f '(23-)=124

a b 093

-+=,f '(1)=3+2a +b =0得 a =1

2

,b =-2 f '2

所以函数f (x )的递增区间是(-∞,-3

)与(1,+∞) 递减区间是(-

2

3,1) (2)f (x )=x 3-12x 2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=22

27

+c

为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。

要使f (x )f (2)=2+c 解得c <-1或c >2

14.(2006年天津卷)已知函数()θθcos 16

3

cos 342

3

+

-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤.

(1)当时0cos =θ,判断函数()x f 是否有极值;

(2)要使函数()x f 的极小值大于零,求参数θ的取值范围;

(3)若对(2)中所求的取值范围内的任意参数θ,函数()x f 在区间()a a ,12-内都是增函数,求实数a 的取值范围.

14.无极值;311(

,)(,)6226ππ

ππ ;(,0]-∞ 15.(2006年全国卷I )已知函数()11ax

x f x e x

-+=

-。

(Ⅰ)设0a >,讨论()y f x =的单调性;

(Ⅱ)若对任意()0,1x ∈恒有()1f x >,求a 的取值范围。 15.解:(I ) ()f x 的定义域为(-∞,1) (1,+∞)

()()()11'''11ax ax x x f x e e x x --++????=+ ? ?--????

()

()

()2

2

2

121121ax

ax ax

x a e e x x e ax a x ---+??=-+ ?-??-??=

?+-??

-

因为()

2

1ax

e

x ->-(其中1x ≠)恒成立,所以()()2

'020f x ax a >?+->

⑴ 当02a <<时,()'0f x >在(-∞,0) (1,+∞)上恒成立,所以()f x 在(-∞,1) (1,+∞)上为增函数;

⑵ 当2a =时,()'0f x >在(-∞,0) (0,1) (1,+∞)上恒成立,所以()f x 在(-∞,1) (1,+∞)上为增函数;

⑶ 当2a >时,()220ax a +->的解为:(-∞,t -) (t ,1) (1,+∞)

(其中

t =

()f x (II )显然()01f =

⑴ 当02a <≤时,()f x 在区间[0,1)上是增函数,所以对任意x ∈(0,1)都有

()()0f x f >;

⑵ 当2a >时,()f t 是()f x 在区间 [0,1)上的最小值,即()()0f t f <,这与题目

要求矛盾;

⑶ 若0a <,()f x 在区间[0,1)上是增函数,所以对任意x ∈(0,1)都有()()

0f x f >。 综合⑴、⑵、⑶ ,a 的取值范围为(-∞,2) 16.(2006年江苏卷)请您设计一个帐篷。它下部的形状是高为1m 的正六

棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右 图所示)。试问当帐篷的顶点O 到底面中心1o 的距离 为多少时,帐篷的体积最大? 解:设OO 1为x m ,则41<

由题设可得正六棱锥底面边长为:

22228)1(3x x x -+=--,(单位:m )

故底面正六边形的面积为:(436??22)28x x -+=)28(2

332x x -+?,

(单位:2

m ) 帐篷的体积为:

)28(233V 2x x x -+=

)(]1)1(31[+-x )1216(2

3

3x x -+=(单位:3m )

求导得)312(2

3

V'2x x -=)(。

令0V'=)(x ,解得2-=x (不合题意,舍去),2=x ,

当21<)(x ,)(x V 为增函数; 当42<

∴当2=x 时,)(x V 最大。

答:当OO 1为2m 时,帐篷的体积最大,最大体积为3163

m 。

点评:本题主要考查利用导数研究函数的最值的基础知识,以及运用数学知识解决实际问题的能力

17.(2006年湖北卷)设3=x 是函数()()

()R x e b ax x x f x ∈++=-32的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;

(Ⅱ)设0>a ,()x

e a x g ??

? ??

+

=4252

.若存在[]4,0,21∈εε使得()()121<-εεg f 成立,求a 的取值范围.

17. 点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。

解:(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-

x ,

由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-

3=0,即得b =-3-2a ,

则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3

-x

=-[x 2+(a -2)x -3-3a ]e 3-

x =-(x -3)(x +a+1)e 3-

x .

令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点, 所以x+a+1≠0,那么a ≠-4. 当a <-4时,x 2>3=x 1,则

在区间(-∞,3)上,f `(x)<0, f (x)为减函数; 在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数; 在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数。 当a >-4时,x 2<3=x 1,则

在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数; 在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数; 在区间(3,+∞)上,f `(x)<0,f (x)为减函数。

(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],

而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -

1>0,f (3)=a +6,

那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6]. 又2

25()()4

x

g x a e =+

在区间[0,4]上是增函数, 且它在区间[0,4]上的值域是[a 2+425,(a 2+4

25)e 4], 由于(a 2+425)-(a +6)=a 2-a +4

1

=(21-a )2≥0,所以只须仅须

(a 2+

4

25

)-(a +6)<1且a >0,解得0

故a 的取值范围是(0,

2

3

)。 18. ( 2006年重庆卷)已知函数f (x )=(x 2+bx +c )c x ,其中b ,c ∈R 为常数. (Ⅰ)若b 2>4(a -1),讨论函数f (x )的单调性; (Ⅱ)若b 2<4(c -1),且∞

→n lim

x

c

x f -)(=4,试证:-6≤b ≤2. 解:(Ⅰ)求导得f 2(x )=[x 2

+(b +2)x +b+c ]e x .

.

因b 2>4(c-1),故方程f 2(x )=0即x 2+(b +2)x +b +c =0有两根;

x 1=-2)1(422---+c b c

b <x 2=-22+b .2

)1(42--+c b

令f ′(x )>0,解得x <x 1或x >x 1;

又令f ′(x )>0,解得x 1<x <x 2.

故当x ε(-, x 1)时,f (x )是增函数,当 x ε(x 2,+)时,f(x)也是增函数,但当x ε(x 1 , x 2)时,f(x)是减函数.

(Ⅱ)易知f (0)=c ,f (u )=b +c ,因此

e b

f x

f x f x e x f +==-=-→→)0()

0()(lim )(lim

00

. 所以,由已知条件得

b +e =4 b 2≤4(e-1), 因此b 2+4b -12≤0. 解得-6≤b ≤2. 19.(2006年全国卷II )设函数f (x )=(x +1)ln(x +1),若对所有的x ≥0,都有f (x )≥ax 成立,求实数a 的取值范围.

19.解法一:

令g (x )=(x +1)ln(x +1)-ax ,

对函数g (x )求导数:g ′(x )=ln(x +1)+1-a

令g ′(x )=0,解得x =e a -

1-1, ……5分

(i )当a ≤1时,对所有x >0,g ′(x )>0,所以g (x )在[0,+∞)上是增函数, 又g (0)=0,所以对x ≥0,都有g (x )≥g (0),

即当a ≤1时,对于所有x ≥0,都有 f (x )≥ax . ……9分

(ii )当a >1时,对于0<x <e a -1-1,g ′(x )<0,所以g (x )在(0,e a -

1-1)是减函数,

又g (0)=0,所以对0<x <e a -

1-1,都有g (x )<g (0), 即当a >1时,不是对所有的x ≥0,都有f (x )≥ax 成立. 综上,a 的取值范围是(-∞,1]. ……12分 解法二:令g (x )=(x +1)ln(x +1)-ax ,

于是不等式f (x )≥ax 成立即为g (x )≥g (0)成立. ……3分 对函数g (x )求导数:g ′(x )=ln(x +1)+1-a

令g ′(x )=0,解得x =e a -

1-1, ……6分

当x > e a -

1-1时,g ′(x )>0,g (x )为增函数,

当-1<x <e a -

1-1,g ′(x )<0,g (x )为减函数, ……9分

所以要对所有x ≥0都有g (x )≥g (0)充要条件为e a -

1-1≤0. 由此得a ≤1,即a 的取值范围是(-∞,1]. ……12分 20.(2006年四川卷)已知函数()()2

2

ln 0f x x a x x x

=+

+>,()f x 的导函数是()'f x ,

对任意两个不相等的正数12,x x ,证明: (Ⅰ)当0a ≤时,

()()

12122

2f x f x x x f ++??>

??? (Ⅱ)当4a ≤时,()()

''

1212f x f x x x ->-

本小题主要考查导数的基本性质和应用,函数的性质和平均值不等式等知识及综合分析、推理论证的能力,满分14分。

证明:(Ⅰ)由()2

2

ln f x x a x x

=+

+ 得()()()()1222121212111ln ln 222

f x f x a x x x x x x +??=+++++ ???

(

)22121212

1

2x x x x a x x +=+++ 2

12121212

4

ln 222x x x x x x f a x x +++????=++ ? ?

+???? 而()()2

2222212121212112242x x x x x x x x +????+>++= ?????

① 又()(

)2

2

2

1212

12

1224x x x x x x

x x +=++>

121212

4

x x x x x x +>

+ ②

122x x +<

∴12

ln 2

x x +<

∵0a ≤

∴12

ln 2

x x a a +< ③ 由①、②、③得

(

)2

22

1212121212

1422x x x x x x a a x x x x ++??+++>++ ?+??即()()121222f x f x x x f ++??> ???

(Ⅱ)证法一:由()2

2ln f x x a x x =++,得()'222a f x x x x

=-+

()()''12122211222222a a f x f x x x x x x x ????-=-+--+ ? ??

???()121222

121222x x a x x x x x x +=-?+-

()()()12''121222

1212

221x x a

f x f x x x x x x x +->-?+

-> 下面证明对任意两个不相等的正数12,x x ,有()12221212

221x x a

x x x x ++

->恒

成立

即证()

121212

2x x a x x x x +<+

成立

∵(

)121212122x x x x x x x x ++>+

设()()240t u x t t t ==+>,则()'

242u x t t

=-

令()'0u x =

得t =

()4u t a ≥=>≥ ∴121212

x x a x x +

>

∴对任意两个不相等的正数12,x x ,恒有()()''

1212f x f x x x ->-

证法二:由()2

2ln f x x a x x =+

+,得()'222a f x x x x

=-+ ∴()()

'

'

12122211222222a a f

x f x x x x x x

x ????-=-+--+ ? ??

???(

)1212

22121222x x a x x x x x x +=-?+-

∵12,x x 是两个不相等的正数 ∴()123

22

1212

12

24

22x x a

a

x x x x x x ++-

>+-

3

12

4

42x x ≥+-

设t =

,()()32

2440u t t t t =+-> 则()'

432

u t t t =-,列表:

∴38127u =

> 即 12221212

21a

x x x x +-> ∴()()()12''12121222

1212

22x x a

f x f x x x x x x x x x +-==-?+

->-

即对任意两个不相等的正数12,x x ,恒有()()''

1212f x f x x x ->-

21.(2006年陕西卷)已知函数3

2

1(),24n x f x x x =-+

+且存在01

(0,),2

x ∈使00().f x x = (I )证明:()f x 是R 上的单调增函数;

11110,(),

1

,(),

2

n n n n x x f x y y f y ++==== 其中 1,2,...n = (II )证明:101;n n n n x x x y y ++<<<<

(III )证明:111

;2

n n n n y x y x ++-<-

21.解: (I )∵f '(x)=3x 2-2x+12 = 3(x -13)2+1

6

>0 , ∴f(x)是R 上的单调增函数.

(II )∵0

2 , 即x 1

又x 2=f(x 1)=f(0)=14>0 =x 1, y 2=f(y 1)=f(12)=38<1

2

=y 1,综上, x 1

用数学归纳法证明如下:

(1)当n=1时,上面已证明成立.

(2)假设当n=k(k ≥1)时有x k

当n=k+1时,由f(x)是单调增函数,有f(x k )

(III )y n+1-x n+1y n -x n = f(y n )-f(x n )y n -x n

= y n 2+x n y n +x n 2-(y n +x n )+ 12 ≤(y n +x n )2-(y n +x n )+ 12

=[(y n +x n )-12]2+14 . 由(Ⅱ)知 0

< (12)2+1

4 =

12

22.(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗 油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:

313

8(0120).12800080

y x x x =

-+<≤已知甲、乙两地相距100千米。

(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?

(II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升? 22.本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力。满分12分。 解:(I )当40x =时,汽车从甲地到乙地行驶了100

2.540

=小时, 要耗没313

(

40408) 2.517.512800080

?-?+?=(升)。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(II )当速度为x 千米/小时时,汽车从甲地到乙地行驶了

100

x

小时,设耗油量为()h x 升,

依题意得3213100180015

()(

8).(0120),1280008012804

h x x x x x x x =-+=+-<≤

3322

80080'()(0120).640640x x h x x x x

-=-=<≤ 令'()0,h x =得80.x =

当(0,80)x ∈时,'()0,()h x h x <是减函数; 当(80,120)x ∈时,'()0,()h x h x >是增函数。

∴当80x =时,()h x 取到极小值(80)11.25.h =

因为()h x 在(0,120]上只有一个极值,所以它是最小值。

答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。

23.(2006年福建卷)已知函数2()8,()6ln .f x x x g x x m =-+=+

(I )求()f x 在区间[],1t t +上的最大值();h t

(II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。

23.本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力。满分12分。 解:(I )22()8(4)16.f x x x x =-+=--+

当14,t +<即3t <时,()f x 在[],1t t +上单调递增,

22()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++ 当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f == 当4t >时,()f x 在[],1t t +上单调递减,

2()()8.h t f t t t ==-+

综上,2267,3,

()16,34,8,4t t t h t t t t t ?-++

=≤≤??-+>?

(II )函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数 ()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三个不同的交点。

22()86ln ,

62862(1)(3)

'()28(0),

x x x x m x x x x x x x x x x

φφ=-++-+--∴=-+==> 当(0,1)x ∈时,'()0,()x x φφ>是增函数; 当(0,3)x ∈时,'()0,()x x φφ<是减函数; 当(3,)x ∈+∞时,'()0,()x x φφ>是增函数; 当1,x =或3x =时,'()0.x φ= ()(1)7,()(3)6ln315.x m x m φφφφ∴==-==+-最大值最小值 当x 充分接近0时,()0,x φ<当x 充分大时,()0.x φ> ∴要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须

()70,()6ln 3150,x m x m φφ=->???

=+-

24.(2006年广东卷)设函数23)(3++-=x x x f 分别在1x 、2x 处取得极小值、极大值.xoy 平面上点A 、B 的坐标分别为))(,(11x f x 、))(,(22x f x ,该平面上动点P 满足4=?,点Q 是点P 关于直线)4(2-=x y 的对称点.求(Ⅰ)点A 、B 的坐标 ; (Ⅱ)动点Q 的轨迹方程

24.解: (Ⅰ)令033)23()(23=+-='++-='x x x x f 解得11-==x x 或 当1-'x f ,当1>x 时,0)(<'x f 所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故 1,121=-=x x ,4)1(,0)1(==-f f 所以, 点A 、B 的坐标为)4,1(),0,1(B A -.

(Ⅱ) 设),(n m p ,),(y x Q ,()()4414,1,122=-+-=--?---=?n n m n m n m PB PA

21-=PQ k ,所以21-=--m x n y ,又PQ 的中点在)4(2-=x y 上,所以??

?

??-+=+4222n x m y

消去n m ,得()()9282

2=++-y x 25.(2006年安徽卷)已知函数()f x 在R 上有定义,对任何实数0a >和任何实数x ,都

有()()f ax af x =

(Ⅰ)证明()00f =;(Ⅱ)证明(),0

,0kx x f x hx x ≥?=?

(Ⅲ)当(Ⅱ)中的0k >时,设()()

()1

(0)g x f x x f x =+>,讨论()g x 在()

0,+∞内的单调性并求极值。

证明(Ⅰ)令0x =,则()()00f af =,∵0a >,∴()00f =。

(Ⅱ)①令x a =,∵0a >,∴0x >,则()

()2

f x xf x =。

假设0x ≥时,()f x kx =()k R ∈,则()2

2

f x kx =,而()2

xf x x kx kx =?=,∴()()2

f x xf x =,即()f x kx =成立。

②令x a =-,∵0a >,∴0x <,()()2

f x xf x -=-

假设0x <时,()f x hx =()h R ∈,则()22f x hx -=-,而()2

x f x x h x h x

-=-?=-,

∴()

()2

f x xf x -=-,即()f x hx =成立。∴(),0

,0

kx x f x hx x ≥?=?

(Ⅲ)当0x >时,()()()11

g x f x kx f x kx

=+=+,22211()x g x k kx kx -'=-+=

令()0g x '=,得11x x ==-或;

当(0,1)x ∈时,()<0g x ',∴()g x 是单调递减函数; 当[1,)x ∈+∞时,()>0g x ',∴()g x 是单调递增函数;

所以当1x =时,函数()g x 在()0,+∞内取得极小值,极小值为1

(1)g k k

=+

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

最新-2017新课标高考数学导数分类汇编(文)

2011-2017新课标(文科)导数压轴题分类汇编 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )> ln x x -1 【解析】 (1)22 1 ( ln ) '()(1)x x b x f x x x α+-= -+ 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 1 1ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h -- =---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(l n ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高考题汇编2010-2017年全国高考数学真题--第21题导数

2010-2017年全国高考数学真题--第21题导数 2010年:设函数2 ()1x f x e x ax =---。 (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围 2011年:已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. 2012年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值.

2013: 一卷:已知函数()f x =2 x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲 线()y g x =都过点P (0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值; (Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围. 2014一卷:设函数1 ()ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ ,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()(0)=>h x f x g x x ,讨论()h x 零点的个数.

高考导数大题大全理科答案

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'11 2()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知1 2e ()e ln ,x x f x x x -=+ 从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1 (,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为1 1().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 22 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = (2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 和2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102 a <<时,10x -<<;当112a <<时,01x <<. 记2 2 ()ln 2g x x x =+-, (Ⅰ)当10x -< <时,2()2ln()2g x x x =-+-,所以/22 2222 ()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1 02 a << 时, 12()()0f x f x +<. (Ⅱ)当01x <<时,2()2ln 2g x x x =+ -,所以/222222 ()0x g x x x x -=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时 1 12 a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1 (,1)2. 3. (1)证明:因为对任意x ∈R ,都有() ()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数. (2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211 11111 t t t t t -- =--+-++-对于任意t >1成立. 因为11111t t -+ +≥- = 3,所以1113111 t t - ≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

相关文档
相关文档 最新文档