文档库 最新最全的文档下载
当前位置:文档库 › 晶闸管(Thyristor)

晶闸管(Thyristor)

晶闸管(Thyristor)
晶闸管(Thyristor)

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;1957年美国通用电器公司开发出世界上第一款晶闸管产品,并于1958年将其商业化。晶闸管(Thyristor)是一种包含3个或3个以上PN结,它有三个极:阳极,阴极和门极,能从断态转入通态,或由通态转入断态的双稳态电力电子器件。它泛指所有PNPN类型的开关管,也可表示这类开关管中的任一器件。晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。

自1957年美国贝尔电话实验室将第一只晶闸管用于工业领域以来,由于它的优异性能,很快受到各国重视。随着新材料的出现,新工艺的采用,单只晶闸管的电流容量从几安发展到几千安,耐压等级从几百伏提高到几千伏,工作频率大大提高,器件的动态参数也有很大改进。80年代普通晶闸管的耐压等级和通流能力达到3500A/6500V,可关断晶闸管达3000A/4500V。随着应用领域的拓展,晶闸管正沿着高电压、大电流、快速、模块化、功率集成化、廉价的方向发展。

其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。

晶闸管在工作过程中,它的阳极(A)和阴极(K)与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。

晶闸管为半控型电力电子器件,它的工作条件如下:

1.晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。

2.晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时

晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。

3.晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保

持导通,即晶闸管导通后,门极失去作用。门极只起触发作用。

4.晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

(完整版)晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

晶闸管

课堂教学安排 晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP 晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G 加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K

之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。 双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0 。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向 峰值电压值U RSM 。 它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰 值电压U RSM 应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R 。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为~,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。 选用一个晶闸管时,要根据所通过的具体电流波形来计算出容许使用的电流有效值,该值要小于晶闸管额定电流对应的有效值。晶闸管才不会损坏。 设单相工频正弦半波电流峰值为Im时通态平均电流为: 正弦半波电流有效值为: 有效值与通态平均电流比值为: 则有效值为: 根据有效值相等原则来计算晶闸管的额定电流。 若电路中实际流过晶闸管的电流有效值为I,平均值I d ,

电力电子课l练习题答案

1.电力电子器件一般工作在__开关__状态。 2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为__开关损耗__。 3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、_主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。 4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_、_双极型器件_、_复合型器件_三类。 5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。 6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、_肖特基二极管_。 7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。 8.晶闸管的基本工作特性可概括为__正向电压门极有触发则导通、反向电压则截止__。 9.对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL__大于__IH 。 10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。 11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。的__多元集成__结构是为了便于实现门极控制关断而设计的。 的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。 14.电力MOSFET的通态电阻具有__正__温度系数。 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。 的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以上区段具有__正___温度系数。 18.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于不可控器件的是_电力二极管__,属于半控型器件的是__晶闸管_,属于全控型器件的是_GTO 、GTR 、电力MOSFET 、IGBT _;属于单极型电力电子器件的有_电力MOSFET _,属于双极型器件的有_电力二极管、晶闸管、GTO 、GTR _,属于复合型电力电子器件得有__ IGBT _;在可控的器件中,容量最大的是_晶闸管_,工作频率最高的是_电力MOSFET,属于

晶闸管测试 参数含义

晶闸管、二极管简易测试方法 晶闸管、二极管广泛应用于各类电力电子装置中,许多情况下,现场服务人员和维修人员需要对器件进行检测,判断其性能好坏。对器件制造企业而言,器件的检测要用到高压阻断测试仪、通态特性、动态特性测试仪等专业设备。一般来说,器件用户或使用现场是没有这些价格昂贵的测试设备的。本文就此向现场服务人员和维修人员推荐一种简易器件检测方法,用以粗略判断器件的好坏。 1.采用万用表的粗略判断法 通常用户现场最常用的检测工具是万用表,许多用户也习惯用万用表判断器件好坏。在某些情况下用万用表也确实能检测出损坏的器件。如晶闸管门极开路,用万用表可检测出门极至阴极电阻R GK无穷大;门极短路可检测出门极至阴极电阻R GK为零(或小于5W)。器件完全击穿时,用万用表检测A、K两极电阻值可以判断出来。但在器件阻断电压受损,尚未完全击穿时,万用表无法检测出来。另外,好的器件因参数分散性,用万用表检测出的A、K电阻值会有较大差别,这也会让使用者产生错误判断。因此,我们建议用户可以用万用表对器件进行一些粗略的检测,一般不建议用户采用万用表判断器件好坏。 2.推荐的简易检测方案 通常情况下,现场服务人员和维修人员最需要了解的是器件的阻断电压能力以及晶闸管的门极触发性能。根据设备现场具有的条件,我们推荐图一电路所示的简易检测方案。 图一简易检测电路 DUT为被测器件,在DUT阻断电压为1000V左右时(须大于800V),可采用交流380V电源进行测试;在一些具有660V交流电源的场合,DUT阻断电压为2000V左右(须大于1200V)时,可采用交流660V电源进行测试。D1可采用1-5A,耐压1000V以上二极管3只串联。LAMP为检测指示灯,注意灯的额定电压要与进线交流电压配合,若用220V的灯泡,可根据进线电压高低采用多只串联。被测器件为二极管时,将两只器件如虚线所示接入电路,不需要接电阻R和开关SW2。 对晶闸管,测试时,先合上开关SW1,若指示灯亮,说明该器件已被击穿或阻断电压已不够。若指示灯不亮,说明器件阻断电压正常,此时若按下按钮SW2,指示灯亮,松开按钮,指示灯熄灭,说明该器件门极触发性能正常。若按下按钮SW2,指示灯不亮,说明该器件门极已被损坏。 对二极管,测试时,合上开关SW1,若指示灯不亮,说明两只器件反向电压正常。若指示灯亮,说明两只被测器件中,有一只或两只反向电压已损坏,可更换器件做进一步判断。 3.注意 a.本文推荐的检测方法基本思路是让器件在实际使用电压环境下考核,用户在检测时须确保被测器件阻断电压高于进线电压峰值,以免在测试中损坏器件。 b. 对台基公司的平板式器件,用户在检测时须采用适当夹具,对器件A、K两极施加一定压力。否则可能会因为器件内部未能良好接触而造成错误判断。 c.采用较高的进线电压检测器件时,操作人员须采取安全措施,防止出现触电事故,保证人身安全。

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

晶闸管的主要参数

晶闸管的主要参数 作者:jesse 文章来源:本站原创点击数:273 更新时间:2007-12-6 ★★★【字体:小大】 晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压V DRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。 (一)正向转折电压VBO 晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。 (二)断态重复峰值电压VDRM 断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。 (三)通态平均电流IT 通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。(四)反向击穿电压VBR 反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。 (五)反向重复峰值电压VRRM 反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。此

电压约为反向击穿电压减去100V后的峰值电压。 (六)正向平均电压降VF 正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。 (七)门极触发电压VGT 门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。 (八)门极触发电流IGT 门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。 (九)门极反向电压 门极反向电压是指晶闸管门极上所加的额定电压,一般不超过10V。 (十)维持电流IH 维持电流IH是指维持晶闸管导通的最小电流。当正向电流小于IH时,导通的晶闸管会自动关断。(十一)断态重复峰值电流IDR 断态重复峰值电流IDR,是指晶闸管在断态下的正向最大平均漏电电流值,一般小于100μA (十二)反向重复峰值电流IRRM 反向重复峰值电流IRRM,是指晶闸管在关断状态下的反向最大漏电电流值,一般小于100μA。

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

晶闸管的基本检测方法

晶闸管的基本检测方法 1.判别单向晶闸管的阳极、阴极和控制极 脱开电路板的单向晶闸管,阳极、阴极和控制极3个引脚一般没有特殊的标注,识别各个脚主要是通过检测各个引脚之间的正、负电阻值来进行的。晶闸管各个引脚之间的阻值都较大,当检测出现唯一一个小阻值时,此时黑表笔接的是控制极(G),红表笔接的是阴极(K),另外一个引脚就是阳极(A)。 2.判别单向晶闸管的好坏 脱开电路板的单向晶闸管,阳极(A)、阴极(K)和控制极(G)明确标示;正常的单向闸管,阳极(A)、阴极(K)两个引脚之间的正、反向电阻,阳极(A)、控制极(G)两个引脚之间的正、反向电阻的阻值应该都很大,阴极(K)、控制极(G)两个引脚之间的正向电阻应该远小于反向电阻。并且阳极(A)、阴极(K)两个引脚之间的正向电阻越大,单向晶闸管阳极的正向阻断特性越好;反向电阻越大,单向晶闸管阳极的反向阻断特性越好。 3.判别双向晶闸管的好坏 脱开电路板的双向晶闸管,第一电极(T1)、第二电极(T2)、控制极(G)明确。判断双向晶闸管的好坏,主要是看短路前第二电极(T2)和第一电极(T1)之间阻值接近无穷大,第二电极(T2)与控制极(G)引脚短路,短路后晶闸管触发导通,第二电极(T2)·和第一电极(T1)之间的电阻变小,有固定值。可以断定该双向晶闸管具备双向触发能力,性能基本良好。 4.晶闸管的代换原则 晶闸管的品种繁多,不同的电子设备与不同的电子电路,采用不同类型的晶闸管。选用与代换晶闸管时,主要应考虑其额定峰值电压、额定电流、正向压降、门极触发电流及触发电压、开关速度等参数,额定峰值电压和额定电流均应高于工作电路的最大工作电压和最大工作电流1.5~2倍,代换时最好选用同类型、同特性、同外形的晶闸管替换。 普通晶闸管一般被用于交直流电压控制、可控整流、交流调压、逆变电源,开关电源保护等电路。 双向晶闸管一般被用于交流开关、交流调压、交流电动机线性凋速、灯具线性调光及固态继电器、固态接触器等电路。 逆导晶闸管一般被用于电磁灶、电子镇流器、超声波电路、超导磁能贮存系统及开关电源等电路。 光控晶闸管一般被用于光电耀合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路等。 BTC晶体管一般被用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等。 门极关断晶闸管一般被用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等。

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

晶闸管的结构及性能特点

晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或

阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K 之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。

双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

晶闸管的主要参数教程文件

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM 值应小于转折电压U b0。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处的反向峰值电压值U RSM。

它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不重复峰值电压U RSM应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR 断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压值规定为额定电压U R。 在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 的2~3倍,以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为1.5~2.5V,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (7) 通态平均电流I T (AV) 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

晶闸管参数名词解释

晶闸管参数名词解释 1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包 括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态 反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定V RSM=1.11V RRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3.通态方均根电流:通态电流在一个周期内的方均根值。 4.通态平均电流:通态电流在一个周期内的平均值。 5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温 的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态 电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7.I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。 通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。 8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。 1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S; d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。 9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。 10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。 1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值

相关文档