文档库 最新最全的文档下载
当前位置:文档库 › 第二节_环烷烃

第二节_环烷烃

第二节_环烷烃
第二节_环烷烃

环烷烃

2.1环烷烃的定义和命名

分子中具有碳环结构的烷烃称为环烷烃,单环烷烃的通式为C n H2n,与单烯烃互为同分异构体。

环烷烃可按分子中碳环的数目大致分为单环烷烃和多环烷烃两大类型。

1.单环烷烃

最简单的环烷烃是环丙烷,从含四个碳的环烷烃开始,除具有相应的烯烃同分异构体外,还有碳环异构体,如分子式为C5H10的环烷烃具有五种碳环异构体。

为了书写方便,上述结构式可分别简化为:

当环上有两个以上取代基时,还有立体异构。

单环烷烃的命名与烷烃基本相同,只是在“某烷”前加一“环”字,环烷烃若有取代基时,它所在位置的编号仍遵循最低系列原则。只有一个取代基时“1”字可省略。

当简单的环上连有较长的碳链时,可将环当作取代基。如:

2.多环烷烃

含有两个或多个碳环的环烷烃属于多环烷烃。多环烷烃又按环的结构、位置分为桥环、螺环等。

(1)桥环两个或两个以上碳环共用两个以上碳原子的称为桥环烃,两个或两个以上环共用的叔碳原子称为“桥头碳原子”,从一个桥头到另一个桥头的碳链称为“桥”。桥环化合物命名时,从一个桥头开始,沿最长的桥编到另一个桥头,再沿次长的桥编回到起始桥头,最短的桥最后编号。命名时以二环、三环作词头,然后根据母体烃中碳原子总数称为某烷。在词头“环”字后面的方括号中,由多到少写出各桥所含碳原子数(桥头碳原子不计入),同时各数字间用下角圆点隔开,有取代基时,应使取代基编号较小。例如:

1,2,7-三甲基-双环[2.2.1]庚烷双环[4.4.0]癸烷双环[2.2.1]庚烷

(2)螺环脂环烃分子中两个碳环共用一个碳原子的称为螺环烃,共用的碳原子为螺原子。命名时根据成环的碳原子总数称为螺某烷,编号从小环开始,经过螺原子编至大环,在“螺”字之后的方括号中,注明各螺环所含的碳原子数(螺原子除外),先小环再大环,数字间用下角圆点隔开。有取代基的要使其编号较小。例如:

5-甲基螺[3.4]辛烷 1,6-二甲基螺[3.5]壬烷

2.2环烷烃的物理性质

在常温常压下,环丙烷与环丁烷为气体,环戊烷、环己烷为液体。

环烷烃不溶于水,易溶于有机溶剂,比水轻。环烷烃的沸点、熔点、相对密度都比同碳数的烷烃高,

2.3环烷烃的化学性质

环烷烃的化学性质与烷烃类似,可发生取代和氧化反应,但由于碳环的存在还具有一些与烷烃不同的特性。如三元和四元环烷烃由于分子中存在张力,所以表现在化学性质上比较活泼,它们与烯烃相似,可以发生开环加成反应生成链状化合物。

1.开环反应

环烷烃中环丙烷和环丁烷能与氢气、溴、卤化氢等试剂发生开环反应,而环戊烷和环己烷却不易发生或不能发生类似的开环反应。

(1)催化加氢小环烷烃的性质与烯烃类似,在催化剂存在下能发生加氢反应,生成烷烃。

环戊烷需要用活性高的铂为催化剂在300℃以上才能加成。环己烷、环庚烷在此条件下不发生加氢反应。

(2)加溴环丙烷在室温下与溴发生加成反应生成1,3-二溴丙烷。

在加热条件下环丁烷与溴发生加成反应,生成1,4-二溴丁烷。

(3)加卤化氢环丙烷、环丁烷与卤化氢发生加成反应生成卤代烷。环戊烷、环己烷不易发生反应。

2.取代反应

环戊烷、环己烷等在光或热的作用下可发生取代反应。

环丙烷与溴在光照下反应,除生成少量取代产物外,主要得到的却是加成产物。

3.氧化反应

常温下环烷烃与一般氧化剂不起作用,即使环丙烷也不起反应,因此可用高锰酸钾鉴别环烷烃和烯烃。当加热或在催化剂作用下,用空气中的氧气或硝酸等强氧化剂氧化环己烷等,则发生环的破裂生成二元酸。

己二酸是合成尼龙的单体。

2.4环烷烃的分子结构

从环烷烃的化学性质可以看出,环的稳定性与组成环的碳原子数密切相关,环的稳定性的大小反映了分子内能的不同,内能越大,环越不稳定。

据测定,环丙烷分子中C-C-C键角为105.5°,H-C-H键角为114°。可见,相邻碳原子的sp3杂化轨道为形成环丙烷必须将正常键角压缩成105.5°,这就使分子本身产生一种恢复正常键角的角张力。角张力的存在是环丙烷不稳定的重要原因。此外,轨道重叠程度越大,形成的键越牢固。显然在形成105.5°键角时,其轨道重叠不及正常的

109.5°大,实际上呈弯曲状,所以人们常把这种键称为弯曲键或香蕉键。

环丁烷与环丙烷类似,分子内也存在角张力,但比环丙烷小些。为降低扭转张力(由于C-C间处于重叠式构象引起的张力),环丁烷通常呈折叠状构象,这种非平面结构可减少C-H键的重叠,其稳定性比环丙烷大一些。

环戊烷、环己烷分子中的碳原子不在一个平面上,碳碳σ键的夹角接近或保持109.5°,分子中既无角张力,又无扭转张力,所以都比较稳定。

2.4.1环的张力

拜尔张力学说

由上面化学性质可看出,环的稳定性与环的大小有关。小环不稳定,大环较稳定。为了解释这一事实拜尔在1885年提出了张力学说。

要点是:环烷烃中碳原子(饱和,SP3杂化),与其他原子结合时,任何两键角都是109028,。但环丙烷是三角形,其夹角是60,环丁烷是四方形,夹角是900,这样环中的C-与-C键角不能是109028,,必须压缩到600,900以适应环的几何形状。这种由于与正常键角的偏差,引起分子的张力,称角张力。这样的环称张力环。

张力环为减小张力,有生成更稳定的开链化合物的倾向。与正常键角偏差越大,环张力越大,越易起开环反应。书中给出了几种环烷烃键角偏转大小,正值表示键角向内压缩,负值表示键角向外扩张。根据张力学说,环己烷以上因键角向外扩张而存在张力,且环越大,键角扩张越大,环越不稳定,而事实上,它的都是稳定的。

拜尔张力学说对小环的结论是正确的,但无法解释负环以上大环的稳定性,其原因是成环碳原子都处于同平面这个假设是错误的,它们实际上不是共平面!

环烷烃的燃烧热

上章我们学过,利用燃烧热可以判断异构体的稳定性,在化学上,我们说某化合物不稳定,意思是说分子的内能较高,易起化学反应。小环烷烃不稳定,内能较高,可以从其燃烧热数据得到证实。

开链烷烃,不论含碳较少,每个CH2的燃烧热都接近658.6KJ/MOL,而环烷烃每个CH2的燃烧热则因环的大小而不同,大多数都大于开链烷烃的658.6KJ/MOL。这高出的能量叫张力能。例如:环丙烷:CH2燃烧热697.1KJ/MOL

CH2张力能697.1-658.6=38.5KJ/MOL

分子总张力能3*38.5=115.5KJ/MOL

P50 表中给出了多种环烷烃的有关数据。

可见张力越大,环越不稳定,张力越小,环越稳定,环己烷,及大环烷烃几乎

为无张力环,都很稳定。若被氧化,角很大,能量升高。

张力能

在有机化合物中,有四种因素不产生张力能。

1.非键作用

分子中两非键合原子或基因由于几何原因互相靠近,当其间距小于两者范德华半径之和时,这两个原子或基团就强烈的排斥,引起体系能量升高,且升高的数值最大。E nb

2.键长变化

分子中由于几何原因,必须使某一个键伸长或缩短(象弹簧),体系能量随之升高,EL,升高数值越大,但〈E nb

3.键角变化

分子中由于几何原因要使键角的大小发生变化,就引起的体系的能量升高,E 其升高数值越大,但〈E l

4.扭转角变化

分子中由于几何原因,使扭转角发生变化就引起能量升高,E,其数值高升最小。比如:一个分子由于几何原因使两非键合原子或基团靠的太近时,因相互排斥,体系能量升高,为降低能量,扭转角发生变化,以使它们彼此分开。如果扭转角变化还不是以使两个原子或基团分开,这时某些键角,键长就会发生必要的变化,使其分开并能够容纳在有限的空间内,而范德华半径很少变化。

近代结构理论的解释

从近代价键理论观点来看,两个原子轨道重迭越多则键越稳定。烷烃碳为SP3杂化,键角为109028,,而在环丙烷分子中,键角为600,故SP3杂化轨道很难头对头重叠,即重叠角较少,形成的键也较不稳定,易开环。根据量子化学计算,认为环丙烷分子中C-C键是弯曲的,键角为1050,形如香蕉,又称香蕉键,不仅重叠程度较少,且电子云分布4在C-C 键连线外侧,易受试剂进攻而起开环反应。

1.环烷烃的顺反异构

环烷烃中由于环的存在限制了C-Cσ键的自由旋转,如果有两个或两个以上的环碳原子连有不同取代基时,就会得到不同构型,产生顺反异构。例如1,2-二甲基环丙烷就有两种异构体。取代基在环平面同侧的称为顺式,在异侧的称为反式。

2.环己烷及其衍生物构象

(1)船式构象和椅式构象在环己烷分子中碳原子以sp3杂化,六个碳原子不在同一个平面上,可以有如下两种典型的构象:

比较环己烷的船式构象和椅式构象:船式构象中两个船头碳原子C1和C4上的氢原子相距很近,只间隔0.183nm,比它们的范德华半径之和0.25nm小得多,因此相互之间斥力较大;而在椅式构象中相邻的两个碳原子上的氢都处于邻位交叉式;船式构象中,C2-C3和C5-C6上的C-H是全重叠式,因而具有扭转张力。所以船式构象不如椅式构象稳定,环己烷及其衍生物在一般情况下都以椅式构象存在,椅式构象为环己烷的优势构象。

环己烷的船式构象和椅式构象之间能相互转换,通常的环己烷就处于这两种构象的转换平衡中。由于船式构象远没有椅式构象稳定,环己烷几乎都是以椅式构象存在,因此在讨论环己烷结构时通常只考虑椅式构象。

(2)平伏键和直立键环己烷椅式构象中的十二个C-H键可分为两类:与分子对称轴平行的六个C-H键称为直立键或a键(axial的简写),其中三个朝上三个朝下;另外六个键与对称轴成109.5°的角度称为平伏键或e键(equatorial的简写)。

(3)椅式构象环的翻转椅式构象也有两种构象,由于分子的热运动,在常温下,通过C-C键的不断扭动,环己烷的一种椅式构象可以转变到另一种椅式构象,而且这种翻转进行得非常快。翻转以后原来的e键变为a键,a键变为e键。

(4)取代环己烷的构象

一元取代环己烷中,取代基处于e键上的构象较稳定。

对于多元取代环己烷,一般说来最稳定的构象应是取代基在e键上最多的椅式构象,尤其是大的取代基处于e键上更为稳定。

第二章 烷烃环烷烃

第二章 烷烃环烷烃 一、选择 1. 鉴别环丙烷和丙烯可用( )。 A. 溴水 B. KMnO4溶液 C. HBr D. 硝酸银的氨溶液 2. 下列构象的稳定性从大到小排列顺序正确的是( )。 ① CH 3 C(CH 3)3 ②C(CH 3)3 H 3C ③H 3C C(CH 3)3④ C(CH 3)3 CH 3 A. ①>②>③>④ B. ③>②>①>④ C . ③>①>②>④ D. ①>③>②>④ 3. 含有伯、仲叔碳原子的化合物是( )。 A. 2,2,3-三甲基丁烷 B. 4,6,6-三甲基-1-庚烯 C. 2,4,4-三甲基-2-戊烯 D. 3,3-二甲基戊烷 4. 甲基环己烷最稳定的构象是( )。 A. B . C. D. 5. 正丁烷最稳定的构象是( )。 A.全重叠式 B.部分重叠式 C. 邻位交叉式 D. 对位交叉式 6. 下列自由基稳定性最大的是( )。 A. B. C. D . 7. 关于乙烷的构象,正确的说法是( )。 A. 乙烷只有重叠式和交叉式两种构象 B.乙烷在常温下只以交叉式构象存在 C . 常温下乙烷的各种构象间可相互转变 D. 交叉式能量比重叠式高 8. 下列碳环化合物,最不稳定的是( )。 A. 苯 B. 环己烷 C. 环丁烷 D. 环丙烷 9. 下列游离基中最稳定的是( )。 A.C H 3C H 2C H 2C H 2C H 3C H 2C H C H 3 C H 3C H 2C C H 3C H 3C H 3C H C H C H 2 A B C D B. H 3C H 2C H 2C H 2C H 3C H 2C H C H 3C H 3C H 2C C H 3 C H 3 C H 3C H C H C H 2A B C D C.H 3 C H 2C H 2C H 2C H 3C H 2C H C H 3 C H 3C H 2C C H 3 C H 3C H 3C H C H C H 2A B C D D. H 3 C H 2 C H 2 C H 2 C H 3C H 2C H C H 3C H 3C H 2C C H 3 C H 3 C H 3C H C H C H 2 A B C D 10. 烷烃的卤代反应是自由基反应,其反应机制可分为( )。 A. 二个阶段 B. 三个阶段 C. 四个阶段 D. 五个阶段 11. (CH 3)2CH- 称为( )。 A. 乙基 B. 异丙基 C. 甲基 D. 亚甲基 12. CH 3CH 3 与Br 2 在光的照射下生成CH 3CH 2Br 的反应属于( )。 A. 自由基反应 B. 亲电加成反应 C. 亲核加成反应 D. 亲核取代反应 13. 根据现代价键理论,分子中存在弯曲键的化合物是( )。 A. B. C. D. 14. 烷烃发生卤代反应时,不同类型的氢被卤素取代的活性顺序是( )。 A. 伯氢>仲氢>叔氢 B. 伯氢>叔氢>仲氢 C. 叔氢>伯氢>仲氢 D. 叔氢>仲氢>伯氢 15. Br 2/CCl 4在室温下可鉴别( )。 A. 环己烷和环戊烷 B. 环丙烷和环己烷 C. 戊烷和己烷 D. 环己烷和己烷 16. 有顺反异构体的化合物是( )。 A. 环己烷 B. 1-甲基环己烷 C. 1,2-二甲基环己烷 D. 1,1-二甲基环己烷

烷烃与环烷烃

2烷烃 2-1.用系统命名法命名下列化合物,并圈出结构中的异丙基、仲丁基和新戊基。 【解题思路】命名时,首先要确定主链。命名烷烃时,确定主链的原则是:首先考虑链的长短,长的优先。若有两条或多条等长的最长链时,则根据侧链的数目来确定主链,多的优先。若仍无法分出那条链为主链,则依次考虑下面的原则,侧链位次小的优先,各侧链碳原子数多的优先,侧分支少的优先。主链确定后,要根据最低系列原则对主链进行编号。最低系列原则的内容是:使取代基的号码尽可能小,若有多个取代基,逐个比较,直至比出高低为止。最后,根据有机化合物名称的基本格式写出全名。 2-2.写出下列化合物的结构式 1. 2,6,6-三甲基-7-叔丁基十一烷 2. 3,5-二乙基-4-仲丁基辛烷 【参考答案】 2-3.选择题 1.下列自由基最稳定的是 ,最不稳定的是 。 【解题思路】,由于 —p 超共轭效应的存在,自由基稳定性顺序是3°>2°> 1° A 属于1°自由基,B.属于3°自由基,C 属于 2°自由基,D.属于2°自由基, [参考答案]:最稳定的自由基是B ,最不稳定的自由基是A 2.在光照条件下,2,3-二甲基戊烷进行一氯代反应,可能得到的产物有 种。 A.3 B.4 C.5 D.6 【解题思路】2,3-二甲基戊烷分子中有六种不同的氢原子,如下图所示:故可以得到一氯代产物6种, [参考答案]:D CH 3CH(CH 2)4CHCHCH 2CH 3CH 3CH 3CH 3CH 3CH 2CH-CHCH 2CH 3CH(CH 3)2CH(CH 3)2 1. 2.3.(CH 3)3CCH 2CH 2CHCH 2CH 3 CH 2CH 3 A.CH 3CHCH 2CH 2CH 2.CH 3 B.CH 3CCH 2CH 2CH 3 CH 3.C.CH 3CHCH 2CHCH 3. CH 3 D.CH 3CHCHCH 2CH 3 .CH 3 C H C C 3 C H C H 3C H 3C H 3 1.C H 3C H (C H 2)3C C H CH 2C H 2C H 2C H 3C (C H 3)3H 3C

人卫有机化学5-2第二章--烷烃和环烷烃

第二章 烷烃和环烷烃 有机化合物(简称有机物)中有一类数量众多,组成上只含碳、氢两种元素的化合物,称为碳氢化合物,简称烃(hydrocarbon )。烃分子中的氢原子被其他种类原子或原子团替代后,衍生出许多其他类别的有机物。因此,烃可看成是有机物的母体,是最简单的一类有机物。根据结构的不同,烃可分为如下若干种类。 烃在自然界中主要存在于天然气、石油和煤炭中,是古老生物埋藏于地下经历特殊地质作用形成的,是不可再生的宝贵资源,是社会经济发展的主要能源物质,也是合成各类生活用品和临床药物的基础原料。本章讨论两类饱和烃——烷烃和环烷烃。 第一节 烷烃 分子中碳原子彼此连接成开放的链状结构的烃称为开链烃,因其结构与人不饱和开链烃 烃 饱和开链烃—烷烃 脂环烃(环烷烃、环烯烃等) 闭链烃 (环烃) 开链烃 (脂肪烃) 芳香烃 烯烃 炔烃

体脂肪酸链状结构相似又称脂肪烃,具有这种结构特点的有机物统称脂肪族化合物。分子中原子间均以单键连接的开链烃称为饱和开链烃,简称烷烃(alkane)。 一、烷烃的结构、分类和命名 (一)烷烃的结构 1.甲烷分子结构甲烷是家用天然气的主要成分,也是农村沼气和煤矿瓦斯的主要成分,广泛存在于自然界中,是最简单的烷烃。 甲烷分子式是CH ,由一个碳原子与四个氢原子分别共用一对电子,以四个 4 共价单键结合而成。如下图2-1(a)所示。 图2-1 甲烷分子结构示意图 结构式并不能反映甲烷分子中的五个原子在空间的位置关系。原子的空间位置关系属于分子结构的一部分,因而也是决定该物质性质的重要因素。化学学科常借助球棍模型来形象地表示有机物分子的空间结构(不同颜色和大小的球表示不同原子,小棍表示共价键)。根据现代物理方法研究结果表明,甲烷分子空间结构如图2-1(b)所示。但是球棍模型这种表示书写起来极不方便,要将甲烷的立体结构在纸平面上表示出来,常通过实线和虚线来实现。如图2-1(c)所示,虚线表示在纸平面后方,远离观察者,粗实线(楔形)表示在纸平面前方,靠近观察者,实线表示在纸平面上,这种表示方式称透视式。 将甲烷透视式中的每两个原子用线连接起来,甲烷在空间形成四面体。根据现代物理方法测定,甲烷分子为正四面体结构,碳原子处于四面体中心,四个氢原子位于四面体四个顶点。四个碳氢键的键长都为0.109 nm,键能为414.9kJ?mol-1,所有H-C-H的键角都是109.5o。 碳原子核外价电子层结构为2s22p2,按照经典价键理论,共价键的形成是电子配对的过程。碳原子价电子层上只有两个单电子,因而碳原子应该只能形

第二章 烷烃和环烷

第二章烷烃和环烷(lkane and Cycloalkane) 教学要求: 掌握:烷烃、环烷烃的结构;烷烃构造异构、环烷烃几何异构的概念及命名;烷烃、环烷烃、螺环烃、桥环烃的命名;烷烃、环烷烃的构象异构及其写法;取代环己烷的优势构象;烷烃的自由基取代反应及小环烷烃的特殊性。 熟悉:烃的分类;烷烃、环烷烃的物理性质;自由基的构型及其稳定性。 了解:烃的来源及其在日常生活、医学上的用途。 第一节烷烃(Alkane ) 仅由碳和氢两种元素组成的化合物称为碳氢化合物,简称为烃(hydrocarbon)。 烃的分类: 一.烷烃的结构 烷烃属于饱和烃,其分子中所有碳原子均为SP3杂化,分子内的键均为 键,成键轨道沿键轴“头对头”重叠,重叠程度较大,键较稳定,可沿键轴自由旋转而不影响成键。) 甲烷是烷烃中最简单的分子,其成键方式如下: 碳原子sp3杂化, 4个sp3杂化轨道分别与4个氢原子的S轨道重叠,形成4个C—Hσ键,4个C—Hσ键间的键角109°28′,空间呈正四面体排布,相互间距离最远,排斥力最小,能量最低,体系最稳定,C-H键长110pm。乙烷是含有两个碳的烷烃,其结构如下: 图2-2乙烷的结构 两个碳原子各以sp3杂化轨道重叠形成C—Cσ键,余下的杂化轨道分别和6个氢原子的s 轨道重叠形成六个C—Hσ键。C-C键长154pm,C-H键长110pm 。 ★其他烷烃的成键方式同乙烷相似。 ★烷烃的通式、同系列 烷烃的分子组成可用通式C n H2n+2表示。 具有相同分子通式和结构特征的一系列化合物称为同系列(homologous series)。如:CH4CH3CH3 CH3CH2CH3 ;同系列中的各化合物互称为同系物(homolog);相邻两个同系物在组成上的不

烷烃和环烷烃的化学性质及制备

烷烃和环烷烃的化学性质及制备 一、烷烃的主要化学性质 总体:稳定,自由基型反应居多。 (一)燃烧和氧化 一般条件下不与普通氧化剂反应,剧烈可燃烧,C →CO 2,H →H 2O ,(杂→氧化物) 有机化学中:氧化=加氧or 去氢,还原=加氢or 去氧 (二)卤代反应(实质:取代反应) 取代反应(substitution reaction )是指有机化合物受到某类试剂的进攻,致使分子中一个原子(或基团)被这个试剂所取代的反应。分为亲电取代、亲核取代、自由基取代三类。 探讨一类有机反应主要从以下四个方面展开:反应产物、反应类型、反应历程、反应活性(反应活性又可从试剂和底物两个方面讨论)。 烷烃的取代属于自由基取代反应。 反应产物:一~多卤代烷 反应类型:自由基型(反应条件:光照 or 高温) 反应历程:链引发、增长、终止 反应活性:试剂角度考虑:氟 〉〉氯 〉溴 〉〉碘 底物角度考虑:叔氢 〉仲氢 〉伯氢 二、烷烃的来源和制备 1、烷烃是其他有机物的母体,一般不经人工合成,而是从天然气和石油中获得。 2、天然来源烷烃是相当复杂的混合物,难以分离。若需纯粹烷烃,可人工合成来制备。 3、工业生产采用柯尔伯电解羧酸盐来制取 4、实验室通过武兹、科瑞-郝思合成法以及还原反应来获得。 (1)武慈反应(制备对称烷烃) 2RX (乙醚) + Na → R-R + 2NaX ( X = Br 、I ) (2)科瑞-郝思反应 R 2CuLi (二烷基铜锂) + R ’X → R-R ’ + RCu (烷基铜) + LiX (3)还原 卤代烃、醇、醛、酮、酸等还原制得(见以后章节) 三、环烷烃的主要化学性质 总体:大环像烷,小环像烯。 (一)取代反应(卤代,自由基型) + Br + HBr Br 日光 环己烷 溴代环己烷

第二章 烷烃和环烷烃

第二章烷烃和环烷烃 1.写出只有伯氢原子,分子式为C8H18烷烃的结构式。 2.为什么没有季氢原子? 3.命名下列化合物。 4.写出下列烷烃或环烷烃的结构式 ⑴不含有仲碳原子的4碳烷烃。 ⑵具有12个等性氢原子、分子式为C5H12的烷烃。 ⑶分子中各类氢原子数之比为:1°H:2°H:3°H = 6:1:1,分子式为C7H16的烷烃。 ⑷只有1个伯碳原子、分子式为C7H14的环烷烃。写出所有可能的环烷烃的结构式并加以命名。 5.化合物2,2,4-三甲基己烷分子中的碳原子,各属于哪一类型(伯、仲、叔、季)碳原子? 6.元素分析得知含碳84.2%、含氢15.8%,相对分子质量为114的烷烃分子中,所有的氢原子都是等性的。写出该烷烃的分子式和结构式,并用系统命名法命名。 7.将下列化合物按沸点降低的顺序排列 ⑴丁烷⑵己烷 3 ⑶-甲基戊烷 ⑸-二甲基丁烷⑹环己烷 ⑷-甲基丁烷 2,3 2 8.按稳定性从大到小的次序,用Newman投影式表示丁烷以C2—C3键为轴旋转的4种典型构象式。 9.化合物A的分子式为C6H12,室温下能使溴的四氯化碳溶液褪色,但不能使高锰酸钾溶液褪色。A氢化得2,3-二甲基丁烷,与HBr反应得化合物B(C6H13Br)。写出化合物A 和B的结构式。 10.写出下列化合物的构象异构体,并指出较稳定的构象。 (1)异丙基环己烷(2)1-氯环己烷 11.将下列自由基按稳定性从大到小的次序排列。 12.为什么凡士林在医药上可用作软膏的基质?

13.完成下列反应式 14.写出下列药物的构象。 (1)镇痛药哌替啶(杜冷丁,Dolantin)的主要代谢产物哌替啶酸的结构为: 写出哌替啶酸的构象(—COOH在e键的构象)。 (2)促动力新药西沙必利(Cisapride)的结构为: 写出西沙必利的优势构象。 15.体内的抗坏血酸可使α-生育酚自由基还原再生为α-生育酚,同时抗坏血酸转变为抗坏血酸自由基。完成上述体内的自由基反应。 16.环己烷与氯在光或热的条件下,可生成一氯环己烷的反应是自由基的链反应。写出链引发、链增长、链终止的各步反应式。 17.在C6H14的构造异构体中,哪几种异构体不能用普通命名法命名。 18.试写出下列烷基的名称。 (1)CH3CH2 CH2 CH2― (2)(CH3)2CH―CH2―CH2― 19.试比较(1)丁烷、丙醇和丙胺的沸点;(2)丁烷、甲基乙基醚CH3―O―CH2CH3和丙醇在水中的溶解度。 20.试推测(1)辛烷(2)2,2―二甲基己烷(3)新辛烷和(4)2,2,3,3―四甲基丁烷燃烧热的大小。 21.(1)写出的反应机理。 (2)对于上式反应1940年前人们曾设想过下列机理,但没有被人们普遍认可,试说明可能的原因。 (3)为什么在引发阶段不一定先由乙烷产生CH3·,而是由Cl2产生Cl·? 22.等摩尔的新戊烷和乙烷的混合物进行氯代反应,一氯代反应产生氯代新戊烷[(CH3)3CCH2Cl]和氯乙烷的比例为2.3:1,比较新戊烷和乙烷中1°H的活性。

第二章 烷烃和环烷烃

第二章烷烃和环烷烃 教学目的 1. 使学生熟悉简单烷烃的普通命名法和较复杂烷烃的系统命名法。理解原子序数优先规则,能够准确的写出较复杂烷烃的构造式或名称。 2. 使学生理解“构象”概念,能够认识和书写简单烃类的构象的透视式和纽曼式、能够比较简单构象式的能量差别,掌握环己烷优势构象的画法。 3. 使学生了解饱和碳原子上的游离基取代反应、反应历程的概念和游离基稳定规律。 教学重点 1. 烷烃的系统命名规则、环己烷优势构象。 2. 原子序数优先规则 教学难点 1. 烷烃的构象(透视式与纽曼式)、环己烷优势构象。 2. 饱和碳原子上的游离基取代历程。 第一节烷烃的同系列和同分异构现象 一、烷烃的同系列 二、烷烃的同系列和同分异构现象 第二节烷烃和环烷烃的命名 一、普通命名法 其基本原则是: (1)含有10个或10个以下碳原子的直链烷烃,用天干顺序甲、乙、丙、丁、戊、已、庚、辛、壬、癸10个字分别表示碳原子的数目,后面加烷字。 例如:CH3CH2CH2CH3命名为正丁烷。 (2)含有10个以上碳原子的直链烷烃,用小写中文数字表示碳原子的数目。 如CH3(CH2)10CH3命名为正十二烷。(3)对于含有支链的烷烃,则必须在某烷前面加上一个汉字来区别。在链端第2位碳原子上连有1个甲基时,称为异某烷,在链端第二位碳原子上连有2个甲基时,称为新某烷。 如:CH3CH2CH2CH2CH3正戊烷 异戊烷(CH3)2CHCH2CH3 CH3 新戊烷 CH3 C CH3 CH3

二、系统命名法 1.烷烃的命名 系统命名法是我国根据1892年曰内瓦国际化学会议首次拟定的系统命名原则。国际纯粹与应用化学联合会(简称IUPAC 法)几次修改补充后的命名原则,结合我国文字特点而制定的命名方法,又称曰内瓦命名法或国际命名法。 烷基:烷烃分子去掉一个氢原子后余下的部分。其通式为C n H 2n+1-,常用R-表示。 常见的烷基有: 甲基 CH 3— (Me ) 乙基 CH 3CH 2— (Et ) 正丙基 CH 3CH 2CH 2— (n-Pr ) 异丙基 (CH 3)2CH — (iso-Pr ) 正丁基 CH 3CH 2CH 2CH 2— (n-Bu ) 异丁基 (CH 3)2CHCH 2— (iso-Bu ) 仲丁基 (sec-Bu ) 叔丁基 (CH 3)3C — (ter-Bu ) 在系统命名法中,对于无支链的烷烃,省去正字。对于结构复杂的烷烃,则按以下步骤命名: (1) 选择分子中最长的碳链作为主链,若有几条等长碳链时,选择支链较多的一条为主链。根据主链所含碳原子的数目定为某烷,再将支链作为取代基。此处的取代基都是烷基。 (2) 从距支链较近的一端开始,给主链上的碳原子编号。若主链上有2个或者个以上 的取代基时,则主链的编号顺序应使支链位次尽可能低。 (3) 将支链的位次及名称加在主链名称之前。若主链上连有多个相同的支链时,用小写中文数字表示支链的个数,再在前面用阿拉伯数字表示各个支链的位次,每个位次之间用逗号隔开,最后一个阿拉伯数字与汉字之间用半字线隔开。若主链上连有不同的几个支链时,则按由小到大的顺序将每个支链的位次和名称加在主链名称之前。 如果支链上还有取代基时,则必须从与主链相连接的碳原子开始 ,给支链上的碳原子编号。然后补充支链上烷基的位次.名称及数目。 2.环烷烃和多环脂环烃的命名 按照分子中所含环的多少分为单环和多环脂环烃。 根据脂环烃的不饱和程度又分为环烷烃和环烯烃(环炔烃)。 在多环烃中,根据环的连接方式不同,又可分为螺环烃和桥环烃。 (1)单环脂环烃的命名:环烷烃的命名与烷烃相似,根据成环碳原子数称为“某”烷,并在某烷前面冠以“环”字,叫环某烷。例如: 环丙烷 环丁烷 环已烷 环上带有支链时,一般以环为母体,支链为取代基进行命名,如: 二甲基环丙烷 CH 3CH 2CH CH 3 CH 3 CH 3

第二章 烷烃和环烷烃最终版

第一章 烷烃和环烷烃 一、烷烃 1.烷烃的命名:普通命名法(异构词头用词头“正”、“异”和“新”等区分) 系统命名法:(1)选主链:碳链最长 (2)编号:“最低系列”原则是:逐个比较两种编号法中表示取代基位置的数字,最先遇到取代基位置最小者,定为最低系列. (3)书写表达:次序规则(p19) 小练习:1、用系统命名法命名下列有机物: 2、根据名称写出下列有机物的结构简式,并判断下列有机物命名是否正确,如不 正确,指出错误原因,然后再写出正确命名 (1)2,2,3,3-四甲基戊烷 (2)3,4-二甲基-4-乙基庚烷 (3)2,5-二甲基庚烷 (4)2,3-二甲基-6-乙基辛烷 (5)3,3-二甲基丁烷 (6)3-甲基-2-乙基戊烷 2.烷烃的分子结构 ① 烷烃的构象和构象异构体 ② 交叉式和重叠式构象(最不稳定) ③ 透视式或纽曼投影式 小练习: 以C2与C3的σ键为旋转轴,试分别画出2,3-二甲基丁烷和2,2,3,3-四甲基丁烷的典型构象式,并指出哪一个为其最稳定的构象式。 1)烷烃的物理性质: a. C1~ C4为气态,C5~ C17为液态,C17以上为固态 b. 沸点随相对分子质量增大而增大 CH 3— CH 2 —CH 2 —CH CH 2 —CH 3 —CH 3 CH 3— CH 3 CH 3 —CH 3 C CH 3— C H 2 —CH —CH 3 CH 3

c.相对分子质量相同、支链多、沸点低。 d.基本上随分子量的增加而增加 参阅物理常数表,试推测下列化合物沸点高低的一般顺序。 (1) (A) 正庚烷 (B) 正己烷 (C) 2-甲基戊烷 (D) 2,2-二甲基丁烷 (E) 正癸烷 (2) (A) 丙烷 (B) 环丙烷 (C) 正丁烷 (D) 环丁烷 (E) 环戊烷 (F) 环己烷 (G) 正己烷 (H) 正戊烷 (3) (A) 甲基环戊烷 (B) 甲基环己烷 (C) 环己烷 (D) 环庚烷 2)烷烃的化学性质:(从物质的结构来判断) a.甲烷的卤代反应:(氯代和溴代反应,反应速率:氯代 >溴代)自由基取代 b.其它烷烃的卤代反应(一卤代):反应活性:3o H > 2o H > 1o H > CH4 c.自由基的相对稳定性:3o > 2o > 1o,越是稳定的自由基,越容易形成。 小练习:1.已知烷烃的分子式为C5H12,根据氯化反应产物的不同,试推测各烷烃的构造,并写出其构造式。 (1)一元氯代产物只能有一种 (2)一元氯代产物可以有三种 (3)一元氯代产物可以有四种 (4)二元氯代产物只可能有两种 2.将下列的自由基按稳定性大小排列成序。 ⑴⑵⑶⑷ 二、环烷烃 1、环烷烃的命名和类型 (一)单环烷烃(注意支链、顺反异构) (二)多环烷烃(桥环和螺环的命名) ①桥环:环的数目[桥头间的碳原子数]某烷,例:二环[4. 4. 0]癸烷 ②螺环:螺[除螺C外的碳原子数]某烷,例:螺[4. 5]癸烷 小练习:1、给下列环烃命名 CH3CH3CHCH2CH2 CH3 CH3CCH2CH3 CH3 CH3CHCHCH3 CH3 CH 3 CH 3 H 3 C

文件:第三章环烷烃

第三章环烷烃 教学目的与要求: 1.掌握环烷烃的构造异构和顺反异构及其命名方法; 2.了解环烷烃的物理性质,掌握环烷烃的化学性质; 3.理解环的张力; 4.掌握环己烷和取代环己烷的的构像; 5.了解多环烃命名方法。 教学重点、难点: 环烷烃的化学性质;环己烷和取代环己烷的的构像。 环烷烃是指分子中碳原子以单键互相连接成闭合的碳环,剩余的价完全与氢原子相连。将链烃变为环烃,要在分子中增加一个碳-碳单键,同时减少两个氢原子,因此,单环烷烃的通式为C n H2n 。 § 3.1环烷烃的异构和命名 3.1.1 环烷烃的异构 1.构造异构:环烷烃由于环的大小,侧链的长短及位置的不同而产生构造异构体。 C3H6 无构造异构 C4H8 C5H10 2. 顺反异构 1,4-二甲基环己烷分子中,两个甲基可以在环平面的同侧,也可以在环平面的异侧,形成顺反异构: 333 3 顺反异构体由于环的存在,不能互变(断键)。其物理性质有差异。

3.1.2 环烷烃的命名 1.单环体系 1)根据环中碳原子数目叫做环某烷。 2)有取代基时,编号应使取代基位次尽可能小。 3)有不同取代基时,编号从小基团开始。 CH 3 CH 3 CH 3 CH 3 CH 2 CH CH 3 1-甲基-3-乙基环戊烷 1-甲基-4-异丙基环己烷 2. 顺反异构体命名时,取代基在环平面同侧称顺式(cis-),异侧称反式(trans-)。 3 3 3 3 顺-1.4-二甲基环己烷 反-1.4-二甲基环己烷 为书写方便,环烷烃常用键线式: 戊烷 3-环己基己烷 §3.2 环烷烃的物理性质和化学反应 3.2.1 环烷烃的物理性质 环烷烃的熔点、沸点和比重都较相应的开链烷烃高。因环烷烃的环状结构,分子较有序,排列较紧密,分子间作用力较大。而直链烷烃分子自由摇摆,有序度小,分子间作用力较弱,故熔点、沸点和比重较小。 3.2.2 环烷烃的反应 环烷烃与直链烃结构相似,所表现出的化学性质也相似(常温下,不与强酸、强碱、强氧化剂、强还原剂起反应,可以起燃烧、热解、卤代等反应)。 三元环和四元环等小环化合物有一些特殊的性质,即容易开环生成开链化合物。

第二章 烷烃和环烷烃

第二章 烷烃和环烷烃 一、 教学目的与要求: 1、掌握烷烃和环烷烃的结构特征和命名;烷烃和环烷烃的构象异构。 2、掌握烷烃和环烷烃的化学性质的异同点;烷烃和环烷烃的自由基取代及 机理;掌握小环的开环加成。 二、教学重点 1、烷烃的命名(包括六碳以下的英文命名)。伯、仲、叔碳原子和氢原子, 乙烷与正丁烷的构象; 2、烷烃的结构特征:σ键。卤代自由基反应机理,伯、仲、叔氢的反应活 性,伯、仲、叔碳自由基的相对稳定性; 3、脂环烃的命名(单环、螺环与桥环),三元、四元环的开环加成。 4、环己烷的椅式构象以及取代环己烷的优势构象规律。 三、教学难点: 1、烷烃的英文命名; 2、自由基卤代反应机理; 3、环己烷的椅式构象,以及取代环己烷的优势构象规律; 4、环丙烷的结构; 六、教学步骤及时间分配 导言:烃(Hydrocarbon ):碳氢化合物。 简述烃的分类,介绍本章学习的重点要求,强调本章内容是学习后续各章的 基础。 1.1 烷烃 一、烷烃的结构 烷烃的结构特征:碳为sp 3杂化;C-H 、C-C 均为σ键。 σ键特点:键牢固,电子云沿键轴呈圆柱形对称,可自由旋转。 [示CH 4、CH 3CH 3的球棒模型] 简述同系列和同系物的概念和重要性: 二、烷烃的异构现象 (一) 碳链异构(carbon chain isomer ):具有相同分子式,仅由于碳链结 构不同而产生的同分异构现象。 如:丁烷(C 4H 10 ): 正丁烷 异丁烷 戊烷(C 5H 12): 正戊烷 异戊烷 新戊烷 从以上异构体引出:四种类型的碳,三种类型的氢。 分析:各级碳和氢的结构特征和代表的符号。 思考:①指出下列烷烃的各级碳和氢: CH 3-C-CH 2-CH-CH 2-CH 3CH 3CH 33CH 32CH 3 CH 3

有机化学教学之三:环烷烃

第三章环烷烃环烷烃指碳原子的单键相互连接成环的碳氢化合物,原指环族化合物。P12 将链烃变为环烃,要在分子中增加如C-C单键,同时减少两个氢原子,因此,单环烷烃的通式为C n H2n 。分子中每增加一个环,就要增加一个C-C键,减少两个氢原子。如果一个环烷烃的分子式为C10H18=C n H2n-2。这是个几环烷烃? 3.1环烷烃的异构和命名 3.1.1 环烷烃的异构 环烷烃由于环的大小,侧链的长短及位置的不同而产生构造异构体。例如:C5H10当分子中,两个甲基可以在环平面的同侧,也可以在环平面 的异侧,形成顺反异构: 顺反异构体由于环的存在,不能互变(断键)。其物理性质有差异。 3.1.2 环烷烃的命名 1.单环体系 1)根据环中碳原子数目和环某烷。 2)有取代基时,编号应使取代基位次尽可能小。 3)有不同取代基时,编号从小基团开始。 例如: C C C C C C C C 1-甲基-3-异丙基环戊烷

4)若取代基为教长碳链,应将环作为取代基全名。 2-甲基-3-环戊基戊烷 5)顺反异构体命名时,取代基在环平面同侧称顺式,异侧称反式。 3顺-1.4-二甲基环己烷 H 33反-1.4-二甲基环己烷 为书写方便,环烷烃常用键线式。 3H 9顺-1-甲基-4-叔丁基环己烷 在顺反异构体书写中,常写出完整的取代基,以区别于键线式,增加立体感。 例如: H 3 3 反-1,4-二甲基环辛烷 补:环上有两个以上的位置各有一个取代基式,则选订其中位次最低者为对照 基因,在其前加r (reference )。其余取代基位次前用顺反来与r-对照。 例如: r-1,顺-3-反-5-氯环己二甲酸 r-1,反-2,顺-4-三氯 戊烷

相关文档