文档库 最新最全的文档下载
当前位置:文档库 › RTM成型学习资料

RTM成型学习资料

RTM成型学习资料
RTM成型学习资料

RTM成型工艺解析与生产注意事项

RTM成型工艺与分类

1.RTM

所谓闭模成型工艺就是在阴、阳模闭合的情况下成型复合材料构件的工艺方法。SMC、BMC模压、注射成型、RTM、VEC技术都属闭模成型工艺。由于环境法的制

定和对产品要求的提高使敞模成型复合材料日益受到限制,促使了闭模成型技术的应用,近年来尤其促进了RTM技术的革新和发展。

2.RTM的类型

RTM工艺,即树脂传递模塑工艺,是一种新型的模压成型方法。它具有模具造价低、生产周期短、劳动力成本低、环境污染少、制造尺寸精确、外形光滑、可制造复杂产品等优点。40年代来,该工艺是为适应飞机雷达罩成型而发展起来的。目前,RTM成型工艺己广泛应用于建筑、交通、电讯、卫生、航天航空等领域。下面介绍几种RTM技术。

1)RTM,树脂传递模塑。该技术源自聚氨酯技术,成型时关闭模具,向预制件中注入树脂,玻纤含量低,约20-45%。

2)VARIT,真空辅助树脂传递注塑。该技术利用真空把树脂吸入预制件中,同时也可压入树脂,真空度约10-28英寸汞柱。

3)VARTM,真空辅助树脂传递注塑。制品孔隙一般较少,玻纤含量可增高。

4)VRTM,真空树脂传递模塑。

5)VIP,真空浸渍法。

6)VIMP,可变浸渍塑法。树脂借助真空或自重移动,压实浸渍。

7)TERTM,热膨胀RTM。在预制件中插入世材,让树脂浸渍并对模具与成形品加热。芯材受热膨胀,压实铺层。利用这种压实作用,结合表面加压成型。

8)RARTM,橡胶辅助RTM。在TERTM方法中不用芯材而用橡胶代之。橡胶模具压紧成型品,使孔隙大大减少,玻纤含量可高达60-70%。

9)RIRM,树脂注射循环模塑。真空与加压结合,向多个模具交替注入树脂,使

树脂循环,直至预制件被充分浸透。

10)CIRTM,Co-Injection RTM。共注射RTM,可注入几种不同的树脂,也可使

用几种预制件,可利用真空袋和柔性表面的模具。

11)RLI,树脂液体浸(渗)渍。在下模内注入树脂,入入预制件后覆盖上模,

加热并用热压釜的成型压力成型。加热使树脂粘度降低、流动性好,易于浸透。12)SCRIMPTM西曼复合材料公司权脂浸渍塑法。申请专利。利用真空袋使树脂

加压浸渍,浸渍速度快、面积广。树脂在预制件的厚度方向也能充分浸渍,必须使用真空袋和软面模具。

13)U VRTM,紫外线(固化)RTM。与SCRIMP法相似,固化快,必须使用紫外光源,能透过紫外线的真空袋和软质模具。

14)VECTM虚拟设计复合材料VEC的核心技术是获得专利的“浮充模具”思想。复合材料对模装于两充液的钢制压力容器之间,而模具沿容器全长形成密封,容器内充满可压缩的导热液体,液体通常为水。

RTM成型工艺模具技术

1)RTM总工艺路线

RTM有三个重要的组成部分:

*1原材料系统

*2注入设备

*3模具系统

2)RTM成型用模具技术

所有RTM产品都需一适合工艺的模具,RTM也不例外。RTM模具可以用铝钢、FRP 来制作。由于铝钢模具不易变形但价格格高,在这不作介绍。下面主要介绍FRP 模具。

*1RTM模具型式和材料

FRP模具用于RTM,按一般规定做——7-10mm厚的模具层板,然后在基础模具表面下装入——加热芯形成夹层结构,模具层板总厚为20mm。由于这厚度不能胜任RTM成型工艺所需的强度,因此需进一步增强。箱形钢型材要比复合材料便宜得多,一般以箱形钢型材加固。

FRP模具实践证明用劣质树脂翻制的模具使用寿命极短,而对产品质量也有直接影响,所以模具表面要求用耐温、耐化学腐蚀的材料来做。模具制作成本大部分是人工、材料选择成本几乎与模具总造价无关。目前一般选用乙烯基酯模具树脂系统和胶衣,并且证明比传统环氧材料具有更好的使用寿命和耐温性。据国外资料报道,用乙烯基酯模具树脂制得的模具模塑次数已超过18000多模次,而且还在继续使用。

*2模具加热

用于玻璃钢工业的大多数树脂都有一与温度直接相在的固化曲线,所以寻找生产模具能够控制温度的方法具有相当的现实意义,这样有助于优化生产效率。事实上模具温度每提高10℃,凝胶时间将减半,因此在环境温度(20℃)下,模塑一个部件也许固化脱模时间需要60分钟,而在50℃,同样的树脂体系,模塑同一部件,在7.5分钟内就能脱模。

电热布加热

在RTM模具中应用加热布铺设在模具内存的电加热方式已用了许多年。加热比较均匀,模具能够轻而易举升温至100℃以上,但标准应用最高模具温度用到75℃。液体加热

液体加热是将热循环和冷循环系统安装到合适的模具结构中,可以替代电加热。这为模具还提供了一个冷却系统。温度可通过预埋管子中的循环介质来控制。

*3模具的密封

用于RTM和真空模塑(V M)的所有闭合对模都需要一个在模腔边缘控制树脂溢流的密封装置。在V M模塑情况下,需要附加外置模具法兰真空密封装置。

密封圈有许多不同的形式,但要求密封圈材料具有耐高温和一致恢复率。目前看来有机硅胶材用于基本模胶树脂密封是最成功的。如果用法正确的话,足以提供1000次以上的使用寿命。

被动密封

几乎专用的固体硅橡胶密封圈截面,设计成当闭模时它的“Z”向末端闭位置可压缩1.0-1.5mm。要在不提高模具闭模力的情况下达到有效密封,密封圈的硬度和压缩尺寸的选择是关键的。只不过因为所需的压力太大,容易引起模具变形。模具接触面一般3-5mm足以阻止树脂渗出,从而达到有效密封。

动态密封

动态形式优于被动密封形式。它能够永久地控制截面变化。图示形式其截面尺寸变化可高达4mm。这使垂直密封轨迹可待嵌入模具法兰。反之被动密封将仅仅是“塑性变形”并极度磨损。动态密封圈内侧截面一经加压,可提供密封效果很好

的调节。当模具闭合或启模时,密封圈随着真空隙弹性变形,有儿防止了垂直方向的“塑性变形”引起的磨损。

*4注射口

搞RTM 成型工艺的技术人员特别重视注射模塑树脂的入口位置。实践证明,RTM 注射口设在中心位置(视模腔形状定)是最可靠的。

*5模具的精度

RTM 模具经常处于受力状态,所以对于成功的闭模模具来说,模具的精度是关键因素之一。模腔精度控制在±0.2mm 是闭合模模具的目标精度,达不到该精度将不可避免导致缺胶和不可预见的树脂充填,并且模塑件尺寸超差。最常见的是超厚,同时要将材料收缩率参数考虑在内。

RTM 成型工艺操作及材料选择

*1*1、、RTM 工艺操作

RTM 工艺注射的操作一般要求在1/4-1/2凝胶时间内完成,传递时间为2-15分钟,传递压力为0.3-07Mpa。

树脂传递压力是RTM 工艺中应该控制的主要参数。此压力用来克服注入模腔和浸透增强材料时所遇到的阻力。树脂完成传递的时间与系统压力和温度有关,时间短可提高生产效率。但如果树脂流量太大,胶液来不及渗透增强材料,并可以由于系统压力增加而导致意外。因此,一般要求在传递过程中进入模具的树脂液面上升速度不大于25mm/min。通过观察排出口来监控树脂传递过程。通常以为,模具上所有的观察口均有胶液溢出并不再排出气泡,且实际加入的树脂量与预计加入的树脂量基本一致时,传递过程即已完成。因而排出口设置应周密考虑。*2*2、、树脂选择

树脂系统的选择是RTM 工艺的关键。要将树脂出至模腔内并且使树脂迅速浸润纤维其粘度为0.025-0.03Pa?s 为最佳。聚酯树脂粘度较低,常温下冷注射即可完成。但是,由于产品的性能要求不同,不同类型的树脂会被选择,它们的粘度不尽相同,所以管路和注射头大小均要设计成合适特殊成份的流动性要求。适合RTM 工艺的树脂有聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺树脂等。*3*3、、增强材料选择

RTM 工艺中增强材料可选用玻璃纤维、石墨纤维、碳纤维、碳化硅和芳纶纤维等。品种可根据设计需要选择短切纤维、单向织物、多轴织物、编织、针织、芯材等材料或预成型坯。

RTM 制品常见缺陷制品常见缺陷、、原因及解决方法

1、产品表面局部粗糙无光泽

RTM 产品产生这种现象的主要原因是产生轻度粘膜。用手在模具上触摸,当触摸到这些部位时,手感极其粗糙。通常产品生产一段时间后就会这样的总题,需要及时清洗模具。首先用水砂打磨模具上粗糙的部位,然后用蘸有丙酮的棉丝擦洗整个模具,最后给模具涂覆脱模剂。

2、起皱

这是有胶衣制品经常发生的弊病之一。胶衣起皱的的主要原因是在注射树脂之前,胶衣树脂固化不完全,注射树酯中的单体(苯乙烯)部分地融解了胶衣树酯,引起膨胀,产生皱纹。因此在注射树脂之前要检查胶衣是否固化。

3、漏胶

漏胶的主要原因是模具合模后不严密或密封垫不严密。合模前检查密封垫是否完好,有无裂缝等。发现总是要及时更换。合模时要检查密封状况。

4、起泡

产生这种现象的主要原因1)模腔内树脂固化的应放热过高,固化时间过短,从而模腔中的气体没有完全排出。2)树脂入模腔时带入空气过多,注射时间内无法将气泡完全排出。3)树脂粘度过大气泡在注射时不能全部从产品中溢出。4)树脂注入模腔的压力过大,致使气泡包容在树脂中难以排出。

5、制品内部出现干斑

RTM产品内部出现干斑主要原因是玻纤浸润不充分。如果同期产品中出现干斑是某个产品的某个部位,这时也应考虑是否由于玻璃纤维布被子污染造成的。通常制品,内部出现干斑也与树脂粘度有关,所以应首先分析和调节树脂粘度。查看模具流道是否太长或太窄,及时修改模具。查看给料管,改进给料管,改进给料管,增加给料点

6、芯材移动

注射时芯材的移动是由于流动的不稳定性引起的,可通过在芯材上开孔来解决或确保加在芯材上的闭合压力远大于该处树脂的压力,增强材料的移动,如纤维的冲刷也是由于合模压力相对于注射压力不足。

现象原因对策

裂纹树脂过多增加毡、布

拐角加腻子(加大R)预成型玻纤分布要均匀

厚度不均脱模时变形过大

喷射作业不熟练

提高刚度,提高固化度

脱模处理要适当

发热量过多使用低放热树脂,薄壁化

气泡拐角缺少玻璃纤维拐角刮腻子

树脂注入速度太快降低注入速度,提高树脂粘度

浸渍不良局部玻纤过多玻纤分布均匀化

树脂流动性不好设置气孔,变更注口位置

白斑固化不良增加胶衣和树脂的固化剂量延长充模时间

胶衣厚度不足厚度要在0.3mm以上玻璃纤维过多玻璃纤维用量要适当

树脂固化收缩加填料,使用低收缩树脂

粗纱、硬度大再选牌号

邹折玻璃纤维流动错位用对预成型坯粘结剂有效的粘结剂,减慢注入速度

玻璃纤维类型质

量不好

选择质量好的玻纤

挠曲变形脱模时固化不完全促进树脂固化,用补强材料提高刚度

使用矫正夹具

树脂固化收缩使用低收缩剂,使用填料

RTM工艺与手糊工艺生产成本对比RTM成型工艺

RTM工艺具体工艺流程如下:

RTM成型工艺的特点

成型工艺的特点:

1、生产周期短

2、劳动力成本低

3、环境污染少

4、制造尺寸精确

5、外形光滑、可制造复杂产品

手糊成型工艺

手糊成型工艺是复合材料最早的一种成型方法,也是一种最简单的方法,其具体工艺流程如下:

手糊成型工艺的特点手糊成型工艺的特点::

1、不受尺寸、形状的限制;

2、设备简单、投资少;

3、工艺简单;

4、可在任意部位增补增强材料,易满足产品设计要求;

5、产品树脂含量高,耐腐蚀性能好。

快速成型

快速成型 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 目录 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP 技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。 具体是如何成形出来的呢? 形象地比喻:快速成形系统相当于一台"立体打印机"。 它可以在没有任何刀具、模具及工装卡具的情况下,快速直接地实现零件的单件生产。根据零件的复杂程度,这个过程一般需要1~7天的时间。换句话说,RP技术是一项快速直接地制造单件零件的技术。 RP系统的基本工作原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。 每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理

几种常见快速成型工艺的比较

几种快速成型方式的比较 几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层

常用快速成型基本方法简介

1前言 快速成型(Rapid Prototyping)是上世纪80年代末及90 年代初发展起来的高新制造技术,是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CA D技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。 与传统制造方法不同,快速成型从零件的CAD几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段相结合,已成为现代模型、模具和零件制造的强有力手段,在航空航天、汽车摩托车、家电等领域得到了广泛应用。 2 快速成型的基本原理 快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底至顶完成零件的制作过程。快速成型有很多种工艺方法,但所有的快速成型工艺方法都是一层一层地制造零件,所不同的是每种方法所用的材料不同,制造每一层添加材料的方法不同。

快速成型的基本原理图 快速成型的工艺过程原理如下: (1)三维模型的构造:在三维CAD设计软件中获得描述该零件的CAD文件。一般快速成型支持的文件输出格式为STL模型,即对实体曲面做近似的所谓面型化(Tessellation)处理,是用平面三角形面片近似模型表面。以简化CAD模型的数据格式。便于后续的分层处理。由于它在数据处理上较简单,而且与CAD系统无关,所以很快发展为快速成型制造领域中CAD系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。即三个顶点坐标和一个法向矢量,整个CAD模型就是这样一个矢量的集合。在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。如Pre/1E软件是通过选定弦高值(ch-chordheight)作为逼近的精度参数。 (2)三维模型的离散处理:在选定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为STL模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。分层的厚度就是成型时堆积的单层厚度。由于分层破坏了切片方向CAD模型表面的连续性,不可避免地丢失了模型的一些信息,导致零件尺寸及形状误差的产生。切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。

高压HP-RTM工艺

Composites

–Co-molding of local reinforcements for optimized force transmission and locally increased mechanical performance –Local reinforcement with fabrics, non- wovens and component specific pre-forms –Optimization of crash worthiness of LFT parts and injection molded parts by the integration of high strength fiber structures –Utilization of glass, aramid and carbon fibers etc. for efficient light weight design ICT Tr?ger Tailored LFT demonstration part Tailored Structures for Efficient Lightweight Construction Composites at a Glance Material and Process Development for: –Long fiber reinforced thermoplastics, e.g. LFT direct process (LFT-D/ILC) –Advanced LFT – use of engineering thermoplastics as matrix polymer in the LFT-D/ILC process –Tailored LFT – co-molding of LFT with local continuous fiber reinforcement (Tailored Fiber Placement) –Processing of thermoset composites and process development for thermoset materials e.g. SMC –Development of natural fiber reinforced composites in combination with biopolymers –Plastic-metal-hybrid – compression molded long fiber reinforced parts with metal inserts for joining of metal and polymer components –Component and process simulation for LFT-parts and structures –Cast-Polyamide – in-situ-polymerization for the production of fiber reinforced high performance parts Structural composite door-module

快速成型典型工艺简介

快速成形典型工艺简介 关键词及简称 光固化成形(简称:SLA或AURO)光敏树脂为原料 熔融挤压成形(简称:FDM或MEM)ABS丝为原料 光固化成形 光固化成形是最早出现的快速成形工艺。其原理是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(x=325nm)和强度(w=30mw)的紫外光的照射下能迅速发生光聚合反应, 分子量急剧增大, 材料也就从液态转变成固态。 图1光固化工艺原理图 工艺过程为:液槽中盛满液态光固化树脂,激光束在偏转镜作用下, 能在液体表面上扫描, 扫描的轨迹及激光的有无均由计算机控制, 光点扫描到的地方, 液体就固化。成型开始时,工作平台在液面下一个确定的深度,液面始终处于激光的焦平面,聚焦后的光斑在液面上按计算机

的指令逐点扫描即逐点固化。当一层扫描完成后,未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕, 得到一个三维实体原型。 光固化工艺的设备做出的零件其优点是精度较高、表面效果好,零件制作完成打磨后,将层层的堆积痕迹去除。光固化工艺是运行费用最高,且强度低无弹性,无法进行装配。光固化工艺设备的原材料很贵,种类不多。光固化设备的零件制作完成后,还需要在紫外光的固化箱中二次固化,用以保证零件的强度。液漕内的光敏树脂经过半年到一年的时间就要过期,所以要有大量的原型服务以保证液漕内的树脂被及时用完,否则新旧树脂混在一起会导致零件的强度下降、外形变形。如需要更换不同牌号的材料就需要将一个液漕的光敏树脂全部更换,工作量大、树脂浪费很多。一年内液漕光敏树脂必须用完否则将会变质,用户需要重新投入近十万元采购光敏树脂。三十万的端面泵浦固体紫外激光器只能用1万小时,使用两年后激光器更换需要二次投入三十万的费用。振镜系统也是有易损件,再次更换需要十几万元的投入。由于设备的运行费用高,这种设备一般被大型集团或有足够资金的企业采购。 熔融挤压成形 熔融挤压成形工艺是利用热塑性材料的热熔性、粘结性,在计算机控制下层层堆积成型。熔融挤压成形工艺原理是材料先抽成丝状,通过送丝机构送进喷头,在喷头内被加热熔化,喷头沿零件截面轮廓和填充

几种常见的快速成型技术

几种常见的快速成型技术 一、FDM 丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、PC、PPSF等。 FDM快速原型技术的缺点是: 1、精度相对国外SLA工艺较低,最高精度0.127mm。 2、速度较慢。 二、SLA 光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、需要专门实验室环境,维护费用高昂。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1mm(但,国内SLA精度在0.1——0.3mm之间,并且存在一定的波动性)。 4、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 5、系统分辨率较高。

快速成型实习报告

快速成型实习报告一、模型的选择 组成员各设计出一个模型,通过组成员的讨 论、分析后从中挑选出一个最适合这次实习 的一个模型“贴墙的挂钩”(如右图所示) 选择这个模型的原因有以下两点: 1、生活中随处可见,有了它方便了我们的生活 2、这个模型看似简单,但设计其分型面,及 脱模方式的确定却需要用心去构思,有点难度。 二、模型的制造 将pro-e三维造型造出的模型转为STL文件 ,再通过快速成型机(如右图所示)成型模 型做母件 三、制作硅胶模 1、用橡皮泥在挂钩处做一个梯形的镶件,是为 了最后更容易分出那个钩,这样更方便脱模。 2、将模种定位,分模,以及设计好水口,灌注口,再用纸板围框。

3、选择合适的硅橡胶和固化剂按重量比搅拌均匀,然后放入真空机(如右图所示)抽真空 排尽气泡8-10分钟,完成第一次浇注。把 排完气泡的硅胶流动体从一个位置慢慢倾 入模框内直到覆盖整个模种为止。放置于平 整处,室温静待4-6小时,表面不发粘即可。 4、将第一次浇注好的硅胶模取出去掉 挂钩出的梯形橡皮泥。 5然后用相同的硅胶,放入真空机 抽真空排尽气泡8-10分钟,完成第 二次浇注。 6、第二次浇注完成后取出硅胶模, 用分模的刀具进行第一次分模(如 图所示) 上下模(如下图所示)

7、取出梯形镶件,进行第二次分 模,结果(如右图所示)成型挂钩 的钩处。 四、浇注成型 1、硅胶模开好之后,将需要的树脂 搅拌均匀,倒入硅胶膜。树脂A与 树脂B以1:2的比例混合。用电子 秤(如右图所示)来量取。 2、将量取好的树脂和硅胶模放入真空机中抽真空排尽气泡8-10分钟,按倒树脂A倒入树脂B搅拌混合(如右图所示),

快速成型制造实训报告

快速成型制造实训报告 1.实习目的 1).通过快速成型制造实训了解怎么利用快速成型设备制作模型,学会怎么操作快速成型机,然后根据模型做出硅胶模具,让我们对塑料模具的基本结构有了更深的理解,再用硅胶模具浇注出工件。 2.实习要求 1).自己用PRO-E软件设计模型,用快速成型机器制造出模型,模型做好后,用硅胶做出硅胶模具。等模具固化后,用AB胶浇注出一个工件。 3.模型的设计与选择 1)用PRO-E设计出一个猪仔的模型,尺寸自定,模型有明显的分型面,所以比较容易做分模。(模型如图所示)

4.原型的制作 1).用PRO-E造型的模型用stl格式保存好后,拿到FDM 200快速成型机上,开始做模型。 (制作过程如图所示)

5.硅胶模方案与结构的设计 1)制作硅胶模,我们用上下分模的结构,对角做了两个突起作为导柱。我们没有用油泥,而是直接在浇硅胶时控制好只浇到分型面处。 硅胶与固化剂搅拌均匀. 模具硅胶外观是流动的液体,A

组份是硅胶,B组份是固化剂。取

250克硅胶,加入25 克固化剂(注:硅胶与固 化剂一定要搅拌均匀,如 果没有搅拌均匀,模具会 出现一块已经固化,一块 没有固化,硅胶会出现干 燥固化不均匀的状况就会影响硅胶模具的使用寿命及翻模次数,甚至造成模具报废状况。 6.硅胶模的制作流程 1).先用纸板围成一个能包住模型的框,模型要距离纸板10到15MM,用铅笔尖的一头连接模型,作为浇注工件时的胶口。在框里面喷上脱模剂,方便做好后的处理。然后把配好的硅胶浇到框中,浇完后拿到真空机中做抽真空处理。 抽真空排气泡处理: 硅胶与固化剂搅拌均匀后,进行抽 真空排气泡环节,抽真空的时间不 宜太久,正常情况下,不要超过十 分钟,抽真空时间太久,硅胶马上 固化,产生了交联反映,使硅胶变 成一块一块的,无法进行涂刷或灌 注,这样就浪费了硅胶,只能把硅 胶倒入垃圾桶,重新再取硅胶来

RTM工艺及模具

轻质RTM工艺及模具制作 一.轻质RTM成型工艺原理及技术特点 1.工艺原理 轻质RTM就是真空辅助带压低粘度树脂在闭合模具中流动浸润增强材料并固化成型的一种工艺技术,其成型压力不足1kg/cm2。树脂和固化剂通过注射机计量泵按配比输出带压液体在静态混合器中混合均匀,然后在真空辅助下注入已合理铺放好的纤维增强体的闭合模中,模具用真空对周边进行密封和合模,并保证树脂流动顺畅,然后进行固化。 该工艺需要二级真空,第一级真空(真空度为667毫米汞柱)完成上下模的闭合动作,第二级真空(真空度为376毫米汞柱)在树脂注射过程中辅助树脂的流动和对增强材料的浸润。 2.技术特点 轻质RTM具有很多传统RTM相似的优点,比如生产效率和产品质量可以得以提高;可以得到两面光,大尺寸的产品;减少树脂有害成份对人体和环境的毒害。 由于轻质RTM是低压真空辅助成型工艺,所以与传统RTM相比,模具制作工艺大大简化,既方便又快捷。模具无需如传统RTM那样进行钢结构的加强,下模为三明治夹芯结构,具有较高的刚度以防止树脂在注射过程中模具产生任何变形,同时三明治夹芯结构可以有效保存产品固化时产生的热量,有利于后续产品的快速固化,缩短生产周期。而上模更为简单,可作成轻质、半刚性的结构,这样非常有利于频繁的脱模、合模的操作。 二.模具的制作 1.模具制作环境的要求以及原料的选择 a.环境 环境温度:理想的范围为25±3℃。 相对湿度:不能大于60%。 制作车间:应保持比产品生产区更高的清洁度与日常维护。 b.材料 对于该工艺所需要的材料我们推荐如下: ①主要材料 胶衣:ccp-071(具有优良的耐热能力,HDT为160-173℃) 模具树脂:RM2000(快速固化,快速制造模具,低收缩,降低模具成本) F-010(环氧改性乙烯基树脂,良好的强度和耐热性,以及低收缩率) 表面毡:300g/m2 无碱短切毡:450g/m2 轻木:用于提高模具的刚性并减轻重量 蜡片:用于控制模腔的厚度,良好的厚度均匀性。 ②辅助材料 聚酯封孔剂、易打磨底胶、高光胶衣、玻璃微珠、丁酮、丙酮、固化剂、促进剂、各种目数砂纸若干、注射口 2.裙边的制作 对于轻质RTM模具裙边的制作尤其重要,它是保证该工艺有效、可靠实施的基础。我们在现有的原模的基础上,沿着产品的周围做上宽为250mm的裙边,作出这么宽的裙边目的是为了保证模具在合模是真空能给予拥有足够的合模力,以确保我们注射的成功。 因此对于普通的手糊模具我们很容易就能够将其改造为注射模具。

几种常见快速成型工艺的比较

几种快速成型方式的比较

几种常见快速成型工艺的比较 在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主 要看一下这几种工艺的优缺点比较: FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆. 原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS 与PC的混合料等。这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。适合于产品设计的概念建模以及产品的形状及功能测试。专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。 FDM快速原型技术的优点是: 制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件; 原材料以材料卷的形式提供,易于搬运和快速更换。 可选用多种材料,如各种色彩的工程塑料以及医用ABS等 快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外 SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。在树脂槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的树脂薄片。然后,工作台下降一层薄片的高度,以固化的树脂薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢粘结在前一层上,如此重复不已,直到整个产品成型完毕。最后升

RTM工艺

树脂传递模塑成型工艺 RTM工艺的主要原理是在模腔中铺放按性能和结构要求设计的增强材料预成形体,采用注射设备将专用树脂体系注入闭合模腔,模具具有周边密封和紧固以及注射及排气系统,以保证树脂流动流畅并排出模腔中的全部气体和彻底浸润纤维,还具有加热系统,可加热固化成形复合材料构件。它是一种不采用预浸料,也不采用热压罐的成形方法。因此,具有效率高、投资、绿色等优点,是未来新一代飞机机体有发展潜力的制造技术。 该方法的优点是环保、形成的层合板性能好且双面质量好,在航空中应用不仅能够减少本身劳动量,而且由于能够成形大型整体件,使装配工作量减少。但是树脂通过压力注射进入模腔形成的零件存在着孔隙含量较大、纤维含量较低、树脂在纤维中分布不匀、树脂对纤维浸渍不充分等缺陷,因此该技术还有改进潜力。 该工艺还能帮助生产尺寸精确,表面工艺精湛的复杂零件。树脂传递模塑工艺还有一个特点是,能够允许闭模前在预成型体中放入芯模填充材料,避免预成型体在合模过程中被挤压。芯模在整个预成型体中所占的比重较低,大约在0-2%之间。 下表是一些常见RTM成型产品的缺陷问题和解决办法。

RTM工艺成功事例: 图:ASC – II桨叶通过美国联邦航空局的认证,成功运用于派珀飞机上(Piper Matrix aircraft), ASC – II桨叶同样适用于Cirrus的SR - 22和其他通用航空飞机。来源:派珀飞机公司 Hartzell公司使用自有设计软件--PROP Code和ANSYS公司开发的有限元分析(FEA)软件对桨叶上应力的分配进行分析和设计,然后用另一个内部开发程序来生成ASC - II复合层压结构。汉克将这种泡沫夹芯三明治结构设计描述为单体横造结构。制备原理是通过湿法手糊将碳纤维及芳纶纤维(单向或混编)与环氧树脂复合成型,然后在中间插入闭孔泡沫夹芯材料,形成一个桁条形状的完整复合材料桨叶。碳纤维能保证桨叶具备高模量和高弯曲强度,而芳纶纤维则能有效提高整个桨叶的阻尼性能和增加其扭曲强度。机翼外蒙皮是由玻璃纤维制造,表面附有一层铝材避雷网。值得一提的是,该桨叶结构上不同位置所采用的层压材的层数及其纤维取向各有不同,因此产生了厚度分布的差异化。

光固化快速成型实验指导书

光固化快速成型实验指导书 1.实验目的 快速成型(Rapid Prototyping)技术是20世纪80年代后期发展起来的一种新型制造技术,是近20年制造技术领域的一次重大突破。通过实验使学生对快速成型技术的成型过程有较生动的理解,以及了解快速成型技术的应用。 2.实验仪器与设备 (1)UG、3DMAX、CATIA、SOLIDWORKS等三维造型软件。 (2)数据处理部分主要使用光固化快速成形系统数据准备软件Rp Data对三维模型进行加支架、分层; (3)采用的SLA成型设备是西交大SLA(XJRP)激光快速成型机,型号为SPS450B,如图2-2;它采用高精密聚焦系统,在整个工作面上光斑直径<0.15mm,采用伺服电机、精密丝杠组成闭环控制系统,使Z向升降台重复定位精度达到±0.05mm;采用超高速扫描器,激光扫描速度可达到8m/s,制作速度可达到60g/h,特别适合于企业及激光快速成型服务中心。SPS系列激光快速成型机成型效率高,适宜汽车等大型物件成型。其技术参数如下表3-1。 表3-1 SLA技术参数

图3-2 激光快速成型机 3.实验原理 光敏树脂液相固化成型(SLA—Stereolithography Apparatus) 光敏树脂液相固化成形又称光固化立体造型或立体光刻。其工作原理如下图所示。由激光器发出的紫外光,经光学系统汇集成一支细光束,该光束在计算机控制下,有选择的扫描液态光敏树脂表面,利用光敏树脂遇紫外光凝固的机理,一层一层固化光敏树脂,每固化一层后,工作台下降一段精确距离,并按新一层表面几何信息使激光扫描器对液面进行扫描,使新一层树脂固化并紧紧粘在前一层已固化的树脂上,如此反复,直至制作生成一个零件实体模型。 激光立体造型制造精度目前可达±0.1mm,主要用作为产品提供样品和实验模型。 图3-3 光固化原理

RTM工艺实验报告

高性能复合材料综合实验 学院(系):航空航天与力学学院 实验课程:航空材料实验人:秦川 学号:103560 试验日期:2011.5 一.实验目的 1.掌握RTM成型工艺,操作方法; 2.复合材料的力学性能测试做好准备; 二.实验原理 聚酯与固化剂和促进剂充分混合后,可在常温下自然固化。通过空气增压机将聚酯注入模具可排除气泡,并使树脂与纤维充分接触,减少复合材料缺陷。 三.实验仪器 1.空气压缩机;

2.RTM模具; 3.储料罐; 4.尼龙管、金属卡箍 5.麻布、丙酮、聚酯、促进剂、固化剂、脱模剂; 6.扳手、秒表等。 四.实验内容 1.准备 (1)清理储料罐、模具; (2)剪麻布(黄麻布)200*140mm(六层)110℃两小时烘干、称重; (3)清理上下模具表面及各浇冒、喷脱模剂; (4)放入布料,布料的两端距模具浇冒口5-15mm; (5)用密封胶条粘在下模具内沿与布各占胶条宽1/2; (6)盖上磨,对角紧十个螺栓,至少三遍; (7)用压缩空气检查密封后的模具,不得 漏气; (8)300克聚酯、加1%促进剂搅拌、加 2%引发剂搅拌后静置排气(必须遵 循先后次序)。 2.制作: (1)连接管路,压缩空气出口与储料罐上 端、储料罐下端与模具浇口、冒口与 大气用尼龙管连接,除冒口与大气外 其他连接必须用金属卡箍拧紧;

(2)将静置后的聚酯导入储料罐,盖上盖(罐体与罐盖之间必须用硅橡胶垫密封); (3)紧固6个螺栓,确保密封; (4)压缩空气机压气至自动停止(约0.8Mpa); (5)将出气调压阀调至0.1Mpa,开启压缩空气出口阀压入聚酯; (6)等模腔充满树脂,并且冒口有部分聚酯溢出时关闭压缩空气出口阀,将与储料 罐连接的管子拔出,卸压; (7)固化约3-4小时。 3.卸模: (1)松开十个螺栓; (2)拧紧卸模螺栓,使上下模分离,取出成品板; (3)去除多余固化树脂,称重册板厚计算树脂含量; (4)清理模具和储料罐。 4.弯曲试样的制作: 12.7*60*3mm切8片每组2片。 四.注意事项 1.实验前应检查软管和通气口是否通畅,密封是否良好; 2.螺栓应按对角一次上好,不得少上螺栓;

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

实验四-快速成型实验

实验四-快速成型实验

实验四快速成型实验 (2学时) 一、实验目的 1、了解快速原型机的组成 2、学习快速成型机床的基本操作 3、巩固快速成型原理 二、实验原理 熔融挤压工艺原理 熔融挤出成型工艺的材料一般是热塑性材料,如蜡、ABS、PC、尼龙等,以丝状供料。材料在喷头内被加热熔化。喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结。每一个层片都是在上一层上堆积而成,上一层对当前层起到定位和支撑的作用。随着高度的增加,层片轮廓的面积和形状都会发生变化,当形状发生较大的变化时,上一层轮廓就不能给当前层提供充分的定位和支撑作用,这就需要设计一些辅助结构-“支撑”,对后续层提供定位和支撑,以保证成形过程的顺利实现。 这种工艺不用激光,使用、维护简单,成本较低。用蜡成形的零件原型,可以直接用于失蜡铸造。用ABS制造的原型因具有较高强度而在产品设计、测试与评估等方面得到广泛应用。近年来又开发出 PC,PC/ABS,PPSF等更高强度的成形材料,使得该工艺有可能直接制造功能性零件。由于这种工艺具有一些显著优点,该工艺发展极为迅速,这类三维打印机的特点: 1 不使用激光,维护简单,成本低:价格是成型工艺是否适于三维打印的一个重要因素。多用于概念设计的三维打印机对原型精度和物理化学特性要求不高,便宜的价格是其能否推广开来的决定性因素。 2 塑料丝材,清洁,更换容易:与其他使用粉末和液态材料的工艺相比,丝材更加清洁,易于更换、保存,不会在设备中或附近形成粉末或液体污染。

3 后处理简单:仅需要几分钟到一刻钟的时间剥离支撑后,原型即可使用。而现在应用较多的SL,SLS,3DP等工艺均存在清理残余液体和粉末的步骤,并且需要进行后固化处理,需要额外的辅助设备。这些额外的后处理工序,一是容易造成粉末或液体污染,二是增加了几个小时的时间,不能在成型完成后立刻使用。 图4-1熔融挤压工艺原理 三、实验设备:INSPIRE S250三维打印机

3D打印快速成型技术

特种加工论文 题目3D打印快速成型技术 姓名 专业 班级 学号

3D打印快速成型技术 摘要: 本文主要介绍了特种加工中3D打印快速成型技术,首先介绍它的加工原理,然后分析它的特点、加工方式,然后说明其在实际生产中的主要应用以及发展方向。 关键词:特种加工技术,3D打印快速成型,特点,应用。 Abstract: This article mainly introduced the special processing of 3 d printing rapid prototyping technology, introduces its processing principle, and analyzes its characteristics, processing methods, and then explain the main application in practical production and the development direction. Key words:Special processing technology, 3 d printing rapid prototyping, characteristics, application. 一、引言 3D打印(3D PRINTING )即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。 3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。 自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。 二、打印系统的工作原理 3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系

快速成型技术及原理

RP技术简介 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTUREING,简称RPM。 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。 快速成型机的工艺 立体光刻成型sla 层合实体制造lom 熔融沉积快速成型fdm 激光选区烧结法SLS 多相喷射固化mjs 多孔喷射成型mjm 直接壳法产品铸造dspc 激光工程净成型lens 选域黏着及热压成型SAHP 层铣工艺lmp 分层实体制造som 自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下: (1)SLA(光固化成型法)快速成形系统的成形原理: 成形材料:液态光敏树脂; 制件性能:相当于工程塑料或蜡模;

RTM工艺中模具设计分析

RTM工艺中模具设计分析 RTM工艺即树指传递模塑工艺,是成型纤维增强塑料的重要工艺之一。因该工艺对成型的模具要求具有强度高、变形小、寿命长、模腔尺寸准确,同时还要求模具应具有一定尺寸的稳定性和耐热性等诸多特点,所以对模具设计的合理性便显得十分重要。文中针对模具设计的原则、材料选择、结构设计、密封锁模、胶口设计等进行了较详尽的阐述,并说明了模具设计中计算机仿真软件辅助设计的便捷和重要性。 标签:树脂传递成型;模具设计;计算机仿真辅助设计 前言 随着经济的发展,我国的制造业也取得了较大的成绩,目前在航空航天、汽车、建筑和船舶等领域已广泛应用树脂纤维复合材料,而RTM成型工艺技术在是当前世界FRP工业中发展最快的成型工艺之一,且在不断应用中日益成熟和完善。利用RTM工艺所生产出来制品的性能和质量与模具有着直接的关系。所以说,RTM工艺中模具的设计是至关重要的。随着CAE计算机辅助工程技术的不断发展,在模具设计时,可对设计和生产工艺过程进行合理的数字化模拟,能够有效避免设计过程中的失误,并可通过模拟结果来指导和优化设计。 1 RTM工艺中模具设计原则 RTM成型工艺过程中,一般注射设备每分钟流量5~10升左右,注射压力从0.01~0.8MPa,一般RTM模具模腔内是3~6kg/cm2,因此对于模具的刚度、定位件、密封结构、锁模机构要求较高,如若模具设计任意一个环节考虑不周的话,不仅难以保证制品的尺寸精确性也很容易出现爆模的意外。 由于RTM模具在设计过程中,会受到多种因素的影响,因此模具在设计时应遵循结构简单合理、功能完备、经济实用的原则。并在设计过程中尽量选择具有良好的机械、热学性能的材料,合适的加工精度,表面要具有较高的光洁度,同时要配合准确、耐用的定位装置和可靠的密封结构,设计合理的进胶口和出胶口位置及监测仪表,同时在设计时也要兼顾综合多种因素对成本进行降低。 2 RTM模具材料选择和结构 在RTM工艺中,模具的产量和精度一般都取决于模具的材料。如树脂和纤维层合板复合材料适合产量较和尺寸精度要求较低的模具;铝合金和钢材则适应于产量高、要求精确的RTM制品。在这情况下,钢材的耐用性能优于铝合金,但因其重量、价格和热学性能不如铝合金,因此在中等产量的模具中高强度的和高硬度的铝合金得到了广泛的应用。 为减轻模具的重量,使其尽可能的轻便,并减少模具制作费用,在模具背部

相关文档